吸收式热泵在石化企业中应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
保护环境和节约能源,已经成为全球性热点问题。如何利用工业生产过程中产生的大量低温余热也越来越受到人们的重视。热泵作为一种利用低温热源的节能装置,用于余热回收和提高能源利用率的意义变得日趋重要。本文针对大庆石化总厂在生产过程中,通过循环水排出大量低温余热的实际情况,研究采用第一类吸收式热泵系统回收循环水排出的低温余热,实现对厂区办公楼供暖。
     本文首先对大庆石化总厂循环水和供暖状况作了考察,提出应用热泵技术对现有供暖方式进行改造在经济、技术上均可行。选取初投资、运行费用等重要方面作为评价对象,将压缩式热泵和第一类吸收式热泵供暖方案进行了计算和比较,结果显示采用第一类吸收式热泵机组供暖方案具有投资较小,回收期较短的优点。对比原供暖方案,每年可节约费用138万元。开发了溴化锂吸收式热泵机组的系统设计软件。在溴化锂水溶液物性建模中研究了两种回归方法对溴化锂水溶液结晶曲线回归精度的影响。通过对回水温度、余热水温降、热交换器换热效率对HRH机组热力系数的影响分析,最终确定了HRH机组的运行参数,并分析了在实际运行中余热水温度的波动对机组热力系数及运行安全的影响。
     通过对本课题的研究,确立了应用第一类吸收式热泵技术,提取大庆石化总厂低品位循环水(34℃)的热量,供热终端与现有老供热管网相结合,HRH机组最终输出80℃热水的供热方案。建立了一套较为完整的溴化锂热泵系统设计软件,与现场运行比较该软件设计结果可靠,较好地满足了工程实际需要,为以后溴化锂热泵系统设计、不同工况条件下性能测试以及该机组推广应用提供方便。
Environment protection and energy conservation is a popular issue now. And it is becoming a highly valued opinion of how to recovery the low temperature waste heat occurring in industrial process. Heat pump, as an effective energy saving device, is qualified to be employed in saving energy and enhancing energy utilization. Based on the study of large low temperature waste heat occurring in Daqing Petrochemical Plant, The first category absorption Heat Pump system is proposed to recover low temperature waste heat and supply heat in winter for plant office.
     Circulating water and heating conditions were first investigated in Daqing Petrochemical Plant, heat pump technology is feasible for old systerm transforming both in economic and technical. Choose initial investment and operating costs, and etc are important evaluation item, Compressed and the First kind absorption heat pump heating program were calculated and compared. The results showed that it is less investment and shorter payback for the First kind pump. Contrast the original heating program, the annual cost savings could be 1.38 million yuan. The software was developed for lithium bromide absorption heat pump system, two regression methods were studied in LiBr-H2O properties model to solve crystallization accuracy of regression curve. Through the backwater temperature, waste heat temperature drops and heat exchanger efficiency were analyzed for the heat transfer coefficient of thermal units HRH, and ultimately determine its operation parameters, and hot water fluctuations,as influence factor for coefficient and safty, was analyzed.
     Through the study, the First kind heat pump technology was used to extracted low-grade recycled water (34℃) in the Daqing Petrochemical Plant, heat terminal integrat with the heating pipe network existed, HRH unit would final output 80℃water in the heating program. A relatively complete LiBr heat pump system design software was established, compared with the data in fact, the software better meet the practical needs of the project, which provide convenient for the future LiBr heat pump system design, performance testing in different working conditions, as well as promote the popularized of the unit.
引文
[1]冯世良.我国新能源发展现状与开发前景[J].中国石油和化工经济分析,2007,(16):18-21.
    [2]高飞,秦炜.我国能源现状及政策解析[J].资源与发展,2006,(01):56-58.
    [3]刘逸.太阳能地源热泵式空调系统研究[D].大庆:大庆石油学院,2006:1-2.
    [4]皱盛欧.吸收式热泵设计和应用[J].化工装备技术,1994,15(2):14-19.
    [5]马庸颇.LiBr-H2O双吸收热变换器热力过程模拟与优化[D].大连:大连理工大学,2004:9-15.
    [6]范林,陆震,曹卫华.吸收式热泵技术新发展[J].节能技术,1998,(6):33-36.
    [7]耿惠彬,戴永庆,蔡小荣.从第七届国际吸收式热泵会议看吸收式技术发展与研究.Refrigeration and Chloride Heat Transformer [J].International Journal of Energy Research,1998,(22):791-803.
    [8]陈松,杜垲.吸收式热泵初步分析与研究[J].制冷技术,2003(3):12-16.
    [9] Keay D.A.Heat Pump Research and Development in USA [J].Heat Recovery System, 1983,3(3):165.
    [10]李辰砂,梁吉,李淞平等.利用吸收式热泵回收工业废热技术[J].化工装备技术,2001,22(1):20-26.
    [11]邹军,李淞平,袁一.工业环保与节能的有效手段-吸收式热泵技术[J].化工进展,2001,(6):46-49.
    [12]钟理,严益群,谭盈科.水/二甘醇两级升温吸收式热泵的性能模拟[J].Energy Research and Information,1997,13(3):30-34.
    [13]倪军,吴燕.国际吸收式热泵会议双良唱主角[J].制冷技术,2002,4:61-62.
    [14]路昌海,丁玮,陈文刚等.利用吸收式热泵回收含油污水余热[J].机电设备,2003,(3):18-22.
    [15]金山.有机合成厂苯乙烯装置DA-401塔余热回收的研究[J].化工科技,2003,11(1): 58-60.
    [16]王磊,陆震.溴化锂吸收式制冷系统开机方式探讨[J].上海交通大学学报,2004,38(2):276-281.
    [17]王长庆,虞洁莉.用螺旋槽管强化溴化锂降膜式发生器传热传质的研究[J].制冷与空调,2004,4(6):23-27.
    [18]耿建安,李华玉.油田热污水余热利用的可行性分析及尝试[J].制冷与空调,2004,4(2):67-70.
    [19]王志国,项新耀,李东明.热泵余热回收技术在油田的应用研究[J].流体机械,2003,31(8):56-58.
    [20]李巍,良爱民,周淑芬.吸收式热泵回收凝聚过程废热的中试研究[J].节能技术,2002,20(1):24-28.
    [21]张忠军.吸收式热泵在SBS凝聚工序的应用[J].石化技术,2000,7(3):143-148.
    [22]张松友,王松兰.升温型吸收式热泵在合成橡胶凝聚装置的应用[J].北京石油化工学院学报,2002,10(3):49-52.
    [23]郭开华,舒碧芬,陈利平.吸收式热泵降膜吸收过程传热传质理论分析及试验关联[J].工程热物理学报,1994,(4):9-12.
    [24]司华峰,郭开华.水平管绝热吸收过程试验及流动形态研究[J].暖通空调,2003,(5):32-36.
    [25]陈天择,严子浚.高温吸收式热泵生态学准则优化[J].热能动力工程,1997,12(1):23-25.
    [26]尹娟,史琳等.二次提升型吸收式变热器热力性能分析[J].清华大学学报(自然科学版),2000,40(10):88-91.
    [27]尹娟,史琳等.双效吸收式热变换器热力性能分析[J].流体机械,2000,28(8):50-53.
    [28] Juan Yin, Lin Shi. Performance Analysis of an Absorption Heat Transformer with Different Working Fluid Combinations [J]. Applied Energy,2000,(67):281-292.
    [29] Eisa M A R, Holland F A. Thermodynamic Design Data for Absorption Heat Transformers-PartⅠOperation on Water-lithium Bromide [J]. Heat Recovery Systems, 1986, 6(5): 421-432.
    [30] Rivera W, Best R. Thermodynamic Study of Advanced Absorption Heat Transformers-Part Single and Two Stage Configurations with heat Exchangers [J]. Heat Recovery Systems, 1994,14(2):173-184.
    [31] Rivera W, Best R. Thermodynamic Study of Advanced Absorption Heat Double Absorption Configurations [J]. Heat Recovery Systems, 1994,14(2):185-193.
    [32] J Yin, L Shi, M S Zhu. Performance Analysis of the Double Heat Transformer [J]. Journal of Fluid and Mechanics, 2000,8:50-53.
    [33] J Yin, L Shi, M S Zhu. Performance Analysis of the Two Stage Heat Transformer [J]. Journal of Tsinghua University,2000,40(10):88-91.
    [34] Pereira D. Optimal Woking Conditions for an Absorption Heat Transformer Analysis of The H2O/LiBr Theoretical Cycle [J]. Heat Recovery Systems, 1989,9(6):521-532.
    [35] Ciambelli P, Tufano V. The Upgrading of Waster Heat by Means of Water/Sulfuric Acid Absorption Heat Transformers [J]. Heat Recovery Systems, 1987,7(6):517-524.
    [36] P Fournier-Bidoz, T Kashiwagi. Simulation of A New Absorption Temperature Amplifier Using ATFE-E181 Pair For Low-level Temperature Upgrading ASHRAE Transactions [J]. Research, 1995, 97 (1):156-162.
    [37] A Genssle, K Stephan. Analysis of The Process Characteristics of An Absorption Heat Transformer With Compact Heat Exchangers and The Mixture TFE-E181 [J].Therm.Sci,2000, 39:30-38.
    [38] A Kawada, M Otake,M toyofuku. Absorption Heat Pump Using TFE-E181 Proceeding of The Conference: Environment-Friendly Technologies For The 21st Century Tokyo, Japan:1991,121-126.
    [39] A coronas, M Valles, S K Chaudhari. Absorption Heat Pump with The TFE-E181 and TFE-H2O-E181 [J]. Applied Thermal Engineering Research, 1996,16 (4):335-345.
    [40] M M Talbi. A new Exergy Analysis. An Absorption Refrigerator Using Lithium Bromide and Water as the Working Fluids [J]. Applied Thermal Engineering, 2000,20: 619-630.
    [41] Masaru Ishida, Jun Ji. Graphical Exergy Study on Single Absorpyion Heat Transformer [J]. Applied Thermal Engineering, 1999,19:1191-1206.
    [42]刘代俊,党洁修.H2SO4-H2O体系增温型吸收式热泵的热能分析[J].节能技术,1994,(5):2-8.
    [43] Izquierd M, et al. New Working Media for Absorption Heat Pump[J]. Int Energy Research, 1990,14:281-291.
    [44] Martz WL, et al. Local Composition Modelling of the Thermodynamic Properties Refrigerant and Oil Mixtures [J]. Int J Refrig, 1996,19(1):25.
    [45]钟理,谭盈科.水/二甘醇高温吸收式热泵的(火用)分析及试验研究[J].Refrigeration,2000,19(1):12-17.
    [46]钟理.水/二甘醇高温吸收式热泵的热力分析及试验研究[J].Technology in Chmical Industry,2000,8 (2):4-8.
    [47] Ahrens F W. Heat Pump modeling, simulation and design [J]. Proc.Nato sdvanced Study Institute on Heat Pump Fundamentals, 1983,(12):155-91.
    [48] Hiller C C. Glickman,L.R. improving Heat-Pump Performance Via Compressor Capacity Control-analysis and Test. VolumesⅠa ndⅡ, 1976
    [49] Ellison R D. Creswick,F.A. A Computer Simulation of Steady-state Performance of Air-to-air Heat Pumps. USA,1978.
    [50] Ellison R D. ORNL Heat Pump Model Update-May 1979 Department Energy, Oak Ridge National Labortory, Tennessee USA,1979.
    [51] Mumah S N. Adefila, S S. First law thermodynamic evaluation and simulaition of ammonia-water absorption heat pump systems [J]. Energy Conversion and Management, 1994,35 (8):737-750.
    [52] G Grossman, M Wilk. Advanced modular simulation of absorption systems [J]. Refrig, 1994,17 (4):231-244.
    [53]张早校,冯霄,郁永章.制冷与热泵[M].西安交通大学出版社,1999:103-122.
    [54]陈红,谢继红.热泵技术及其应用[M].化学工业出版社,2006:1-39,189-194.
    [55]戴永庆等.溴化锂吸收式制冷技术及其应用[M].机械工业出版社,1996:40-64.
    [56] Moser F, Schnitzer H. Heat Pumps in Industry [M]. Amsterdam:Elsevier,1985:117-125.
    [57]王振维,杨春生.热泵在乙烯裂解装置中的应用[J].石油化工,2001,8:645-650.
    [58]俞伯炎,吴照云,孙德刚.石油工业节能技术[M].北京:石油工业出版社,2000,250-253.
    [59]华贲.工艺过程用能分析及综合[M].北京:烃加工出版社,1989:49~94.
    [60]姜宝成,王永镖,李炳熙.地源热泵的技术经济性评价[J].哈尔滨工业大学学报,2003,35(2):195-199.
    [61]龙激波,裴清清.地埋管地源泵空调系统在广州应用经济性分析[J].暖通空调,2006,36(4):43-46.
    [62]杨昭,赵义,马一太.五种供热空调系统的技术经济分析及建议[J].制冷学报,2000,(4):43-47.
    [63]朱秋兰,史琳,陈军等.水源热泵采暖的综合经济性分析[J].华北电力大学学报,2004,30(6):93-96.
    [64]郑宋平,杨永平,郑丹星.基于可再生能源的吸收式热泵系统分析[J].华北电力大学学报,2004,31(4):59-63.
    [65] ASHRAE.ASHRAE handbook-1981 fundamental [M]. Atlanta, American society of heating, refrigerating, and air conditioning engineers Inc,1981:275.
    [66]贾明生.溴化锂水溶液的几个主要物性参数计算方程[J].湛江海洋大学学报,2002,22(3):52-65.
    [67]王磊,陆震.溴化锂水溶液的比焓分析[J].制冷学报,2002,(1):10-13.
    [68]上海师范大学数学系概率统计教研组.上海师范大学.回归分析及其实验设计[M].上海教育出版社,1978:1-75.
    [69]薛为民.正交多项式回归及其应用[M].化学工业出版社,1989:47-103,177-243.
    [70] W.瓦格纳,A.克鲁泽.水和水蒸汽的性质[M].科学出版社,2003,5-29.
    [71] Solid Quality Learning.SQL Server 2005从入门到精通[M].清华大学出版社,2006:1-12.
    [72] Francesco Balena. Visual Basic[M].清华大学出版社,2006:4-12.
    [73]聂骏.烟气驱动的废热溴化锂制冷机模拟设计计算的研究[D].南京:南京理工大学,2004:43-49.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700