船舶电缆绝缘老化规律及快速检测方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着船舶自动化程度的逐步提高以及电力推进船舶的出现,船舶电气系统也随之日益复杂,船舶电缆在船舶电气系统中担任着传输能量和信号的重要任务。众所周知,船舶电缆的工作环境复杂,在温度、湿度、机械振动等众多因素的综合影响下,电缆绝缘层材料容易老化,进而导致电缆的绝缘性能下降甚至失效,从而导致船舶电气系统失效,甚至引起船舶火灾。可见,船舶电缆绝缘状态和老化程度直接影响着整个船舶的安全和生产。另外,我国正在服役的老旧船舶众多,其上使用的依然是最初的船舶电缆(丁苯橡胶电缆为主),其绝缘性能的好坏无从知晓。为消除船舶电缆稳定运行中的安全隐患,明确电缆更换时机,就迫切需要对其绝缘老化寿命进行快速检测。
     在影响绝缘材料的众多老化因素中,温度占主导地位。目前对船舶电缆绝缘寿命进行预测主要是依据GB/T11026和IEC60216标准,在实验室对船舶电缆开展高温加速老化实验,通过测量老化试样的断裂伸长率来推断其在实际使用温度下的寿命。这种方法是破坏性试验,在试验过程中需要从船舶电网中截取待检测电缆;同时需要很长的试验周期才能得到实验结果;另外,船舶电缆穿越不同舱室,其工作环境必然存在差异,这意味着所截取的样品只能代表局部,无法对全船电缆的绝缘寿命进行检测。
     综上,若能提出一种在线、快速的电缆寿命检测方法,无论是对船舶的安全性还是减少盲目更换电缆都具有重要意义。针对该问题,本文以目前众多老旧船舶上广泛应用的丁苯橡胶电缆为研究对象,尝试建立一种基于硬度的船舶电缆绝缘老化寿命快速检测方法,主要完成了如下几方面工作:
     (1)依据相关标准,选取135℃、150℃、165℃、180℃四个老化温度点,对新的丁苯橡胶电缆进行加速老化试验,并分别对老化后试样的硬度、断裂伸长率、密度和绝缘电阻等性能指标进行测量,获得了船舶丁苯橡胶电缆绝缘老化的定量规律。结果发现随着老化时间的延长即老化程度的加深,绝缘层硬度增大,断裂伸长率减小,密度缓慢增加,绝缘电阻在老化后期呈明显下降趋势。其中,硬度以及断裂伸长率与其老化程度之间线性关联明显,为对电缆绝缘寿命进行快速无损检测,选取硬度为特征参量。
     (2)建立了丁苯橡胶电缆绝缘层伸长比、断裂伸长率以及老化交联密度等与其硬度之间的理论模型,阐明丁苯橡胶伸长比、断裂伸长率以及交联密度等与其硬度之间的变化关系。提出剩余硬度保留率概念,参考GB/T11026和IEC60216标准中规定的数据处理方法对所测硬度数据进行了统计验证以及系统分析,进而提出基于剩余硬度保留率的船舶丁苯橡胶电缆绝缘寿命快速检测新方法。
     (3)参照GB/T11026和IEC60216标准,对丁苯橡胶电缆绝缘寿命快速检测新方法进行检验,结果表明所提出的基于剩余硬度保留率的检测新方法具有与上述标准较高的相符性,不但结果准确而且具有简单快速的优点。并提出以剩余硬度保留45%作为新方法的检验失效标准,即丁苯橡胶电缆的寿命终点。另外绝缘电阻测试结果也从侧面证明了基于剩余硬度保留率对船舶丁苯橡胶电缆绝缘老化寿命进行快速检测的有效性。
     通过本文的研究工作,揭示了船用丁苯橡胶电缆绝缘层老化规律,在此基础上提出了一种基于硬度的船舶电缆绝缘老化寿命快速检测方法,在应用该方法时,首先需按照文中所述过程建立基于剩余硬度保留率的寿命预测模型(不同电缆模型不同),在实船检验时只需对要检验的船舶电缆绝缘部位进行硬度测试,随后带入相应模型便可得知其剩余使用寿命。这意味着检验人员可以在船上随时对不同部位的船舶电缆进行检验,不需再反复进行取样以及漫长的老化试验过程。
With the gradual improvement of the ship automation, as well as the emergence of electric-driven ship, marine electrical systems are increasingly complex. Cables of ship electrical system play an important role of power and signals transmission. It is well known that, the working condition of ship cables is very complex, including high temperature, humidity and mechanical vibration, which accelerate the thermal aging of ship cable. As the thermal aging of cable insulation material going on, insulation status of the cable declines. This results in ship electrical system failure, even causing fire. So, the state of cable insulation affects the ship safety and working. In addition, there are a lot of old ships are on active service. The initial ship cables (styrene-butadiene rubber is mainly used) are still used on these ships. The state of these cables insulation is unknown. To eliminate the potential safety hazard of electrical system, and to define the cable change time, it is urgent to make rapid life prediction of ship cables.
     Among those factors affecting insulation status of ship cables, temperature is the dominant factor. At present the ship cable life prediction is mainly based on the standards of GB/T11026and IEC60216. High-temperature accelerated aging of ship cable is conducted in laboratory firstly, and then the ship cable life in the actual use temperature can be predicted by measuring the elongation at break of the aging test specimen. But this method is destructive, sample cables should be cut from the ship electrical system; and it usually takes a long time to get the life assessment results. In addition, ship cable pass through different cabins on the ship. So, the working condition for the cables in different cabins is different. This means the sample cable can only represent a small part of the whole ship cable. So, we can not get the life assessment results of the whole ship cable.
     From the above, a kind of online and rapid ship cable life prediction method is needed. This is important for the ship safety and the time choice to change the cable. In this study, styrene-butadiene rubber (SBR) insulated cable which is widely used on old ship was used as the research object. A rapid detection method to evaluate the insulation thermal aging status based on hardness was developed and tested. Following work was done:
     Firstly, accelerated aging experiment of styrene butadiene rubber was carried out at four aging temperatures of135℃,150℃,165℃and180℃which were chosen based on relevant standards. Performance indicators of the aged samples were measured, such as hardness, elongation at break, density, and insulation resistance. The test results show that as the aging process goes on, hardness of the rubber increases, elongation at break decreases, density increases slowly and insulation resistance decreases at the end the aging process. Among them, there is a significant liner correlation between hardness and degree of aging. In order to realize the quick nondestructive testing of the life of cable insulation layer, hardness is chosen as the characteristic parameter.
     Secondly, the mathematical model of hardness with elongation ratio, elongation at break and crossling rate of SBR was developed. The relation of the cross linking rate of SBR cable and elongation ratio with its hardness was illuminated bassed on the model. Based on this, residue hardness retention rate (RHRR) was defined. The hardness experimental data was verified and analyzed based on the standards of GB/T11026and IEC60216. And then, a new rapid life prediction method of styrene-butadiene rubber insulated ship cable was put forward.
     In the end, based on the same standards of GB/T11026and IEC60216, the new rapid detectioin method was verified. There was a high consistency between the new method and the standards. The new method is accurate, rapid and simple. At the same time, the failure criteria of the new method is suggested to RHRR=45%. In addition, the test results of insulation resistance also proved the validity of the new method.
     In this study, the agine law of the SBR insulated ship cable was studied. Based on this, a new rapid method to predict ship cable life based on RHRR is developed. When using this method, the life prediction model (different models for different types of ship cable) based on RHRR should be developed firstly according to the process discussed in the study. The cable insulation hardness of the part which is intended to be tested should be measured. Then choose a suitable RHRR life prediction model based on the working condtion. The remaining useful life of the ship cable can be calculated then. This means the inspector can check the insulation status of any part of the ship cable at any time on board. There is no need to sample repeatedly, and the long experiment time is also eliminated.
引文
[1]万炳康.船舶电网绝缘性能对船舶安全航行的影响.江苏船舶,2002,01:20-22.
    [2]单浩明.浅析船舶电气火灾.交通运输部救捞局、中国航海学会救助打捞专业委员会、中国潜水与打捞行业协会.第五届中国国际救捞论坛论文集.交通运输部救捞局、中国航海学会救助打捞专业委员会、中国潜水与打捞行业协会,2008.
    [3]胡钰林.电线电缆绝缘检测技术的研究:(硕士学位论文).南京:东南大学,2004.
    [4]郝绣,王庆春.船用电缆剩余寿命无损检测法.船电技术,2003,03:44-45+47.
    [5]陈冠洲.船用电力电缆的选择与计算.船舶,1994,04:36-41.
    [6]张明洁.船用天然橡胶绝缘电缆丁苯使用寿命的估计.湛江水产学院学报,1993,02:46-52.
    网王志强,周长亮,李文文,李国锋.船用丁基橡胶绝缘电缆剩余寿命评估.中国电机工程学报,2012,34:189-195+27.
    [8]肖鑫,赵云峰,许文,詹茂盛.橡胶材料加速老化实验及寿命评估模型的研究进展.宇航材料工艺,2007,01:6-10.
    [9]刘盖世.船用CXF型号电缆的绝缘老化实验以及寿命分析:(硕士学位论文).大连:大连海事大学2011.
    [10]王彩凤,姜义.高压开关设备用氟橡胶密封制品的优化设计.高压电器,2002,06:46-48.
    [11]杜跃兵,倪海鹰,陈军,杨堰安.发动机用氟橡胶胶料的研究.特种橡胶制品,2001,03:11-13.
    [12]张录平,李晖,刘亚平,孙岩.橡胶材料老化试验的研究现状及发展趋势.弹性体,2009,04:60-63.
    [13]Gillen K T, Bernstein R, Celina M. Non-Arrhenius behavior for oxidative degradation of chlorosulfonated polyethylene mate-rials. Polymer Degradation and Stability,2005,87:335-346.
    [14]Abdel-Aziz M M, Basfar A A. Aging of ethylene-propylene diene rabber (EPDM) vulcanized by g-radiation. Polymer Testing,2000,19:591-602.
    [15]Celina M, Gillen K T, Malone G Metal. Polymer materials and component evaluation in acidic-radiation environments. Radiation Physics and Chemistry,2001,62:153-161.
    [16]Gillen K T, Clough R L.Time-temperature-dose rate superposition:A methodology for extrapolating accelerated radiation aging data to low dose rate conditions.Polymer Degradation and Stability,1989, 24:137-168.
    [17]Gillen K T, Clough R. L. Irradiation effects on polymers. London, Elsevier AppliedScience,1991: 157-223.
    [18]Maxwella R S, Cohenour R, Sung W. The effects of g-radiation on the thermal, mechanical, and segmental dynamics of a silica filled, room temperature vulcanized polysiloxane rubber. Polymer Degradation and Stability,2003,80:443-450.
    [19]Perrin F X. Evaluation of accelerated weathering tests for three paint systems, a comparative study of their aging behavior. Polymer Degradation and Stability,2001,72:115-124.
    [20]LaCount B J, Castro J M, Ignatz-Hoover F. Development of a service-simulating, accelerated aging test method for exterior tire rubber compounds Ⅱ Design and development of an accelerated outdoor aging simulator. Polymer Degradation and Stability,2002,75:213-227.
    [21]Gillen K T, Celina M, Bernstein R. Validation of improved methods for predicting long-term elastomeric seal lifetimes from compression stress relaxation and oxygen consumption techniques. Polymer Degradation and Stability,2003,82:25-35.
    [22]Hu H. The equivalence of moisture and temperature in physical aging of polymeric composite. Rubber Chemistry and Technology,2003,76(4):785
    [23]张铁岩,王承民,孙秋野,张化光.一类基于改进Weibull分布模型的电力电缆寿命评估方法.中国工程科学,2008,10:42-46.
    [24]Dakin T W. Electric insulation determination treated as a chemical rate phenomenon. Transactions of the American Institute of Electrical Engineers,1948,67:113-118.
    [25]Berberich L J. Guiding principle in the thermal evaluation of electrical insulation. Transactions of the American Institute of Electrical Engineers,1956,75(8):752-761.
    [26]师青梅,常宇XLPE电缆绝缘残余寿命评估的初步研究.科技创新导报,2009(2):4-5.
    [27]喻岩珑,李晟,孙辉,岳彩鹏,吴延坤,陈广辉,姚瑾XLPE电缆绝缘老化与剩余寿命评估的试验方法.电网与清洁能源,2011,04:26-29.
    [28]关红艳SrO·6Fe2O3磁性丁腈橡胶的摩擦、磨损机理与热氧老化研究:(博士学位论文).兰州:兰州理工大学,2011.
    [29]Nelson W. Accelerated life testing-step-stress models and data analysis. IEEE Transactions on Reliability,1980,29(2):103-108.
    [30]张盈锁.绝缘材料各种快速热老化试验方法综述.绝缘材料通讯,1995,05:41-47.
    [31]魏小琴,李泽华,杨万钧,余淑华,罗天元.热重点斜法快速评估氟硅橡胶贮存寿命.装备环境工程,2010,06:106-108+145.
    [32]张盈锁.热重点斜法(TPS)验证数据汇总.绝缘材料通讯,1994,04:20-30.
    [33]郭英军,孙丽华,梁永春,孙会琴,冉海潮.电缆热老化寿命的预测研究.河北科技大学学报,2007,01:34-36.
    [34]李国锋,王志强,王翠华等.一种评估船用低压橡胶绝缘电缆剩余寿命的方法.中国,中华人民共和国知识产权局,CN 101470058A.2009.
    [35]Remaining Life of Existing AC Underground Lines.Draft Report of CIGRE WG B1-09, Osaka (Japan):2007.
    [36]Jiqun Chen, Shoutai Wang. Method of Estimating the Remaining Life of the 10 kV XLPE Cable Operated 10 Years. Proceedings of the 6th International Conference on Properties and Applications of Dielectric Materials,2000:204-208.
    [37]Bahder G. Life Expectancy of Crosslinked Polyethylene Insulated Cables Rated 15 to 35 kV. IEEE Transactions on Power Apparatus and Systems,1981,100(4):1581-1590.
    [38]林丽君.测量电线电缆绝缘电阻的影响因素.中国西部科技,2007,16:24-25.
    [39]胡纪五,吴庆明,马晋嵘.电缆绝缘电阻在线测量的研究.电测与仪表,2000,05:9-12.
    [40]崔祥柱.电线电缆绝缘电阻试验.装备制造,2009,11:143.
    [41]褚晓锐,颜怀梁,钱波.电缆试样的介质损耗测试试验及分析.西华大学学报(自然科学版),2006,05:63-65+107.
    [42]韩向明,李国锋,王晋国.一种计算电力电缆介质损耗因数的方法.中国物理学会静电专业委员会.中国物理学会静电专业委员会第十三届学术年会论文集.中国物理学会静电专业委员会,2006:3.
    [43]LEE K W. Research For Remained Life of 22kV CV Cable System in Live-Line State. Power Modulator Symposium.2004 High-Voltage Workshop. Conference Record of the Twenty-Sixth International.2004:489-492.
    [44]曹小龙,张治武,曹小虎,樊彦明,吴栋梁.直流泄漏电流测量中存在的问题分析.电工电气,2013,04:49-51+57.
    [45]张治武,曹小龙,曹小虎,吴栋梁.电力设备直流泄漏电流测量问题探讨.电工技术,2013,01:10-11+20.
    [46]陈化钢.电力设备预防性试验方法及诊断技术:北京:中国水力水电出版社,2009.
    [47]胡春梅,曹小龙,曹小虎,等.运行中MOA状态检测试验数据判析.电瓷避雷器,2012(4):58-63.
    [48]姚志.船用电缆绝缘老化的研究:(硕士学位论文).大连:大连理工大学,2007.
    [49]罗华煜,关根志,易小羽.基于接地线电流法的电力电缆绝缘在线监测.高电压技术,2005,11:63-65.
    [50]郭大江,陈泉林.基于接地线电流法的多线路电缆绝缘在线监测系统设计.仪表技术,2009,07:33-35+38.
    [51]王星.海底电缆绝缘监测方法研究:(硕士学位论文).武汉:华中科技大学,2008.
    [52]高宇,杜伯学.采用表面电位衰减法表征高压交联聚乙烯电缆绝缘中空间电荷的输运特性.高电压技术,2012,08:2097-2103.
    [53]郑晓泉,屠德民.采用直流法对XLPE电缆进行在线检测的抗干扰技术研究.电线电缆,1998,04:33-35+32.
    [54]张春霞.电气设备状态监测与故障诊断.武汉工业学院学报,2004,01:6-10.
    [55]郑晓泉,王国红.直流法XLPE电缆绝缘在线诊断中的几个影响因素及其对策.电线电缆,2000,05:28-32.
    [56]吴广宁.电气设备状态监测的理论与实践.北京:清华大学出版社2005.
    [57]欧阳芳平,周胜军,康宏向.分布式光纤温度传感器的温度测量与信号处理方法及实现.激光杂志,2002,06:59-61.
    [58]罗俊华,周作春,李华春,罗旻.电力电缆线路运行温度在线检测技术应用研究.高电压技术,2007,01:169-172.
    [59]彭超,赵健康,苗付贵.分布式光纤测温技术在线监测电缆温度.高电压技术,2006,08:43-45.
    [60]郭文元,高良玉,雷颖,贾志鸿.高电压在线温度监测器的研制.高电压技术,1997,02:20-23.
    [61]郭文元,雷颖,高良玉.高压电气设备中导电连接处温度的状态监测.高电压技术,1996,03:33-35.
    [62]王立,李华春,薛强,周作春.220kV电缆分布式光纤测温系统运行情况分析.电力设备,2007,06:36-41.
    [63]陈金福,杨宝祥.光纤测温技术在韶关发电厂电缆防火中的应用.高电压技术,2004,12:65-66.
    [64]严璋.电气绝缘在线检测技术.北京:中国电力出版社,1995.
    [65]速水敏幸.电力设备的绝缘诊断.北京:科学出版社,2003.
    [66]斯维.高电压设备的绝缘监测.北京:水利电力出版社,1998.
    [67]王洪新,程树康,文习山,陈允平.XLPE老化过程中交流绝缘参数特性.高电压技术,2005,03:7-9.
    [68]段建东,陈天翔,张保会,杨晓宪.用接地线电流法进行电力电缆绝缘在线监测的仿真计算.高压电器,2005,01:29-31+35.
    [69]李洪.独立分量分析在变压器局部放电信号检测中的应用研究:(博士学位论文).武汉:武汉大学,2007.
    [70]龙望成,高炎辉,关根志,郑良华,朱大铭.交叉互联接线的交联聚乙烯(XLPE)电力电缆绝缘在线监测理论分析.电力自动化设备,2008,03:59-63.
    [71]邱昌荣,王乃庆.电工设备局部放电及其测试技术.机械工业出版社,1994.
    [72]郭俊,吴广宁,张血琴,舒雯.局部放电检测技术的现状和发展.电工技术学报,2005,02:29-35.
    [73]Katsuta G., et al. Development of a method partial discharge in extra-high voltage cross-linked polyethylene insulated cable lines. IEEE Transactions on Power Delivery,1992,07:3
    [74]Ohki Y., Present stage of partial-discharge monitoring technique in after-laying tests for extra-high voltage XLPE cable lines, IEEE Transactions on Electrical Insulation,2000.02:406-412
    [75]Wenzel D., et al. Recognition of partial discharges on Power Units by Directional coupling. The 9th ISH, Austria,1995,5626:1-4.
    [76]周彦,卢慧清,周辉,杨建林.基于内嵌式开关柜局部放电监测技术的应用研究.华东电力,2012,12:2295-2298.
    [77]Heizmann T., et al. On-site partial discharge measurements on premoulded cross-bonding joints of 170kV XLPE and EPR cables. IEEE Transactions on Power Delivery,1998,13:2.
    [78]Schichler U. A sensitive method for on-site partial discharge detection on XLPE cable joints, In proceeding of Properties and Applications of Dielectric Materials,1997.
    [79]段乃欣,马翠姣,邱毓昌,罗俊华,夏明通.交联聚乙烯电缆敷设后的局部放电检测.供用电,2001,04:12-14.
    [80]Borsi H, et al. Monitoring of Partial discharges (PD) in high voltage. The 8th ISH, Japan, 1993:173-176.
    [81]Fukunaga K., et al. New partial discharge detection method for live UHV/EHV cable joints, IEEE Transactions on Electrical Insulation,1992,27:3.
    [82]徐阳,钟力生,曹晓珑,G CHEN,Jason Y TIAN,A E DAVIES.XLPE电缆及接头局部放电的超高频测量与分析.电工电能新技术,2002,01:5-8.
    [83]Tian Y, et al. Partial discharge detection in high voltage cables using VHF capacitive coupler and screen interruption techniques, IEEE ISEI,2002.
    [84]Zhong L, et al. Use of capacitive couplers for partial discharge measurements in power cables and joints, IEEE 7th International Conference on Solid Dielectrics,2001.
    [85]Wouters P, et al. New on-line partial discharge measurement technique for polymer insulated cable and accessories, the 8th ISH,1993.
    [86]李华春.电缆局部放电在线检测方法的分析比较.电力设备,2005,05:29-33.
    [87]温其诚.硬度计量.北京:中国计量出版社,1990.
    [88]王卫忠.橡胶压入硬度试验方法(邵尔硬度)新国标的理解与应用.中国计量,2009,10:124-125.
    [89]陈明华,何广霖.D型邵氏硬度计检定方法.中国计量,2009,08:121-123.
    [90]季永全.硬度检测技术及其在电站锅炉检验中的应用研究.科技信息,2013,05:132+158.
    [91]郭辉.硬度检测在金属检验中的作用.新疆电力技术,2007,03:50-51.
    [92]林巨才.现代硬度测量技术及应用.北京:中国计量出版社,2008.
    [93]陈明华,吴向垒.橡胶硬度测试方法发展动态与分析.上海计量测试,2012,04:2-4+9.
    [94]吕事桂,杨立,李伟华.船用橡胶电缆整体老化剩余寿命研究.船海工程,2010,04:37-39.
    [95]B.A.多加德金著,廖捷祥等译.橡胶化学与物理.上海:高等教育出版社.1957.
    [96]G.斯特罗伯.高分子物理一‘结构与性能’背后的概念(第三版).中国农业出版社印刷厂印制.机械工程出版社,2012,4.357-364.
    [97]董炎明.高分子结构与性能.华东理工大学出版社,2010,1.285-291.
    [98]J.A.布莱德森.橡胶化学.化学工业出版社,1985.22-56.
    [99]吕桂英,朱华,林安,甘复兴.高分子材料的老化与防老化评价体系研究.化学与生物工程,2006,06:1-4.
    [100]Hideo H. A Method to Estimating the Lifetime of Solide Electrical Insulation. IEEE Transactions on Electrical Insulation.1987,22:6.
    [101]Bruning A. M, Kasture D. G, Asche H.E. Comparative End-of-life Age. IEEE Transactions on Dielectrics and Electrical Insulation.1999,03:4.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700