被动复合式下向通风降温技术在建筑中应用的可行性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高校各类教室和报告厅等建筑空间由于人员密度大、通风不畅等原因导致室内热环境不舒适、空气质量差的问题一直存在。近年来随着多媒体教学的普遍化,教室室内热环境进一步恶化。中央空调是长江中下游地区封闭型公共建筑室内通风降温的主要方式,由于中央空调投资和运行成本高,学校经费紧张、常规能源紧缺,而且教学类建筑使用人数不确定、极端季节放假等原因,在教学类建筑中使用中央空调是不现实的。被动复合式下向通风降温系统利用冷空气密度大下沉,热空气密度小上升的原理,借助于管井、双层墙、天井、中庭等建筑空间通风降温,无需使用风机和管道,是与常规空调系统完全不同的体系,能够将降温系统与建筑空间整合实现一体化设计。且不受建筑体量、进深和开窗的影响,弥补了大进深、封闭型建筑自然通风的局限性。由于该系统在设备投资和使用能耗两方面都比常规空调系统显著减少,故而大大减少了有害气体排放,减缓了城市热岛。空调送风管道是传递各种疾病的媒介,PDC系统不需使用管道,可减少疾病传播,有利于创造健康的室内环境。因此该系统具有常规空调无法比拟环保、低能耗优势。本文将以武汉地区为例,探讨这种新型通风降温技术在长江中下游高校教学类建筑中应用的可行性。本文主要从五个方面展开研究:(1)被动式通风降温的分类和技术适应性分析。首先对通风的作用和方式进行了简单介绍,总结了被动降温技术的类型,重点对被动式降温通风的类型进行梳理,研究发现随着现代建筑向复合化和大型化方向发展,利用自然冷源的被动式通风降温系统在建筑中的应用和研究正在从直接单一方式走向多元间接方式、从不易控制走向有组织可控制、从简单走向系统化。本文据此提出了四种降温通风的类型,并结合案例对各通风降温类型的技术适应性进行了讨论和分析,指出了直接式自然通风的不足,提出了间接可控通风降温才有可能解决大进深、封闭式公共建筑的通风降温问题。(2)被动式下向通风降温技术的理论。对起源于古埃及,近年来在欧洲得到重视的被动式下向通风降温技术的起源、当前的理论研究概况以及在建筑中应用的优势和存在的问题进行了文献整理和总结,并结合当前空调领域最新研究成果,提出适合我国不同气候区的被动复合式下向通风降温技术。(3)室内外设计参数的确定。由于我国现有的暖通空调规范中室内外环境参数的确定只是针对常规空调建筑,并没有被动式通风降温的室内外设计参数。本文对国内外被动式通风降温建筑和自然通风建筑室内热舒适研究文献进行了整理和比较。以武汉为例,提出基于被动复合式下向通风降温技术的室内外设计参数。并以武汉某高校单层报告厅为例,进行室内热环境的理论计算和模拟分析,证明该设计参数的可行性。(4)节能潜力研究。以武汉地区的典型年气象数据为依据,通过数据分析发现武汉地区公共建筑应用被动复合式下向通风降温技术的节能潜力相当大。这是因为在封闭式公共建筑中应用该技术能延长过渡季节,并使降温季节由通常的四个月缩短到一个月左右。对于高校教学类建筑则因为极端温度处于假期,基本不存在降温季节。故采用被动复合式下向通风降温系统不仅能解决全学年的通风降温问题,还大大改善了教室室内空气质量。(5)基于该技术的典型建筑的理论计算和模拟分析。通过对武汉高校公共教学建筑空间尺度和组合方式的调研,提出了基于被动复合式下向通风降温系统的空间类型。本文以三种典型教学空间类型为例,根据武汉地区过渡季节最不利室外计算参数,进行理论计算和模拟分析,进一步验证该通风降温系统在不同类型公共教学用房中应用的可行性。通过典型案例研究,确定了不同通风方式与建筑空间、楼层的关系,并通过风口尺度计算阐明了相关注意事项。被动复合式下向通风降温系统作为与常规中央空调完全不同的系统,是被动式降温研究领域的新方向,目前该系统在我国建筑中的应用还比较少,随着节能减排和建筑可持续发展的需要,在建筑设计中应用该技术替代常规空调具有非常重要的现实意义。本文的研究结论不仅适用于教学用房,也可为会议厅、剧院和电影院等建筑类型提供设计参考,同时为建筑师在封闭型公共建筑中创作提供了新的思路。
Air quality problems in University classrooms and lecture halls are persistent due to the density of personnel, poor ventilation which lead to uncomfortable indoor thermal environment. In recent years, with the universalization of the multimedia teaching, classroom indoor thermal environment is deteriorating further. Central air-conditioning is the main equipment of cooling and ventilating closed public buildings in the middle and lower reaches of the Yangtze River. Since costs of investment and running of central air conditioning are high, lack of funds, shortage of conventional energy sources, the number of students in teaching classes is uncertain, and extreme season is holiday. It is unrealistic to use the central air-conditioning in a teaching building. The principle of Passive and Hybrid Downdraught Cooling system relies on the thermal buoyancy, the density of cooled air is higher than the inside air, which leads the heavy cooler air downdraught to cool the indoor space. By means of tube wells, double wall, patio, courts, the hot air rise and exit to outside without fans and piping. The PHDC system is completely different from the conventional air conditioning system in that it integrates cooling system with the building space. Without impact by building mass, building depth and openings in the wall, PHDC makes up the limitations of natural ventilation in deep-plan or enclosed buildings. Because of the reduction in equipment investment and lower energy consumption in operation, harmful gas emissions are greatly reduced, urban heat island is mitigated. Air conditioning piping is the medium of various diseases delivery, without using pipes, the PDC system can reduce the spread of the disease, and help create a healthy indoor environment. The advantage of PHDC is low power and environmental friendly. This dissertation will explore the application feasibility of this novel ventilation and cooling technology in university teaching building in the middle and lower reaches of the Yangtze River, take Wuhan city as an example.This dissertation discusses from five aspects as follow: (1) The classification and adaptability analysis of passive ventilation and cooling. Firstly, a brief introduction on the function and pattern of ventilation was introduced, the types of passive cooling techniques were summarized. After sorting out the types of passive cooling ventilation techniques, it was found that with the development of modern society, public buildings stepped into complex and large-scale. Application and research on natural ventilation in these buildings were changed from direct and single methods to indirect and multiple methods, from uncontrolled to organized way, from simple to systematize. This dissertation has put forward four cooling and ventilation types. According to case study, different types of ventilation and cooling technology were discussed and analyzed. It pointed out the disadvantage of direct natural ventilation, and suggested that indirectly and controlled ventilation and cooling is possible to solve the problems in the deep-plan, enclosed public buildings.(2) Theory of passive downdraught cooling. PDC is originated in ancient Egypt, which was got the attention in Europe in recent years. The origin of PDC technique, current research situation, the application of advantages and problems were literature reviewed and summaried. Combined with the latest research achievements in the field of air conditioning, PHDC technique which is fit in different climatic zones in our country is put forward.(3) Determination of indoor and outdoor design parameters. The indoor and outdoor parameters are only in HVAC standard, not for passive cooling buildings. After The collation and comparison of indoor thermal comfort studies in domestic and foreign passive cooling and natural ventilation buildings, design parameters based on PHDC in Wuhan is presented. A case study of a monolayer lecture hall in University in Wuhan is studied by calculations and simulations to demonstrate the feasibility of the design parameters.(4) Potential study of energy saving. After analyzing Wuhan typical year meteorological data, it revealed that potential of energy efficiency in public buildings with PHDC system is quite significant. Because the transitional season will be extended by the application of this technology, and cooling season is shortened from the usual four months to about one month in enclosed public buildings. There will be no cooling needs for university teaching buildings due to summer holiday during extreme temperature. Therefore, PHDC can not only solves the problems of ventilation and cooling for the entire school year, but also can greatly enhance the classroom indoor air quality.(5) Theoretical calculations and simulations of the typical teaching buildings based on PHDC. Type of space based on PHDC is presented after survey on spatial scales and combinations of University teaching buildings. Three typical types of teaching space are presented as examples. According to the most unfavorable outdoor parameters during Wuhan transition seasons, theoretical calculations and simulations are used to further verify the feasibility of PHDC system in different types of teaching space. According to case study, the relationships between ventilation types and architectural space, the floors are confirmed, and some relevant notes are clarified through the outlet size calculation.PHDC is a new aspect in passive cooling field in the future. The system is seldom used in our country. With the energy conservation and architecture sustainable development, study on this technology as an alternative to conventional air conditioning has a very important practical significance. The conclusions of this study are not only applicable in teaching buildings, but also provide design references and creat new idea for architects in building types such as conference rooms, theaters cinemeas, and some other enclosed public buildings.
引文
[1] CIBSE, Natural Ventilation in Non-domestic Buildings, Apllications Manual 10(AM10). London:CIBSE,2005
    [2] 陆元鼎.广东民居.北京:中国建筑出版社,1990
    [3] F. Nicol, M. Humphreys. Derivation of the adaptive equations for thermal comfort in free-running buildings in European standard EN 15251. Building and Environment,2010,45:11-17
    [4] 清华大学建筑节能研究中心.中国建筑节能年度发展研究报告2009.北京:中国建筑工业出版社,2009
    [5] 王洪光.西安地区高校教室室内热环境研究:[硕士学位].西安:西安建筑科技大学,2005
    [6] 罗明智,李百战,徐小林.重庆夏季教室热环境研究.重庆建筑大学学报,2005,27:88-91
    [7] 李彪,朱蒙生,展长虹,等.哈尔滨冬季高校教室IAQ及热舒适现场研究.节能技术,2010,28:336-341
    [8] 戴欢欢,岳巍,申得民.冬季教室空气质量对学生疲劳的影响.城市发展研究,2001,6:73-76
    [9] 胡佳林,窦豆,陈松,等.夏季自然通风教室室内环境与学习效率的调查研究.节能,2009,7:19-23
    [10] G T.-.2002.室内空气质量标准.中华人民共和国国家标准,2002
    [11] 胡帆.长沙地区高校教学楼低能耗优化设计研究:[硕士论文].长沙:湖南大学,2006
    [12] CIBSE, mixed mode Ventilation AM13. london:CIBSE,2000
    [13] ASHRAE. ASHRAE Handbook——Fundamentals. ASHRAE,2005
    [14] B. Givoni. Man, climate and architecture,2nd ed. London:Applied Science
    Publisher,1976
    [15] B. Givoni. Passive and low energy cooling of buildings. New York:Van Nostrand Reinhold Co.,1994
    [16] F. Allard. Natur al Vent ilation in Buildings-A Design Handbook. London:James and James Science Publishers Ltd,1998
    [17] BRE, Natural Ventilation in Non-domestic Buildings, vol.399. london:BRE Digest,1994
    [18] S. Etheridged. Building Ventilation-Theory and Measurement. London:John Wiley&Sons,1997
    [19] P. Heiselberg. Outline of Hybvent. Aalborg University, Denmark 1998
    [20] W. Garston. Energy use in office. E. c. Guide19, Ed.:BRECSU,2000
    [21] I. A. Report. Hybrid Ventilation Annex35.2000
    [22] 李安桂.欧洲自然通风技术研究与设计进展.制冷空调与电力机械,2004,25:1-8
    [23] 张金萍,李安桂.自然通风的研究应用现状与问题探讨.暖通空调,2005,35:32-38
    [24] 龚波.教学楼风环境和自然通风教室数值模拟研究:[硕士学位].成都:西南交通大学,2005
    [25] BSI. Code of practice for ventilation principles and designing for natural ventilation (BS 5925). British Standards Institute,1991
    [26] 柳孝图.建筑物理(第二版).北京:中国建筑工业出版社,2000
    [27] 阳丽娜.建筑自然通风的多解现象与潜力分析:[硕士论文].湖南:湖南大学,2005
    [28] 陆耀庆.供暖通风设计手册.北京:中国建筑工业出版社,1987
    [29] 李华东.高技术生态建筑.天津:天津大学出版社,2002
    [30] 汪帆.福建两类传统民居夏季室内外建筑气候的微机仿真分析.暖通空调,1994,34(4):45-48
    [31] 林波荣,谭刚,王鹏.皖南民居夏季热环境实测分析.清华大学学报,2002,42(8):1071-1074
    [32] 翟光连,翟芸.皖南传统民居生态系统初探.华中建筑,2003,21(4):95-97
    [33] 张希晨.皖南传统聚落的生态适应性.江南大学学报,2003,2(2):190-193
    [34] 曾志辉,陆琦.天井对岭南现代低层住宅的热环境意义.建筑学报,2010,03:27-29
    [35] 汤国华.岭南湿热气候与传统建筑:中国建筑工业出版社,2005
    [36] 陈晓扬.泉州手巾寮民居夏季热环境实测分析.建筑学报(学术论文专刊),2010:84-87
    [37] G. Z. Brown, M. Decay. How to design buildings that heat with the sun, cool with the wind, light with the sky, and move into the future using on-site renewable resources John Wiley & Sons,2001
    [38] 雷涛.中庭空间生态设计策略的计算机模拟研究:[硕士学位].北京:清华大学,2004
    [39] 杜敬三.商业建筑中庭热环境研究:[硕士学位].北京:清华大学,2002
    [40] 赵蓓.武汉地区中庭建筑的通风和热舒适度模拟研究:[硕士学位].武汉:华中科技大学,2004
    [41] E. Gratia, A. D. Herde. Is day natural ventilation still possible in o!ce buildings with a double-skin facade. Building and Environment,2004,39:399-409
    [42] E. Gratia, A. De Herde. Guidelines for improving natural daytime ventilation in an office building with a double-skin facade. Solar Energy,2007,81:435-448
    [43] P. C. Wong, D. Prasad, M. Behnia. A new type of double-skin facade configuration for the hot and humid climate. Energy and Buildings,2008,40:1941-1945
    [44] 赫尔佐格合伙人事务所.霍尔茨大街住宅项目.世界建筑,2007:47-51
    [45] 董卫,王建国.可持续发展的城市与建筑设计.南京:东南大学出版社,1999
    [46] 阿尔温德·克里尚,尼克·贝克,西莫斯·扬纳斯.建筑节能设计手册——气候与建筑.北京:中国建筑工业出版社,2005
    [47] 杨洪生.自然通风降温系统在建筑中的应用.建筑学报,2008:18-22
    [48] C. A. Short.面对不同气候条件下低能耗、高效、大进深公共建筑的设计策略类型学.世界建筑,2004,08:20-33
    [49] B. Ford. Passive Downdraught evaporative cooling:principles and practice. Environmental design,2001,5:271-278
    [50] K. J. Lomas. Architectural design of an advanced naturally ventilated building form. Energy and Buildings,2007,39:166-181
    [51] 比尔·邓斯特,克雷格·西蒙斯,鲍比·吉尔伯特,陈硕The ZED book solution for a shrinking world建筑零能耗技术.大连:大连理工大学出版社,2009
    [52] H. Fathy, Natural Energy, Vernacular Architecure. Principles and examples with References to Hot Arid Climates Chicago. University of Chicago Press,1986
    [53] H. Inc. Wing Jetter System:An Epoch-making Ventilator Achieved by Application of Wing Theory. HASEC Inc, Tokya 2007
    [54] M. L. Li. The assessment of the performance of a wind catcher system using CFD. Building & Environment,2005,42:1135-1141
    [55] M. N. Bahadori. An improved design of wind towers for natural ventilation and passive cooling. Solar Energy,1985,35:119-129
    [56] W. A. Cunningham, T. L. Thompson. Passive Cooling with Natural Draught Cooling Towers in Combination with Solar Chimneys, presented at. Proc. PLEA'86, Pets, Hungary,1986
    [57] B. Givoni. Comfort, climate analysis design guidelines. Energy Buildings,1992, 18:11-23
    [58] D. Pearlmutter, E. Erell, Y. Etzion, et al. Refining the use of evaporation in an experimental down-draft cool tower. Energy and Buildings,1996,23:191-197
    [59] E. Erell, Y. Etzion, D. Pearlmutter. A novel multi-stage down-draft evaporative cool tower for space cooling Part 2:Preliminary experiments with a water spraying system, presented at International Conference. Passive and Low Energy Cooling
    for the Built Environment. Santorini, Greece,2005
    [60] S. Alvarez, E. A. Rodriguez. The Avenue of Europe at Expo' 92:Application of cool towers. in Architecture and Urban Space. presented at 9th PLEA International Conference, Seville Spain,1991
    [61] L. Thomas, G. Baird. Post-occupancy evaluation of passive downdraft evaporative cooling and air-conditioned buildings at Torrent Research Centre, Ahmedabad, India. presented at Challenges for architectural science in changing climates: proceedings of the 40th annual conference of the Architectural Science Association Adelaide:School of Architecture, Landscape Architecture and Urban Design, University of Adelaide,2006
    [62] PHDC. The Stock Exchange, Valetta, Malta
    [63] E. Erell, Y. Etzion, D. Pearlmutter. A novel multi-stage down-draft evaporative cool tower for space cooling Part 1:Aerodynamic design. presented at International Conference "Passive and Low Energy Cooling for the Built Environment", Santorini, Greece,2005
    [64] D. Pearlmutter, E. Erell, Y. Etzion. A multi-stage down-draft evaporative cool tower for semi-enclosed spaces:Experiments with a water spraying system. Solar Energy,2008,82:430-440
    [65] B. Ford, N. Patel, P. Zaveri, et al. Cooling without air conditioning:The Torrent Research Centre, Ahmedabad. India. Renewable Energy,1998,15:177-182
    [66] 崔文盈.温湿度独立控制溶液除湿空调系统的理论研究及技术方案论证空调:[硕上学位].重庆:重庆大学,2007:8-13
    [67] 张青,柳建华,邬志敏,等.液体除湿空调实验台的性能分析及实验研究
    [68] 王顺林,裴清清,朱钟浩,等.夏热冬暖地区太阳能溶液除湿空调的应用分析.建筑热能通风空调,2007,26(4):17-20
    [69] 高刚.喷雾式间接蒸发冷却技术在长江流域的适应性研究:[硕士学位].重庆大学,2008:60-71
    [70] 林武生,董瑾,吴远航.宜将新绿付老枝.建筑学报,2010,01:20-25
    [71] 陈俊萍.露点间接蒸发冷却器优化及应用研究:[硕士学位]:西安工程大学,2008
    [72] J. F. Nicol, I. A. Raja, A. Allaudin, et al. Climatic variations in comfortable temperatures:the Pakistan projects. Energy and Buildings,1999,30:261-279
    [73] M. A. Humphreys, J. Fergus Nicol. The validity of ISO-PMV for predicting comfort votes in every-day thermal environments. Energy and Buildings,2002,34: 667-684
    [74] D. Martinez, D. Fiala, M. J. Cook, et al. Predicted Comfort Envelopes For Office Buildings With Passive Downdraught Evaporative Cooling. Room Vent 2000, reading, UK, Conf. Proc,2000:53-58
    [75] R. J. de Dear, G. S. Brager. Thermal comfort in naturally ventilated buildings: revisions to ASHRAE Standard 55. Energy and Buildings,2002,34:549-561
    [76] F. Nicol. Adaptive thermal comfort standards in the hot-humid tropics. Energy and Buildings,2004,36:628-637
    [77] M. A. Humphreys, F. Nicol. Outdoor temperature and indoor thermal comfort Raising the precision of the relationship for the 1998 ASHRAE database of field studies vol.106:ASHRAE Transactions 2000
    [78] HSE, thermal comfort in the workplace guidance for employers Health and Safety Executive HSG 194:Health and Safety Executive Book,1999
    [79] 张慧玲.建筑节能气候适应性的时域划分研究:[博士学位].重庆:重庆大学,2009
    [80] 上海第一医学院环境卫生教研室.环境与健康.上海:上海科学技术出版社,1981
    [81] 纪秀玲,戴自祝,甘永祥.夏季室内人体热感觉调查.中国卫生工程学,2003,2(3):141-143
    [82] R. Aynsley. Estimating summer wind driven natural ventilation potential for indoor
    thermal comfort. Journal of Wind Engineering and Industrial Aerodynamics,1999, 83:515-525
    [83] I. A. Raja, J. F. Nicol, K. J. McCartney, et al. Thermal comfort:use of controls in naturally ventilated buildings. Energy and Buildings,2001,33:235-244
    [84] 杨柳.建筑气候分析与设计策略研究:[博士学位论文].西安:西安建筑科技大学,2003
    [85] 茅艳.人体热舒适气候适应性研究:[博士学位论文].西安:西安建筑科技大学,2006
    [86] 李俊鸽.夏热冬冷地区人体热舒适气候适应模型研究:[硕士论文].西安:西安建筑科技大学,2006
    [87] 杨薇.夏热冬冷地区住宅夏季热舒适状况以及适应性研究:[硕士学位].湖南:湖南大学,2007
    [88] 李文菁.不同热环境下的人体热感觉:[硕士学位].湖南:湖南大学,2006
    [89] 胡晓峰.深圳市居住建筑自然通风热舒适与节能效果研究:[硕士学位].广州:广州大学,2007
    [90] D.J.克鲁姆,建筑物空气调节与通风,1982
    [91] C. bin, Z. Xiang, H. li. Field survey of human thermal adaptability in transition season and heating supply period presented at Air conditioning and the low carbon cooling challenge, Windsor, U. K,2008
    [92] 诸明杰.用动态情况分析商场冬季热舒适性空调参数
    [93] 中国预防医学中心卫生研究所,采暖卫生标准编制说明,1985
    [94] 罗明智.室内空气流速对人体生理指标及热舒适影响的研究:[硕士学位].重庆:重庆大学,2005
    [95] M. S. Jang, C. D. Koh. Review of thermal comfort design based on PMV/PPD in cabins of Korean maritime patrol vessels. Building and Environment,2006,42
    [96] 朱唯,狄育慧,王万江,李安桂.室内环境与自然通风.建筑科学与工程学报,2006,23(1)
    [97] 竟峰,张旭,杨洁.我国部分城市办公建筑自然通风潜力分析.同济大学学报,2008,36:92-96
    [98] 董宏.自然通风降温设计分区研究:[硕士学位].西安:西安建筑科技大学,2006
    [99] 卜根.我国不同地区自然通风应用潜力与节能潜力研究:[硕士学位].南京:南京理工大学,2010
    [100]王怡.寒冷地区居住建筑夏季室内热环境研究:[博士学位论文].西安:西安建筑科技大学,2003
    [101] U. S. D. O. Energy. Weather data for energy simulation software, www. eere. energy, gov/buildings/energyplus/cfm/weatherdata_int. cfm,2004
    [102]邱静,李保峰,邱裕.被动式蒸发冷却下向通风降温技术在中庭中应用的思考.华中建筑,2011,29:60-63

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700