最优控制在发酵过程和冰蓄冷工程中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文对最优控制在微生物发酵生产1,3-丙二醇和空调系统冰蓄冷工程领域中的应用分别进行了探讨.在微生物发酵中,以批式流加发酵生产1,3-丙二醇的控制为设计目标,首先,前馈控制批式流加,同时碱的流加采用耦联方式,依数值优化结果和pH值耦联控制的优化计算,设计了控制策略;其次,探讨了非耦联控制,pH值根据传感器自动检测的逻辑控制;最后,根据微生物发酵的菌体生长特性与二氧化碳浓度的相关性,把微生物发酵过程分为对数生长期和稳定期两个阶段,进行了反馈控制批式流加的设计.此项研究得到了国家自然科学基金、“973计划”及“863计划”的资助.另外,本文还对空调系统冰蓄冷工程的最优控制进行了研究,空调系统中冰蓄冷工程的设计符合国家近些年提倡的节能减排的要求,通过建立冰蓄冷过程的非线性非光滑的混合整数规划,构造优化算法并应用于具体工程实例中,取得了良好的效果.冰蓄冷通过“削峰填谷”的方式,将空调用电从白天高峰期转移到夜间低谷期,均衡了城市电网负荷.降低了用户的运行费用.本文取得的主要研究成果如下:
     1.依刘重阳等人研究的耦联填料批式流加发酵的数值模拟结果,考虑自动控制的可实现性,提出了把优化甘油泵流速转化为固定流速、优化流加时间的控制策略;针对用甘油批式流加发酵生产1,3-丙二醇的工艺要求,从控制电路图、软件控制流程到上位软件进行了设计.
     2.针对非耦联发酵生产1,3-丙二醇的批式流加过程,依据该生物过程的动力系统最优控制的数值结果,设计了批式流加前馈控制和加碱泵根据pH值的变化进行的自动控制,分别从设计电路图、PLC程序设计到计算机监控系统进行了设计;之后又进-步讨论了甘油泵的反馈控制,批式流加过程中根据二氧化碳浓度的变化,流加过程分为对数生长期和稳定期两个阶段,批式流加的控制策略也分成两部分,在实验室现有条件下,进行了电控箱的设计,PLC程序的编写,上位软件的设计,此部分程序通过不断调试和修改,现已在实验室成功运行.
     3.以多周期多设备冰蓄冷系统运行的动态过程为主要约束,以设备运行状态等为离散优化变量,以设备流体流速等为连续优化变量.以系统运行总费用为目标函数,建立了非线性非光滑的混合整数规划,并论述了该规划问题最优解的存在性.依离散优化变量的有限性,把这个优化问题等价地分解成有限多个关于连续优化变量的线性规划,构造具体的优化算法,最后应用于一个实际冰蓄冷系统,表明了数学模型及优化算法等的正确与有效性,缓解了用电高峰的用电量,并降低了用户的运行费用.
This dissertation investigates the application of optimal control on both microbial produc-tion of1,3-propanediol and ice storage engineering.Firstly, we consider the fed-batch culture by Klebsiella pneumoniae for production1,3-propanediol, which is controlled by feed-forward control, coupling with alkaline fed-batch. Control strategy based on numerical simulation with pH coupled control is designed to maximum the production. Secondly, uncoupling with alka-line fed-batch.pH value measured automatically with transmitter and logic control is taken into consideration. Finally, on the basis of multistage growing characteristic of bacterium and the concentration of CO2,the process of microbial fermentation is divided into two phases,which are logarithmic growth and stable phase.The optimal control strategy of fed-batch culture is designed with feedback control.The research is supported by the National Natural Science Foundation of China, the Major State Basic Research Development Program of China and the National High Technology Research and Development Program of China. In addition, optimal control strategy about ice storage engineering on air conditioning system is also considered. The optimal control on the ice storage air conditioning system is accord with the national re-quirement of energy saving and emission reduction.In this paper, a nonlinear and non-smooth mixed integer optimization model is built and an optimization algorithm is constructed to seek the optimal solution.Numerical results are implemented on a factual ice storage air condi-tioning system, which has got a good profit.Ice storage air conditioning system produces ice at night and uses it during peak periods for cooling.It is so called"cutting peak and filling trough".This reduces energy usage during the peak periods.So it can balance the load demand of electrical power network in the city. The main contributions obtained in this dissertation are summarized as follows.
     1.A fed-batch culture with coupled feeds of glycerol and alkali is considered. In order to the factual experiments.On the basis of the numerical solution,which is studied by Chongyang Liu,we propose an optimal control strategy of feeding instants under fixed feeding rate.Correspondingly, an automatic control system is designed according to the process requirement of the glycerol feed-batch culture production of1.3-propanediol, which involves the design of control circuit, flow control software and upper computer integrated control system.
     2.Based on the microbial production of1,3-propanediol in fed-batch culture with uncou-pling feeds of glycerol and alkali and the optimized numerical result of the dynamic system in microbial process, we explore an automatic control system to implement the optimal control strategy, in which fed-batch of glycerol is controlled with feed-forward control and alkalinity is controlled according to the pH transmitter. The designs of control diagram, PLC control program and supervisory computer control system are involved. Then the feedback control of glycerol pump is discussed.The fed-batch process is di-vided into logarithmic growing phase and stable phase according to the concentration of CO2.And the control strategy of fed-batch culture is divided into two subprograms. The control box, PLC programmed and supervisory computer control system are designed on the existing fermenter in the laboratory. The feedback control program,which was tested and modified for many times,has been running successfully.
     3.We considered the optimization of an multi-period and multi-equipment ice storage sys-tem.Taking the dynamic process of the ice storage system as constraint, a nonlinear and non-smooth mixed integer optimization model is built, with the running state of equip-ments as discrete optimal variables, the flow rate of fluid in the equipments as continuous optimal variables,and the total system running cost of the system as target function.The existence of solutions to the optimization problem is explored. Due to the finiteness of the admissible set of the discrete variables, the optimization problem is equivalently divided into a finite number of sub-optimization problems,which are of the form of linear pro-gramming with continuous variables to be optimized.An optimization algorithm is then constructed.Numerical results are implemented on an factual ice storage air conditioning system, revealing that both the power consumption at peak and the running cost for user are reduced considerably. So the mathematical model and optimization algorithm is valid.
引文
[1]Gottschalk G, Averhoff B. Process for the microbial preparation of 1,3-propanediol from glycerol. Eu-ropean patent EP 0373230 A1,1990.
    [2]Homann T, Tag C, Biebl H, et al. Fermentation of glycerol to 1,3-propanediol by Klebsiella and Cit-robacter strains. Appl. Microbiol. Biotechnol.,1990.33:121-126.
    [3]Menzel K, Zeng A P, Deckwer W D. High concentration and productivity of 1,3-propanediol from continuous fermentation of glycerol by Klebsiella pneumoniae. Enzyme and Microbial Technology., 1997,52:289-259.
    [4]Biebl H. Marten S, Hippe H, et al. Glycerol conversion to 1,3-propanediol by newly isolated clostridia, Appl. Microbiol. Biotechnol.,1992,36:592-597.
    [5]Reimann A, Biebl H. Production of 1,3-propanediol by Clostridium butyricum DSM 5431 and product tolerant mutants in fedbatch culture:Feeding strategy for glycerol and ammonium. Biotechnol. Lett., 1996,18(7):827-832.
    16]王剑锋,刘海军,修志龙.生物转化法生产1,3-丙二醇的研究进展.化学通报.2001,64:621-625.
    [7]修志龙.微生物发酵法生产1,3-丙二醇的研究进展.微生物通报,2000,27(4):300-302.
    [8]Deckwer W. Microbial conversion of glycerol into 1,3-propanediol. FEMS Microbiol. Reviews,1995, 16:143-149.
    [9]Biebl H. Menzel K, Zeng A P, et al. Microbial production of 1,3-propanediol. Appl. Microbiol. Biotech-nol.,1999,52(3):289-297.
    [10]Zeng A P,Biebl H. Bulk chemicals from biotechnology:the case of 1,3-propanediol production and the new trends. Adv. Biochem. Eng. Biotechnol.,2002,74:239-259.
    [11]Cameron D C, Altaras N E. Hoffman M L. et al. Metabolic engineering of propanediol pathways. Biotechnol. Prog.,1998.14(1):116-125.
    112] Witt U, Miiller R J, Augusta J, et al. Synthesis, properties and biodegradability of polyesters based on 1,3-propanediol. Makromol. Chem. Phys.,1994,195:793-802.
    [13]Biebl H, Menzel K. Zeng A P,et al. Microbial production of 1.3-propanediol. Appl. Microbiol. Biotech-nol.,1999,52(3):289-297.
    [14]Zeng A P, Biebl H. Bulk chemicals from biotechnology:the case of 1.3-propanediol production and the new trends. Adv. Biochem. Eng. Biotechnol.,2002,74:239-259.
    [15]滕虎,宋志远.姜珊等.基于生长和代谢特征的底物流加发酵生产1,3-丙二醇的控制方法.SIPO,P.R.C.No.CN101845463A.2010.
    [16]Zeng A P, ROSE A, Biebl H, et al. Multiple product inhibition and growth modeling of Clostridium butyricum and Klebsiella pneumoniae in fermentation. Biotechnol. Bioeng.,1994,44:902-911.
    [17]Zeng A P. A kinetic model for product fermation of microbial and mamalian cells. Biotechnology and Bioengenering,1995,46(4):314-324.
    [18]Zeng A P, Deckwer W D. A kinetic model for substrate and energy consumption of microbial growth under substrate-sufficient conditions. Biotechnol Progr.,1995,11:71-79.
    [19]修志龙.曾安平,安利佳等.甘油连续生物歧化过程的过渡行为及其数学模拟.高校化学工程学报,2000,14:53-58.
    [20]修志龙,曾安平,安利佳等.甘油生物歧化过程动力学数学模拟和多稳态研究.大连理工大学学报,2000,40(4):428-433.
    [21]Gao C X, Lang Y H, Feng E M,et al. Nonlinear impulsive system of microbial production in fed-batch culture and its optimal control. Journal of Applied Mathematics and Computing,2005,19(1):203-214.
    [22]Gao C X,Feng E M, Wang Z T, et al. Nonlinear dynamical systems of bio-dissimilation of glycerol to 1,3-propanediol and their optimal controls. Journal of Industrial and Management Optiminization, 2005,1(3):377-388.
    [23]Gao C X, Feng E M, Xiu Z L. Identification and optimization of the nonlinear impulsive system in microbial fed-batch fermentation. Dynamics of Continuous Discrete and Impulsive Systems-Series A-Mathmatical Analysis.2006,13:625-632.
    [24]Gao C X,Li K Z, Feng E M. Nonlinear impulsive system of fed-batch culture in fermentative production and its properties. Chaos. Solitons and Fractals,2006,28(1):271-277.
    [25]Wang H Y, Feng E M, Xiu Z L. Optimality condition of the nonlinear impulsive system in fed-batch fermentation. Nonlinear Analysis:Theory,Methods and Applications,2008.68:12-23.
    [26]Wang G, Feng E M, Xiu Z L. Vector measure for explicit nonlinear impulsive system of glycerol biocon-version in fed-batch cultures and its parameter identification. Applied Mathematics and Computation, 2007,188:1151-1160.
    1271 Wang G,Feng E M, Xiu Z L. Vector measure as controls for explicit nonlinear impulsive system of fed-batch culture. J. Math. Anal. Appl.2009,351:120-127.
    1281 Wang G, Feng E M,Xiu Z L. Modeling and parameter identification of microbial bioconversion in fed-batch cultures. J Process Contr.,2008,18:458-464.
    [29]Wang G. Feng E M, Xiu Z L. Nonlinear hybrid kinetic system of microbial bioconversion in fed-batch culture. Nonlinear Analysis:Hybrid Systems,2008,2:65-73.
    [30]李晓红,冯恩民,修志龙.微生物连续发酵稳定模型的算法与收敛性.清华大学学报(自然科学版),2007,47(s2):1907-1909.
    [31]李晓红,北恩民,修志龙.微生物连续培养过程平衡点的稳定分析.高校应用数学学报B辑,2005,20(4):377-383.
    [32]李哓红.冯恩民.修志龙.微生物连续培养非线性动力系统的性质及最优性条件.工程数学学报,2006.23(1):7-12.
    [33]李晓红,冯恩民,修志龙.微生物间歇发酵非线性动力系统的性质及最优控制.运筹学学报.2005,9(4):89-96.
    [34]Sun Y Q, Qi W, Teng H, et al. Mathematical modeling of glycerol fermentation by Klebsiella pneu-moniae:Concerning enzyme-catalytic reductive pathway and transport of glycerol and 1,3-propanediol across cell membrane. Biochem. Eng. J.,2008,38:22-32.
    [35]Wang L. Ye J X, Feng E M, et al. An improved model for multistage simulation of glycerol fermentation in batch culture and it's parameter identification. Nonlinear Analysis:Hybrid Systems,2009,3:455-462.
    [36]Gong Z H, Liu C Y, Feng E M, et al. Computational method for inferring objective function of glycerol metabolism in Klebsiella pneumoniae. Comput. Biol. Chem.,2009,33(1):1-6.
    [37]宫召华,北恩民.微生物批式流加发酵多阶段最优控制的最优性条件.运筹学学报.2009,12(4):121-131.
    [38]Liu C Y. Gong Z H,Feng E M. Modelling and optimal control for nonlinear multistage dynamical system of microbial fed-batch culture. Journal of Industrial and Management Optiminization,2009, 5(4):835-850.
    [39]Ye J X, Feng E M, Yin H C, et al. Modelling and well-posedness of a nonlinear hybrid system in fed-batch production of 1,3-propanediol with open loop glycerol input and pH logic control. Nonlinear Analysis:Real World Applications,2011,12:363-376.
    [40]Ye J X, Feng E M, Xiu Z L, et al. Nonlinear hybrid system and parameter identification of microbial fed-batch culture with open loop glycerol input and pH logic control. Appl. Math. Comput.,2012,36: 357-369.
    [41]刘海军,王剑锋,张代佳等.用克雷伯氏菌批式流加发酵法生产1,3-丙二醇.食品与发酵工业.2001.27:4-7.
    [42]程可可.孙燕,刘卫斌等.底物流加策略对发酵法生产1,3-丙二醇的影响.食品与发酵工业,2004,30(4):1-5.
    [43]Hao J. Lin R H, Zheng Z M, et al.3-Hydroxypropionaldehyde guided glycerol feeding strategy in aerobic 1,3-propanediol production by Klebsiella pneumoniae. Journal of Industrial Microbiological Biotechnology,2008,35:1615-1624.
    [44]Goldstine H H. A History of Calculus of Variations from the 17th to the 19th Century. Springer, New York,1981.
    [45]Loewen P D, Rockafellar R T. New necessary conditions for the generalized problem of Bolza. SIAM J. Control Optim.,1996,34:1496-1511.
    [46]Loewen P D, Rockafellar R T. Bolza problems with general time constraints. SIAM J. Control Optim., 1997,35:2050-2069.
    [47]Clarke F H. Ledyaev S, Stern R J, et al. Nonsmooth analysis and control theory. New York:Springe-Verlag,1998.
    [48]Hartl R F, Sathi S P, Vickson R G. A survey of the maximum principles for optimal control problems with state constraints. SIAM Rev.,1995,37(2):181-218.
    [49]Zeiden V. The Riccati equation for optimal control problems with mixed state-control constraints:ne-cessity and sufficiency. SIAM J. Control Optim.,1994,32:1297-1321.
    [50]Li X J, Yong J M. Optimal control theory for infinite dimensional systems. Boston:Birkhauser,1995.
    [51]Polak E. Optimization algorithms and consistent approximations. New York:Springer-Verlag,1997.
    [52]Dontchev A S, Hager W W, Poore A B, et al. Optimality, stability and convergence in nonlinear control. J. Applied Mathematics and Optimization,1995.31:297-326.
    [53]Hage W W. Multiolier methods of nonlinear control. SIAM J. Numerical Analysis,1990,27(4):1060-1080.
    [54]Schwartz A, Polak E. Consistent approximations for optimal control problems based on Runge-Kutta integration. SIAM J. Control and Optim.,1996,34(4):1235-1269.
    155]王康宁.最优控制的数学基础.北京,国防工业出版社,1995.
    [56]刘康生.非均匀储层储量再估计的适应性.数学物理学报,1996.16:42-47.
    [57]Yu W H. Necessary condition for optimality in the identification of elliptic system with pointwise parameter constraints. J. Optim. Appl.1996.88:725-742.
    [58]Ahmed N U,Differential inclusions on Banach Spaces with nonlocal state constraints. Nonlinear Func-tional Analysis and Applications,2001.6(3):395-401.
    [59]Ahmed N U. A General result on measure solutions for semilinear evolution equations. Nonlinear Anal-ysis, TMA,2000,42:1335-1349.
    [60]Rodrigues L, How J. Observer-bases control of piecewise-affine systems. International Journal of Con-trol.2003,76:459-477.
    [61]Cuzzala F A, Geromel J C, Morari M. An improved approach for constrained robust model predictive control. Automatica,2002.38:1183-1189.
    [62]El-Farra N H, Chrislofides P D. Bounded robust control of constrained multivariable nonlinear pro-cesses. Chem. Eng. Sci.,2003,58:3025-3047.
    [63]Fernando A,Fontes C,Magni L. Min-max model predictive control of nonlinear systems using discon-tinuous feedback. IEEE Trans. Automat. Contr.,2003,48:1750-1755.
    [64]Smolen P, Baxter D A, Byrne J H. Modelling transcriptional control in gene networks:Methods, recent results and future directions. Bull. Math. Biol.,2000,62:247-292.
    [65]Yao P F. The observability inequalities of shallow shells. SIAM J. Contr. and Optim.,2000,38(6):1729-1756.
    [66]李健全.陈任昭.时变种群系统最优生育率控制的非线性问题.应用数学学报,2002,25(4):626-641.
    [67]邓子辰,钟万勰.非线性最优控制系统的时程精细计算研究.计算力学学报,2002,19(2):184-187.
    [68]高夯.半线性椭圆方程支配系统的最优性条件.数学学报,2001,44(2):319-332.
    [69]Wang G S, Wang L J. State-constrained optimal control governed by non-well-posed parabolic differ-ential equations. SIAM J. Control Optim.,2002,40(5):1517-1539.
    [70]Wang G S, Wang L J. The Carlman inequality and its application to periodic optimal control gov-erned by semilinear parabolic differential equations. Journal of Optimization Theory and Applications, 2003,118(2):429-461.
    [71]Lou H W. Existence of optimal controls for semilinear parabolic equations without Cesari type condi-tions. J. Appl. Math. Optim.,2003,47(2):121-142.
    [72]Lou H W. Maximum principle of optimal control for degenerate quasilinear elliptic equations. SIAM J. Control Optim.,2003,42(1):1-23.
    [73]江胜宗.夏尊铨,曹里民.侧钻水平井轨道三维优化设计模型及应用.石油学报,2001,22(3):86-90.
    [74]江胜宁波,玛恩民.三维水平井井眼轨迹设计最优控制模型及处算法.大连理工大学学报,2002,42(3):261-264.
    [75]Jiang S Z, Feng E M, Wei Y H. The multi-objective optimal control model and algorithm for designing 3D trajectory in horizontal wells and its application. The 2002 International Conference on Control and Automation, Xiamen,2002.
    [76]郭雨珍.冯恩民.刘鹤贤等.多周期公用工程系统运行的模型.优化方法与应用.运筹与管理.2005.14(2):37-41.
    [77]Tsang T H, et al. Optimal control via collocation and nonlinear programming. Int. J. Control,1975,21: 763-768.
    [78]Stryk von O. User's Guide for DIRCOL (Version 2.1):a direct collocation method for the numerical solution of optimal control problems. Fachgebiet Simulation and Systemoptimierting(SIM). Technical Universit Darmstadt,2000.
    [79]Teo K L, Goh C J,. Wong K H. A Unified Computational Approach to Optimal Control Problems. Longman Scientific Technical, Essex, England,1991.
    [80]Teo K L, Jennings L S. Nonlinear optimal control problems with continuous state inequality constraints. Journal of Optimization Theory ang Applications,1989,63:1-22.
    [81]Jennings L S, Teo K L. Computational algorithm for functional inequality constrained optimization problems. Automatica,1991,26:371-376.
    [82]Jennings L S, Fisher M E, Teo K L, Goh C J. MISER3.3 Optimal Control Software:Theory and User Manul. Department of Mathematics, The University of Westera Australia,1997.
    [83]Wu C Z, Teo K L, Zhao Y, et al. Solving an identification problem as an impulsive optimal parameter selection problem. Computers and Mathematics with Applications,2005,50:217-229.
    [84]Wong K H. Jennings L S, Benyah E. The control parametrization enhancing transform for constrained time-delayed optimal control problems. ANZIAM Journal,2002,43:154-185.
    [85]Lee H W J,Teo K L,Rehbock V, et al. Control parametrization enhancing technique for optimal discrete valued control problems. Automatica,1999,35:1401-1407.
    [86]Lee H W J, Cai X Q,Teo K L. An optimal control approach to manpower planning prob-lem. Mathematical Problems in Engineering,2001,7:55-175.
    [87]Rehbock V, Teo K L, Jennings L S, et al. A survey of the control parametrization and control parametrization enhancing methods for constrained optimal control problems, Progress in Optimiza-tion:Contributions from Australasia. Kluwer Academic Press,1999.
    [88]Bell M L, Sargent R W H. Optimal control of inequality constrained DAE systems. Computers and Chemical Engineering,2000,24:2385-2404.
    [89]胡豫杰.王文起.冰箫冷技术发展初探.天津城市建设学院学报,2000,6(2):111-113.
    [90]黄翔.连之伟.哈文.空调工程应用.北京:科学出版社,1999.
    [91]Begges,Clive D. Economics of ice thermal storage,Building Research and Information,1991,19(6): 342-355.
    [92]Macracken. Clive D. Off-peak air conditioning-a major energy saver. ASHRAE Journal,1991,33(12): 1-6.
    [93]吴喜平冰.冰蓄冷技术的应用和发展,华东电力,2001,3:60-61.
    [94]张永铨.国内外冰蓄冷技术的发展和应用.制冷技术.1999.2:21-24.
    [95]张永铨.蓄冷式空调的现状和展望,空调新技术,1999.6:10-15.
    [96]庄友明,张健一,李莉等.冰藩冷空调的技术现状及其在厦门发展前景,集美大学学报,2002,(7)2:144-148.
    [97]Reindl. Douglas T. Ice storage:evolving to a sustainable technology, Proceedings of the International Conference on Energy and Environment,1CEE, Shanghai, China,1998,123-131.
    [98]贺俊杰,陈志佳,阮文.制冷技术与应用北京:中国建筑工业出版社,2006.
    [99]Ma Y D, Francesco B, et al. Model predictive control of thermal energy storage in building cooling systems. Joint 48th IEEE Conference on Decision and Control and 28th Chinese Control Conference Shanghai,P.R.China, December 16-18,2009.
    [100]王勇,赵庆珠.冰蓄冷系统的优化控制分析.暖通空调,1996,26(3):3-6.
    [101]骆维军,李吉生.赵庆珠.蓄冰系统优化控制算法.暖通空调.2002,32(2):82-84.
    [102]石磊,陈晓春,刘成定等.冰蓄冷系统优化与控制分析.制冷与空调,2003,3(4):22-25.
    [103]倪雪梅,辜兴军,许志浩.冰蓄冷系统优化蓄冷策略的探讨.制冷与空调.2004,1:21-27.
    [104]佟威,阎秀英,介军.冰蓄冷系统优化控制策略及实时控制研究.暖通与设备,2007,10:1-3.
    [105]江胜宗,韦艳华,钱伟懿,冯恩民.测钻水平井轨道设计模型、算法及应用.运筹与管理,2002,11(2):60-65.
    [106]Gao C X. Li K Z,Feng E M, et al. Nonlinear impulsive system of fed-batch culture in fermentative production and its properties.Chaos,Solutions and Fractals,2006,28(1):271-277.
    [107]Gao C X. The optimal control and application in nonlinear dynamic systems. Ph.D thesis. Dalian university of technology,2005.
    [108]Wang G, Feng E M, Xiu Z L. Vector measure for explicit nonlinear impulsive system of glycerol bioconversion in fed-batch cultures and its parameter identification. Applied Mathematics and Compu-tation,2007,188:1151-1160.
    [109]Wang G, Feng E M, Xiu Z L. Modeling and parameter identification of microbial bioconversion in fed-batch Cultures Journal of Process Control.2008,18:458-464.
    [110]Wang G, Feng E M,Xiu Z L. Vector Measure as Controls for Explicit Nonlinear Impulsive System of Fed-batch Culture. Journal of Mathematical Analysis and Applications,2009,315(1):120-127.
    [111]Wang G,Feng E M, Xiu Z L. Nonlinear hybrid kinetic system of microbial bioconversion in fed-batch culture. Nonlinear Analysis:Hybrid Systems,2008,2:65-73.
    [112]Liu C Y,Gong Z H,Feng E M. Modeling and optimal control of a nonlinear dynamical system in microbial fed-batch fermentation. Mathematical and Computer modelling,2011,53(1-2):168-178.
    [113]谭天伟.吴家鑫,李政等.一种中间代谢物反馈控制底物浓度生产1,3-丙醇的方法.SIPO,P.R.C.No.CN 101153292A,2008.
    [114]马知恩,周义仓.常微分方程定性与稳定性方法.北京:科学出版社,2005.
    [115]Liu Q X, Wen Y G, Zhou C H. Comprehensive analysis for operating feature of an ice storage air con-ditioning system,Proceedings of the International Conference on Energy Conversion and Application. Wuhan,China,2001.1083-1087.
    [116]Menzel K.,Zeng A P,Deckwer W D. Hign concentration and productivity of 1,3-propanediol from continuous fermentation of glycerol by Klebsiella pneumoniae. Enzyme Microb. Technol,1997,20: 82-86.
    [117]Biebl H, Menzel K, Zeng A,et al. Microbial production of 1,3-propanediol. Applied Microbiology and Biotechnology,1999,52:297-298.
    [118]修志龙,曾安平,,安利佳.甘油生物歧化过程动力学数学模拟和多稳态研究.大连理工大学学报,2000,40(4):428433.
    [119]Sun L H, Song Z Y, Sun Y Q, et al. Dynamic behavior of glycerol-glucose co-fermentation for 1,3-propanediol production by Klebsiella pneumoniae under microaerobic conditions. Journal of Biotech-nology,2008.136:402-459.
    [120]Cheng K K,Zhang J A, Liu D H,et al. Pilot-scale production of 1.3-propanediol using pneumo-niae.Process Biochemistry,2007.42:740-744.
    [121]Reimann A. Biebl H. Production of 1.3-propanediol by Clostridium butyricum DSM 5431 and product tolerant mutants in fedbatch culture:Feeding strategy for glycerol and ammonium. Biotechol.Lett,1996, 18(7):827-832.
    [122]Liu H J, Wang J F,Zhang D J,et al. Prodution of 1,3-Propanediol by Klebsiella pneumoniae in Fedbatch Culture. Food and Fermentation Industries,2000,27(7):4-7.
    [123]Liu D H, Liu H J, Cheng K K. Research on the Production of 1,3-propanediol by fermentation, Synthetic fiber in China.2005,9:11-15.
    [124]修志龙.甘油连续生物歧化过程培养基和pH调控策略研究.高校化学工程学报.2001,15(4):397-402.
    11251 Xiu Z L. Research progress on the production of 1,3-propanediol by fermentation. Microbiology,2000, 27(4):300-302.
    [126]Xiu Z L,Zeng A P,An L J. Mathematical modeling of kinetics and research on multiplicity of glycerol bioconversion to 1,3-propanediol. Jounal of Dalian university of technology,2000,40(4):428-433.
    [127]叶剑雄.连续发酵非线性动力系统定性分析与参数辨识.硕士学位论文.大连理工大学.2008.
    [128]Ye J X. Parameters Identifacation and Analysis of Nonlinear Dynamics System in Microbial Continu-ous Cures. Master Thesis.Dalian university of technology.2008.
    [129]Ye J X, Feng E M,Lian H S, et al. Existence of equilibrium points and stability of the nonlinear dy-namical system in microbial continuous cultures. Applied Mathematics and Computation,2009,207(2): 307-318.
    [130]http://bxbio.tech-food.com/trade/B0248557.htm.
    [131]BIOTECH-5JG use's manual of fermenter.Shanhai baoxing bio-engineering equipment Co..ltd,2003.
    [132]玉瑞.控制理论对生物机理的借鉴.广州大学学报(自然科学版),2004,3(4):319-323.
    [133]Stuart B. Brief history of automatic control. IEEE Control Systems magazine,1996,16:17-25.
    [134]Programmable logic controller,FP-X User's manual.Matsushita Electric Industrial Co,Ltd,2008.
    [135]Xu L. Principle and application of programmable logic controller:Matsushita FP Series.Tianjin Uni-versity press,2009.
    [136]Soni A S,Parker R S. Fed-batch bioreactor control using a multi-scale model.In Proceedings of the American Control Conference,Denver.Colorado,USA,2003.
    [137]通用用电设备设计规范.GB 50055-93.
    [138]低压配电设计规范.GB 50054-95.
    [139]组态王KINGVIEW 6.53使用手册.北京亚控科技发展有限公司.2007.
    [140]Hao J, Lin R H. Zheng Z M, et al.3-Hydroxy propional dehyde guided glycerol feeding strategy in aerobic 1,3-propanediol production by Klebsiella pneumoniae. Journal of Industrial Microbiological Biotechnology,2008,35:1615-1624.
    [141]Ashoori A. Moshiri B, Khaki-Sedigh A, et al. Optimal control of a nonlinear fed-batch fermentation process using model predictive approach. Journal of Process Control,2009,19:1162-1173.
    [142]Lian H S, Feng E M, Li X F,et al. Oscillatory behavior in microbial continuous culture with discrete time delay. Nonlinear Analysis:Real World Applications,2009,10(5):2749-2757.
    [143]Maciek R. Antoniewicz, David F. Kraynie, Lisa A. Laffend, et al. Metabolic flux analysis in a nonsta-tionary system:Fed-batch fermentation of a high yielding strain of E. coli producing 1.3-propanediol. Metabolic Engineering,2007,9:277-292.
    [144]Holmberg A,Ranta J. Procedures for parameter and state estimation of microbial growth process models. Automatica,1982,18(2):191-193.
    [145]Handbook of industrial and civil power distribution. China Aeronautical Project and Design Institute, China Electric Power Press,2005.
    [146]张建一.制冷装置节能技术.北京:机械工业出版社,1999.
    [147]严德隆,张维君.空调藩冷应用技术.北京:中国建筑工业出版社,1997.
    [148]Silver S C. CBS/ICE. A computer program for simulation of ice storage systems. ASHRAE Transac-tions,1989,95(1):1206-1213.
    [149]Chen S L. Jwo C S, Yang B S. et al. Theoretical and expermental investigations of a packaged ice-storage air-conditioning system. Transactions of the Chinese Institute of Engineers,1997,18(5):445-457.
    [150]Dorgan C B. et al. A descriptive frame work for cool storage oprating and control strategies.ASHRAE Transactions,2001,107(1):93-101.
    [151]方贵银.蓄能空调技术.北京:中国机械工业出版社,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700