新型MBR-PBBR组合系统捷径生物脱氮研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国氮素污染所引起的水体富营养化问题日益突出,导致湖泊“水华”和近海“赤潮”频繁发生,严重危害了水体生态系统和人类健康,因此国家制定了越来越严格的氮素排放标准。传统的生物脱氮技术在氮素污染控制方面发挥了重要作用,但对高氮低碳废水而言,传统技术总氮去除率低、能耗高。针对此类废水探索高效、低能耗的脱氮技术成为当今研究的热点和难点。近年来提出的短程硝化反硝化工艺缩短了生物脱氮的途径,对高氮低碳废水的处理表现出很大的经济优越性,可降低能耗、节省碳源、减少污泥产量和缩小反应器容积等。
     本研究针对短程硝化反硝化捷径生物脱氮难以稳定运行的问题,引入生物强化技术,通过将短程硝化功能菌和亚硝酸型反硝化功能菌接种至膜生物反应器(MBR)和填料床生物膜反应器(PBBR)中,构建了新型的MBR-PBBR捷径生物脱氮工艺。在工艺成功启动后,探讨工艺参数和不同生态因子对该工艺捷径生物脱氮性能和稳定性的影响,并进一步研究其微生物作用机理,为该工艺的实际应用提供理论依据和技术指导。
     首先,采用系列稀释法筛选驯化得到高效短程硝化功能菌和亚硝酸型反硝化功能菌。结果表明短程硝化功能菌细胞呈球状,主要是由Nitrosomonas属的氨氧化菌组成,其最佳氨氧化条件是:NH_4~+-N 400 mg/L,pH 8.5,温度35℃,Alk/N 8.33;亚硝酸型反硝化功能菌细胞呈杆状,为兼氧菌,其最适生长和降解条件是:柠檬酸三钠为碳源,TOC/N=4,温度30℃,pH 9.0。
     其次,通过将短程硝化功能菌和亚硝酸型反硝化功能菌接种至MBR和PBBR中,构建了两级MBR-PBBR新型捷径生物脱氮工艺,并实现了该工艺的快速启动。研究发现,启动期氮的脱除全部通过捷径途径完成。随后,MBR-PBBR工艺在曝气速率为0.4L/min和操作温度为30℃时,实现了105天稳定的捷径生物脱氮。但随水力停留时间的降低,MBR中氨氧化活性降低,氨氧化率由95%下降至60%,导致工艺总氮去除率降低。FISH杂交和MPN计数结果表明,MBR中氨氧化菌为绝对优势菌,第105 d氨氧化菌数量为3×10~8MPN/mL,存在极少量的亚硝酸氧化菌(4.5×10~3MPN/mL)。
     再次,分别探讨了溶解氧、运行温度和外加有机碳源对MBR-PBBR捷径生物脱氮工艺稳定性的影响。研究表明,低溶解氧(0.8~1.2 mg/L)下,该工艺氮的脱除全部以捷径途径完成,但低溶解氧影响了氨氧化效率导致工艺总氮去除率降低至80%;高溶解氧(5~6 mg/L)刺激了MBR中少量亚硝酸氧化菌生长(从4.5×10~3MPN/mL增加到2×10~5MPN/mL),导致亚氮积累不稳定,工艺中只有70%的氮以捷径途径去除。升高温度可显著提高MBR-PBBR工艺捷径生物脱氮效率和稳定性,当温度从20℃升高到35℃,MBR的氨氧化率从45%升高至90%,亚氮积累率由55%~80%的波动逐渐稳定在85%。少量的外加有机碳源(TOC/N<0.2)可促进氨氧化反应,MBR中氨氧化率从无有机碳源时的60%升高至75%;当进水TOC/N≥0.2时,氨氧化反应受到抑制,氨氧化率迅速下降至25%,原因是有机碳源刺激了MBR中异养菌的大量繁殖(11.5×10~8CFU/mL),使氨氧化菌对溶解氧和氨氮的竞争处于弱势地位:有机碳源的加入使该工艺96%以上氮的脱除以捷径途径完成,主要是由于亚硝酸氧化菌很难竞争到溶解氧来氧化NO_2~--N,其数量在TOC/N=0.3时降低到1.0×10~3MPN/mL。
     最后,采用现代分子生态学技术中的变性梯度凝胶电泳(DOGE)和荧光原位杂交(FISH),跟踪监测MBR在不同时期微生物结构及动态变化规律。结果发现,生物强化的MBR-PBBR工艺能实现相对稳定和高效的捷径生物脱氮,主要归功于MBR中的功能微生物Nitrosomonas eutropha在运行过程中始终保持优势地位,占全菌数的比例大于54%;然而,当外加有机碳源较高(TOC/N≥0.2)时,可动摇氨氧化菌的优势地位,N.europha占全菌数的比例在TOC/N=0.3时下降至31%。生物强化的MBR随时间的运行,微生物群落多样性总体呈升高趋势,最终形成以N.europha为主的β-Proteobacteria、CFB种群和α-、γ-Proteobacteria三大功能微生物菌群间相互协调的物质代谢和能量传递有序的“生物链”。
Since eutrophication caused by nitrogen pollution,leading to "algae blooms" in lakes and "red tide" along coasts,is becoming a serious issue in China,an ever stricter nitrogen discharge standard has been established to protect ecosystems and human health. Conventional biological nitrogen removal technology has been widely applied,however,it has low TN removal rate and high energy consumption for the treatment of high-strength nitrogen wastewater with low COD/N.Therefore,current researches are ongoing to explore novel nitrogen removal technologies with high efficiency and low energy consumption.The partial nitrification and denitrification process being developed over recent years shows many economic advantages for the treatment of high-strength nitrogen wastewater with low COD/N, such as short reaction routes,low energy consumption,saving carbon resource,low sludge production and smaller reactor volume,etc.
     In this study,the performance of a novel two-stage MBR-PBBR(membrane bioreactorpacked bed biofilm reactor) combined system for shortcut biological nitrogen removal is investigated to improve its stability.The MBR and PBBR in the process are seeded with two kinds of functional microorganisms for partial nitrification and denitrification via nitrite.After fast start-up of the MBR-PBBR process,the effects of different ecological factors on the performance of MBR-PBBR combined system for shortcut biological nitrogen removal are studied to evaluate the feasibility of this novel process.The microbial mechanism is further explored to provide theoretical and technical guidelines for the application of this novel process.
     Firstly,the functional microorganisms for partial nitrification and denitrification via nitrite are obtained by the extinction dilution method.The results indicate that the functional microorganism for partial nitrification with spherical cell morphology is mainly composed of ammonia-oxidizing bacteria(AOB) belonging to Nitrosomonas,whose optimal conditions for ammonium oxidation are as follows:NH_4~+-N 400 mg/L,pH 8.5,temperature 35℃,Alk/N 8.33.The functional microorganism for denitrification via nitrite with rod-shaped cell morphology belongs to facultative bacteria,whose optimal conditions for nitrite reduction are as follows:sodium citrate as carbon source,TOC/N=4,temperature 30℃,pH 9.0.
     Secondly,the novel two-stage MBR-PBBR combined system,seeded with two functional microorganisms,is constructed for shortcut biological nitrogen removal.The MBR-PBBR process is started up very fast and almost all nitrogen is removed via nitrite pathway during this period.Subsequently,stable shortcut biological nitrogen removal for a long period of 105 days is found in MBR-PBBR process with 0.4 L/min aerated rate and 30℃of operating temperature.However,as the decrease of HRT,ammonium oxidation rate in MBR decreases from 95%to 60%leading to the decrease of TN removal rate.The results from fluorescent in situ hybridization(FISH) and the most-probable-number(MPN) counts show that AOB(3×10~8 MPN/mL) is dominated in MBR with less nitrite oxidizing bacteria (NOB,4.5×10~3 MPN/mL) on day 105.
     Thirdly,the effects of three important ecological factors,i.e.the dissolved oxygen(DO), operating temperature and additional organic carbon,on the stability of shortcut nitrogen removal performance of the MBR-PBBR process are further studied The results show that low DO(0.8~1.2 mg/L) has negative effect on ammonium oxidation rate in MBR resulting in the decrease of TN removal rate from 95%to 80%.High DO(5~6 mg/L) contributes to the instability of partial nitrification,and only 70%of nitrogen is removed by nitrite pathway due to the growth of few NOB in MBR(from 4.5×10~3 MPN/mL to 2×10~5 MPN/mL) under sufficient DO conditions.The increase of operational temperature significantly improves the nitrogen removal rate and stability of MBR-PBBR process.As increasing the operating temperature from 20℃to 35℃,the ammonium oxidation rate and nitrite accumulation rate in MBR are improved from 45%to 90%and 55~80%to 85%,respectively.Small amount of additional organic carbon(TOC/N<0.2) can accelerate the ammonium oxidation rate from 60%to 75%in MBR.However,large amount of additional organic carbon concentration (TOC/N≥0.2) inhibits ammonium oxidation reaction,leading to sudden drawdown in ammonium oxidation rate to 25%.It is mainly due to the fact that the heterotrophs with rapid growth(11.5×10~8 CFU/mL) could overeompete AOB for DO and NH_4~+-N.96%of nitrogen is removed by nitrite pathway along with the addition of organic carbon.Because NOB is less competitive for enough DO for the nitrite oxidation,the number of NOB decreases to 1.0×10~3 MPN/mL at TOC/N=0.3.
     Finally,the denaturing gradient gel eletrophoresis(DGGE) and FISH in molecular ecology technology are performed to analyze microbial community structure and their variations in MBR during different periods.The results indicate that the high efficiency and stable performance of shortcut nitrogen removal in MBR-PBBR process is attributed to the predominance of functional microbiology Nitrosomonas eutropha during the period of operation,which occupies over 54%of total bacteria.However,large amount of organic carbon can destroy the predominance of N.eutropha,whose proportion decreased to 31%at TOC/N=0.3.The diversity of microbial community in MBR increases along with operating time.The microbial community is mainly composed of three groups:β-subclass of Proteobacteria dominated by N.europha,CFB andα-,γ- subclass of Proteobacteria.The three groups form an orderly eco-chain for material metabolism and energy transfer by cooperating and coordinating with each other during the degradation of ammonium and organic matters.
引文
[1]Winogradsky S.The nitrifying organisms[M].Washington:Milestones in Microbiology,1890.
    [2]Breal E.De la presence,dans la paille,d'un ferment aerobic,reducteur des nitrates[J].Comptes Rendu Academic des.Sciences,1892,114:681-684.
    [3]章非娟.生物脱氮技术[M].北京:中国环境科学出版社,1992.
    [4]陈坚.环境生物技术[M].北京:中国轻工业出版社,1999.
    [5]叶建峰.废水生物脱氮处理新技术[M].北京:化学工业出版社,2006.
    [6]郑平,徐向阳,胡宝兰.新型生物脱氮理论与技术[M].北京:科学出版社,2004.
    [7]Garrity,George M,Boone,et al.Bergey's manual of systematic bacteriology[M]:Williams&Wilkins,2001.
    [8]Koops H P,Pommerening-Roser A.Distribution and ecophysiology of the nitrifying bacteria emphasizing cultured species[J].FEMS Microbiology Ecology,2001,37(1):1-9.
    [9]Logemann S,Schantl J,Bijvank S,et al.Molecular microbial diversity in a nitrifying reactor system without sludge retention[J].FEMS Microbiology Ecology,1998,27(3):239-249.
    [10]Ehrich S,Behrens D,Lebedeva E,et al.A new obligately chemolithoautotrophic,nitrite-oxidizing bacterium,Nitrospira moscoviensis sp.nov.and its phylogenetic relationship[J].Archives of Microbiology 1995,164(1):16-23.
    [11]董远湘.SHARON生物膜中微生物多样性的研究[D].湖南:湖南大学,2006:18-20.
    [12]Both G J,Gerards S,Laanbroek H J.Kinetics of nitrite oxidation in two Nitrobacter species grown in nitrite-limited chemostats[J].Archives of Microbiology,1992,157(5):436-441.
    [13]Sundermeyer H,Book E.Energy metabolism of autotrophically and heterotrophically grown cells of Nitrobacter winogradskyi[J].Archives of Microbiology,1981,130(3):250-254.
    [14]Jiang Q Q,Bakken L R.Comparison of Nitrosospira strains isolated from terrestrial environments [J].FEMS Microbiology Ecology,1999,30(2):171-186.
    [15]Book E,Schmidt I,Stuven R,et al.Nitrogen loss caused by denitrifying Nitrosomonas cells using ammonium or hydrogen as electron donors and nitrite as electron acceptor[J].Archives of Microbiology,1995,163(1):16-20.
    [16]Bock E,Sundermeyer-Klinger H,Stackebrandt E.New facultative lithoautotrophic nitrite-oxidizing bacteria[J].Archives of Microbiology,1983,136(4):281-284.
    [17]McCarty P L,Beck L,Amant P S.Biological denitrification of wastewater by addition of organic materials.Proceedings of the 24th annual Purdue industrial waste conference[C],1969:1271.
    [18]孙建光,高俊莲,马晓彤,等.反硝化微生物分子生态学技术及相关研究进展[J].中国土壤与肥料,2007,2:7-12.
    [19]Zumft W G.The prokaryotes:an evolving electronic resource for the microbiological community,in:Dworkin M,Rosenberg E,Schleifer KH et al.,The denitrifying prokaryotes[M].New York:Springer-Verlag,1999.
    [20]Ahn Y H.Sustainable nitrogen elimination biotechnologies:a review[J].Process Biochemistry,2006,41(8):1709-1721.
    [21]Wang J L,Kang J.The characteristics of anaerobic ammonium oxidation(ANAMMOX) by granular sludge from an EGSB reactor[J].Process Biochemistry,2005,40(5):1973-1978.
    [22]Broda E.Two kinds lithotrophs missing in nature[J].Zeitschrift fur Allgemeine Mickrobiologie,1977,17(6):491-493.
    [23]Mulder A,Van de Graaf A A,Robertson L A,et al.Anaerobic ammonium oxidation discovered in a denitrifying fluidized bed reactor[J].FEMS Microbiology Ecology,1995,16(3):177-184.
    [24]Van de Graaf A A,Mulder A,de Bruijn P,et al.Anaerobic oxidation of ammonia is a biologically mediated process[J].Applied and Environmental Microbiology,1995,61(4):1246-1251.
    [25]Jetten M S M,Wagner M,Fuerst J,et al.Microbiology and application of the anaerobic ammonium oxidation(anammox) process[J].Current Opinion in Biotechnology 2001,12(3):283-288.
    [26]Strous M,Fuerst J A,Kramer E H,et al.Missing lithotroph identified as new planetomycete[J].Nature,1999,400(6743):446-449.
    [27]Schmid M C,Maas B,Dapena A,et al.Biomarkers for in situ detection of anaerobic ammonium-oxidizing(anammox) bacteria[J].Applied and Environmental Microbiology,2005,71(4):1677-1684.
    [28]Schmidt I,Bock E.Anaerobic ammonia oxidation with nitrogen dioxide by Nitrosomonas eutropha [J].Archives of Microbiology,1997,167(3):106-111.
    [29]Schmidt I,Hermelink C,van de Pas-Sehoonen K,et al.Anaerobic ammonia oxidation in the presence of nitrogen oxides(NOx) by two different lithotrophs[J].Applied and Environmental Microbiology,2002,68(11):5351-5357.
    [30]Poth M,Focht D D.15N kinetic analysis of N_2O production by Nitrosomonas eutopaea:an examination of nitrifier denitrifieation[J].Applied and Environmental Microbiology,1985,49(5):1134-1141.
    [31]Poth M.Dinitrogen production from nitrite by a Nitrosomonas isolate[J].Applied and Environmental Microbiology,1986,52(4):957-959.
    [32]Zart D,Schmidt I,Bock E.Significance of gaseous NO for ammonia oxidation by Nitrosomonas eutropha[J].Antonie van Leeuwenhoek,2000,77(1):49-55.
    [33]Robertson L A,Kuenen J G.Aerobic denitdfication:a controversy revived[J].Archives of Microbiology,1984,139(5):351-354.
    [34]Frette L,Gejlsbjerg B,Westermann P.Aerobic denitrifiers isolated from an alternating activated sludge system[J].FEMS Microbiology Ecology,1997,24(4):363-370.
    [35]Huang H K,Tseng S K.Nitrate reduction by Citrobacter diversus under aerobic environment[J].Applied Microbiology and Biotechnology,2001,55(1):90-94.
    [36]Ludwig W,Mittenhuber G,Friedrich C G.Transfer of Thiosphaera pantotropha to Paracoccus denitrificans[J].International Journal of Systematic Bacteriology,1993,43(2):363-367.
    [37]Jetten M S M,Logemann S,Muyzer G,et al.Novel principle in the microbial conversion of nitrogen compounds[J].Antonie van Leeuwenhoek,1997,71(1-2):75-93.
    [38]Berks B C,Richardson D J,Robinson C,et al.Purification and characterization of the periplasmic nitrate reductase from Thiosphaera pantotropha[J].European Journal of Biochemistry,1994,220(1):117-124.
    [39]孙佩石,郝玉昆,陈嵩.CWO技术处理高浓度焦化废水的工业应用研究[J].重庆环境科学,2003,25(11):53-55.
    [40]尹君贤.焦化污水的生物脱氮处理[J].燃料与化工,1996,27(6):309-314.
    [4l]方士,李筱焕.高氨氮味精废水的亚硝化/反亚硝化脱氮研究[J].环境科学学报,2001,21(1):79-83.
    [42]Kabdasli I,Tunay O,Ozturk I.Ammonia removal from young landfill leachate by magnesium ammonium phosphate precipitation and air stripping[J].Water Science and Technology,2000,41(1):237-240.
    [43]冯旭东,王葳,董黎明.高浓度氨氮废水处理技术[J].北京工商大学学报,2004,22(2):5-8.
    [44]Felipo V,Butterworth R F.Neurobiology of ammonia[J].Progress in Neurobiology,2002,67(4):259-279.
    [45]郑平,徐向阳,胡宝兰.新型生物脱氮理论与技术[M].北京:科学出版社,2004.
    [46]马勇,彭永臻,王淑莹.A/O工艺硝化与反硝化反应专家系统的建立及应用[J].中国环境科学,2005,25(2):252-256.
    [47]张自杰,顾夏生.排水工程[M].北京:中国建筑工业出版社(下册),2000.
    [48]朱淑琴,韩梅,张萍.间歇式活性污泥法硝化与反硝化的实验研究[J].环境工程,1999,17(1):11-13.
    [49]Van Kempen R,Mulder J W,Uijterlinde C A,et al.Overview:full scale experience of the SHARON process for treatment of rejection water of digested sludge dewatering[J].Water Science and Technology,2001,44(1):145-152.
    [50]郑平.环境微生物学[M].杭州:浙江大学出版社,2002.
    [51]Canziani R,Emondi V,Garavaglia M,et al.Effect of oxygen concentration on biological nitrification and microbial kinetics in a cross-flow membrane bioreactor(MBR) and moving-bed biofilm reactor(MBBR) treating old landfill leachate[J].Journal of Membrane Science,2006,286(1-2):202-212.
    [52]Kim D J,Lee D L,Keller J.Effect of temperature and free ammonia on nitrification and nitrite accumulation in landfill leachate and analysis of its nitrifying bacterial community by FISH[J].Bioresource Technology,2006,97(3):459-468.
    [53]Antileo C,Werner A,Ciudad G,et al.Novel operational strategy for partial nitrification to nitrite in a sequencing batch rotating disk reactor[J].Biochemical Engineering Journal,2006,32(2):69-78.
    [54]Surmacz-Gorska J,Cichon A,Miksch K.Nitrogen removal from wastewater with high ammonia nitrogen concentration via shorter nitrification and denitrification[J].Water Science and Technology,1997,36(10):73-78.
    [55]Yun H J,Kim D J.Nitrite accumulation characteristics of high strength ammonia wastewater in an autotrophic nitrifying biofilm reactor[J].Journal of Chemical Technology and Biotechnology,2003,78(4):377-383.
    [56]Anthonisen A C,Loehr R C,Prakasam T B,et al.Inhibition of nitrification by ammonia and nitrous acid[J].Joural Water Pollution Control Federation,1976,48(5):835-852.
    [57]Fux C,Boehler M,Huber P,et al.Biological treatment of ammonium-rich wastewater by partial nitritation and subsequent anaerobic ammonium oxidation(anammox) in a pilot plant[J].Journal of Biotechnology,2002,99(3):295-306.
    [58]Vadivelu V M,Keller J,Yuan Z G.Effect of free ammonia and free nitrous acid concentration on the anabolic and catabolic processes of an enriched Nitrosomonas culture[J].Biotechnology and Bioengineering,2006,95(5):830-839.
    [59]Vadivelu V M,Keller J,Yuan Z G.Effect of free ammonia on the respiration and growth processes of an enriched Nitrobacter culture[J].Water Research,2007,41(4):826-834.
    [60]Neufeld RD,Hill AJ,Adekoya DO.Phenol and free ammonia inhibition to Nitrosomonas activity[J].Water Research,1980,14:1695-1703.
    [61]Stuven R,Vollmer M,Bock E.The impact of organic matter on nitric oxide formation by Nitrosomonas europaea[J].Archives of Microbiology,1992,158(6):439-443.
    [62]Anthonisen AC,Loehr RC,Parkasam TBS.Inhibition of nitrification by ammonia and nitrous acid [J].J Wat Pollut Control Fed,1976,48(5):835-852.
    [63]Villaverde S,Fdz-Polanco F,Garca P A.Nitrifying biofilm accilimation to free ammonia in submerged biofilms.Start-up influence[J].Water Research,2000,34(2):602-610.
    [64]张小玲.短程硝化-反硝化生物脱氮与反硝化聚磷基础研究[D].西安:西安建筑科技大学,2004:31-34.
    [65]Laanbroek H J,Bodelier P L E,Gerards S.Oxygen consumption kinetics of Nitrosomonas europaea and Nitrobacter hamburgensis grown in mixed continuous cultures at different oxygen concentrations[J].Archives of Microbiology,1994,161(2):156-162.
    [66]Garrido J M,van Benthum W A,van Loosdreeht M C,et al.Influence of dissolved oxygen concentration on nitrite accumulation in a biofilm airlift suspension reactor[J].Biotechnology and Bioengineering,1997,53(2):168-178.
    [67]Ruiz G,Jeison D,Rubilar O,et al.Nitrification-denitrification via nitrite accumulation for nitrogen removal from wastewaters[J].Bioresource Technology,2006,97(2):330-335.
    [68]Ciudad G,Rubilar O,Munoz P,et al.Partial nitrification of high ammonia concentration wastewater as a part of a shortcut biological nitrogen removal process[J].Process Biochemistry,2005,40(5):1715-1719.
    [69]Yoo I K,Lim K J,Lee W S,et al.Study on operational factors in nitrite-accumulating submerged membrane bioreactor[J].Journal of Microbiology and Biotechnology,2006,16(3):469-474.
    [70]Wyffels S,Boeckx P,Pynaert K,et al.Sustained nitrite accumulation in a membrane-assisted bioreactor(MBR) for the treatment of ammonium-rich wastewater[J].Journal of Chemical Technology and Biotechnology,2003,78(4):412-419.
    [71]Bernet N,Peng D C,Delgenes J P.Nitrification at low concentration in a biofilm reactor[J].Journal of Environmental Engineering,2001,127(3):266-271.
    [72]Bernet N,Sanchez O,Cesbron D,et al.Modeling and control of nitrite accumulation in a nitrifying biofilm reactor[J].Biochemical Engineering Journal,2005,24(2):173-183.
    [73]Nielsen M,Larsen L H,Jetten M S M,et al.Bacterium based nitrite biosensor for environmental applications[J].Applied and Environmental Microbiology,2004,70(11):6551-6558.
    [74]Yang L,Alleman J E.Investigation of batchwise nitrite build-up by an enriched nitrification culture [J].Water Science and Technology,1992,26(5-6):997-1007.
    [75]Balmelle B.Study of factors controlling nitrite build-up in biological processes for water nitrification [J].Water Science and Technology,1992,26(5-6):1243-1258.
    [76]Tanaka H,Uzman S,Dunn I J.Kinetics of nitrification using a fluidized sand bed reactor with attached growth [J].Biotechnology and Bioengineering,1981,24(8):1683-1702.
    [77]Hanaki K,Waantawin C,Ohagaki S.Nitrification at low levels of DO with and without organic loading in a suspended-growth reactor [J].Water Research,1990,24(3):297-302.
    [78]Hao X D,Heijnen J J,Van Loosdrecht M C M.Model-based evaluation of temperature and inflow variations on a partial nitrification ANAMMOX biofilm process [J].Water Research,2002,36(19):4839-4849.
    [79]Kim J H,Guo X J,Park H S.Comparison study of the effects of temperature and free ammonia concentration on nitrification and nitrite accumulation [J].Process Biochemistry,2008,43(2):154-160.
    [80]Downig A L,Hopwood A P.Some observation on the kinetics of nitrifying activated sludge plants [J].Aquatic Sciences,1964,26(2):271-288.
    [81]Bae W,Baek S C,Chung J W,et al.Optimal operational factors for nitrite accumulation in batch reactors [J].Biodegradation,2002,12(5):359-366.
    [82]Hellinga C,Schellen A A J C,Mulder J W,et al.The Sharon-process:an innovative method for nitrogen removal from ammonium rich wastewater [J].Water Science and Technology,1998,37(9):135-142.
    [83]Yoo H S,Ann K H,Lee H J,et al.Nitrogen removal from synthetic wastewater by simultaneous nitrification and denitrification (SND) via nitrite in an intermittently aerated reactor [J].Water Research,1999,33(1):145-154.
    [84]Sharma B,Ahlert R C.Nitrification and nitrogen removal [J].Water Research,1977,11(10):897-925.
    [85]Villaverde S,Garcia-Encina P A,Fdz-Polanco F.Influence of pH over nitrifying biofilm activity in submerged biofilters [J].Water Research,1997,31(5):1180-1186.
    [86]Ruiz G,Jeison D,Chamy R.Nitrification with high nitrite accumulation for the treatment of wastewater with high ammonia concentration [J].Water Research,2003,37(6):1371-1377.
    [87]Bock E,Koops H P,Harms H.Cell biology of nitrifying bacteria,in:Prosser J I,Nitrification [M].Oxford:1RL,1986.
    [88]Police A,Tandoi V,Lestingi C.Influence of aeration and slusge retention time on ammonium oxidation to nitrite and nitrate [J].Water Research,2002,36(10):2541-2546.
    [89]Peng Y Z,Zhu G B.Biological nitrogen removal with nitrification and denitrifiation via nitrite pathway [J].Applied Microbiology and Biotechnology,2006,73(1):15-26.
    [90]Neufeld R,Greenfield J,Rieder B.Temperature,cyanide and phenilic nitrification inhibition [J].Water Research,1986,20(5):633-642.
    [91]Belser L W,Mays E L.Specific inhibition of nitrite oxidation by chlorate and its use in assessing nitrification in soils and sediments [J].Applied and Environmental Microbiology,1980,39(3):505-510.
    [92]Moussa M S,Sumanasekera D U,Ibrahim S H,et al.Long term effects of salt on activity,population structure and floc characteristics in enriched bacterial cultures of nitrifiers[J].Water Research,2006,40(7):1377-1388.
    [93]Campos J L,Mosquera-Corral A,Salanchez M,et al.Nitrification in saline wastewater with high ammonia concentration in an activated sludge unit[J].Water Research,2002,36(10):2555-2560.
    [94]高大文,彭永臻,王淑莹.不同方式实现短程硝化反硝化生物脱氮工艺的比较[J].中国环境科学,2004,24(5):618-622.
    [95]袁林江,彭党聪,王志盈.短程硝化反硝化生物脱氮[J]_中国给水排水,2000,16(2):29-31.
    [96]马勇,王淑莹,曾薇,等.A/O生物脱氮工艺处理生活污水中试(一)短程硝化反硝化的研究[J].环境科学学报,2006,26(5):703-709.
    [97]刘俊新,王秀蘅.高浓度氨氮废水亚硝酸型与硝酸型脱氮的比较研究[J].工业用水与废水,2002,33(3):1-4.
    [98]张小玲,彭党聪,王志盈.传统与短程反硝化的影响因素及特性研究[J].中国给水排水,2002,18(9):1-3.
    [99]Christian F,Marc B,Philipp H.Biological treatment of ammonium-rich wastewater by partial nitritation and subsequent anaerobic ammonium oxidation(anammox) in a pilot plant[J].Journal of Biotechnology,2002,99:295-306.
    [100]Strous M,Heijnen J J,Kuenen J G,et al.The sequencing batch reactor as a powerful tool for the study of slowly growing anaerobic ammonium-oxidizing microorganisms[J].Applied Microbiology and Biotechnology,1998,50(5):589-596.
    [101]Fux C,Huang D,Monti A,et al.Difficulties in maintaining long-term partial nitritation of ammonium-rich sludge digester liquids in a moving-bed biofilm reactor(MBBR)[J].Water Science and Technology,2004,49(11-12):53-60.
    [102]Jetten M S M,Horn S J,Van Loosdrecht M C M.Towards a more sustainable minucipal wastewater treatment system[J].Water Science and Technology,1997,35(9):171-180.
    [103]van Dongen U,Jetten M S,van Loosdrecht M C.The SHARON-ANAMMOX process for treatment of ammonium rich wastewater[J].Water Science and Technology,2001,44(1):53-60.
    [104]Gupta S K,Raja S M,Guptaa B.Simultaneous nitrification denitrification in a rotating biological contaetor[J].Environmental Technology,1994,15(2):145-153.
    [105]Dos Santos V A P M,Bruijnse M,Tramper J,et al.The magic-bead concept:an integrated approach to nitrogen removal with co-immobilized micro organisms[J].Applied Microbiology and Biotechnology,1996,45(4):447-453.
    [106]Munch E V,Lant P A,Kelle L J.Simultaneous nitrification and denitrification bench-scale sequencing batch reactors[J].Water Research,1996,30(2):277-284.
    [107]曹建平.基于亚硝化和厌氧氨氧化的新型生物脱氮技术的应用研究[D].北京:北京市环境保护科学研究院。2007.6:18.
    [108]Marrot B,Barrios-Martinez A,Moulin P.Industrial wastewater treatment in a membrane bioreactor:A review[J].Environmental Progress,2004,23(1):59-68.
    [109]Adham S,Gagliardo P,Boulos L,et al.Feasibility of the membrane bioreactor process for water reclamation[J].Water Science and Technology,2001,43(10):203-209.
    [110]顾国维,何义亮.膜生物反应器在污水处理中的研究和应用[M].北京:化学工业出版社,2002.
    [111]Gander M,Jefferson B,Judd S.Aerobic MBRs for domestic wastewater treatment:a review with cost considerations[J].Separation and Purification Technology,2000,18(2):119-130.
    [112]Gao M C,Yang M,Li H Y,et al.Comparison between a submerged membrane bioreactor and a conventional activated sludge system on treating ammonia-bearing inorganic wastewater[J].Journal of Biotechnology,2004,108(3):265-269.
    [113]李红岩,高孟春,杨敏,等.组合式膜生物反应器处理高浓度氨氮废水[J].环境科学,2002,23(5):62-66.
    [114]Ng W J,Ong S L,Gomez M J,et al.Study on a sequencing batch membrane bioreactor for wastewater treatment[J].Water Science and Technology,2000,41(10-11):227-234.
    [115]Chiemchaisri C,Yamamoto K.Biological nitrogen removal under low temperature in a membrane separation bioreactor[J].Water Science and Technology,1993,28(10):325-333.
    [116]刘静文,顾平,杨睿.膜生物反应器处理高氨氮废水[J].2003,16(5):19-21.
    [117]Shin J H,Lee S M,Jung J Y,et al.Enhanced COD and nitrogen removals for the treatment of swine wastewater by combining submerged membrane bioreactor(MBR) and anaerobic upflow bed filter (AUBF) reactor[J].Process Biochemistry,2005,40(12):3769-3776.
    [118]Yoo I K,Shim J K,Lee Y M.Design and operation considerations for wastewater treatment using a flat submerged membrane bioreactor[J].Process Biochemistry,2002,38(2):279-285.
    [119]Wang Y,Huang X,Yuan Q P.Nitrogen and carbon removals from food processing wastewater by an anoxic/aerobic membrane bioreactor[J].Process Biochemistry,2005,40(5):1733-1739.
    [120]Wouter G,Stefaan V,Willy V.Nitrogen removal from sludge reject water with a membrane-assisted bioreactor[J].Water Research,1999,33(1):23-32.
    [121]Wang Z S.Application of biofilm kinetics to the sulfur/lime packed bed reactor for autotrophic denitrification of groundwater[J].Water Science and Technology,1998,37(9):97-104.
    [122]Pekdemir T.Drinking water denitrification in a fixed bed packed biofilm reactor[J].Turkish Journal of Engineering and Environmental Sciences,1998,22:39-45.
    [123]Ong S L,Lee L Y,Hu J Y,et al.Nitrogen removal using combined ultracompact biofilm reactor-packed bed system[J].Journal of Environmental Engineering,2003,129(1):43-51.
    [124]Aesoy A,Odegaard H,Bach K,et al.Denitrification in a packed bed biofilm reactor(biofor)--experiments with different carbon sources[J].Water Research,1998,32(5):1463-1470.
    [125]Chaudhry M A S,Beg S A.Modelling of simultaneous methanogenesis and denitrification in an upflow packed-bed biofilm reactor[J].Journal of Chemical Technology & Biotechnology,1997,70:267-277.
    [126]Oh J,Yoon S M,Park J M.Denitrification in submerged biofilters of concentrated-nitrate wastewater[J].Water Science and Technology,2001,43(1):217-223.
    [127]全向春,刘佐才,范广裕,等.生物强化技术及其在废水治理中的应用[J].环境科学研究,1999,12(3):22-27.
    [128]Rostron W M,Stuckey D C,Young A A.Nitrification of high strength ammonia wastewaters:comparative study of immobilisation media[J].Water Research,2001,35(5):1169-1178.
    [129]Isaka K,Yoshie S,Sumino T,et al.Nitrification of landfill leachate using immobilized nitrifying bacteria at low temperatures[J].Biochemical Engineering Journal,2007,37(1):49-55.
    [130]赵兴利.固定化硝化菌去除废水中氨氮工艺的研究[J].环境科学,1999,20(1):39-42.
    [131]李正魁,赖鼎东,杨竹攸,等.固定化氨氧化细菌短程硝化稳定性研究[J].环境科学,2008,29(10):2835-2839.
    [132]Isaka K,Sumino T,Tsuneda S.Novel nitritation process using heat-shocked nitrifying bacteria entrapped in gel carriers[J].Process Biochemistry,2008,43(3):265-270.
    [133]Belia E,Smith P G.The bioaugmentation of sequencing batch reactor sludge for biological phosphorus removal[J].Water Science and Technology,1997,35(1):19-26.
    [134]Satoh H,Okabe S,Yamaguchi Y,et al.Evaluation of the impact of bioaugmentation and biostimulation by in situ hybridization and microelectrode[J].Water Research,2003,37(9):2206-2216.
    [135]Bouchez T,Patureau D,Dabert P,et al.Ecological study of a bioaugmentation failure[J].Environmental Microbiology,2000,2(2):179-190.
    [136]Amann R I,Ludwig W,Schleifer K H.Phylogenetic identification and in situ detection of idividual microbial cells without cultivation[J].Microbiological Reviews,1995,59(1):143-169.
    [137]Muyzer G,de Waal E C,Uitterlindan A G.Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA[J].Applied Environmental and Microbiology,1993,59(3):695-700.
    [138]Liu W T,Chan O C,Fang H H P.Microbial community dynamics during strat-up of acidogenci anaerobic reactors[J].Water Research,2002,36(13):3203-3210.
    [139]O'Donnell A G,Gorres H E.16S rDNA mothods in soil microbiology[J].Current Opinion in Biotechnology,1999,10(3):225-229.
    [140]Cebron A,Coci M,Garnier J,et al.Deaturing gradient gel electrophoretic analysis of ammonia-oxidizing bacterial community structure in the lower Seine River:Impact of Paris wastewater effluents[J].Applied and Environmental Microbiology,2004,70(11):6726-6737.
    [141]Mota C,Head M A,Ridenoure J A,et al.Effects of aeration cycles on nitrifying bacterial populatioins and nitrogen removal in intermittently aerated reactors[J].Applied and Environmental Microbiology,2005,71(12):8565-8572.
    [142]Zhang D,Zhang D M,Liu Y P.Communtiy analysis of ammonia oxidizer in the oxygen limited nitritation stage of OLAND system by DGGE of PCR amplified 16S rDNA fragments and FISH[J].Journal of Environmental Science,2004,16(5):834-842.
    [143]齐义鹏.基因及其操作原理[M].武汉:武汉大学出版社,1998.
    [144]Amann R I,Binder B J,Olson R J,et al.Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations[J].Applied Environmental and Microbiology,1990,56(6):1919-1925.
    [145]Manz W,Amann R,Ludwig W,et al.Phylogenetic oligodeoxynucleotide probes for the major subclasses of Proteobacteria:problems and solutions[J].Systematic and Applied Microbiology,1992,15(4):593-600.
    [146]Gieseke A,Purkhold U,Wagner M.Community structure and activity dynamics of nitrifying bacteria in a phosphate-removing biofilm[J].Applied and Environmental Microbiology,2001,67(3):1351-1362.
    [147]Pommerening-Roser A,Rath G,Koops H P.Phylogenetic diversity within the genus Nitrosomonas [J].Systematic and Applied Microbiology,1996,19(3):344-351.
    [148]Juretschko S,Timmermann G,Schmid M,et al.Combined molecular and conventional analysis of nitrifying bacterium diversity in activated sludge:Nitrosococcus mobilis and Nitrosopira-like bacteria as dominant populations[J].Applied Environmental and Microbiology,1998,64(8):3042-3051.
    [149]Mobarry B K,Wagner M,Urbain V,et al.Phylogenetic probes for analyzing abundance and spatial organization of nitrifying bacteria[J].Applied Environmental and Biotechnology,1996,62(6):2156-2162.
    [150]Burrell P C,Phalen C M,Hovanec T A.Identification of bacteria responsible for ammonia oxidation in freshwater aquaria[J].Applied Environmental and Microbiology,2001,67(12):5791-5800.
    [151]Wagner M,Rath G,Koops H P,et al.In situ analysis of nitrifying bacteria in sewage treatment plants.[J].Water Science and Technology,1996,34(1):237-244.
    [152]Schramm A,de Beer D,Wagner M,et al.Identification and activities in situ of Nitrosospira and Nitrospira spp.as dominant populations in nitrifying fluidized bed reactor[J].Applied Environmental and Microbiology,1998,64(9):3480-3485.
    [153]Daims H,Neilsen J L,Nielsen P H,et al.In situ characterization of Nitrospira-like nitrite-oxidizing bacteria active in wastewater treatment plants[J].Applied and Environmental Microbiology,2001,67(11):5273-5284.
    [154]Wangner M,Loy A,Nogueira R.Microbial community composition and function in wastewater treatment plants[J].Antonie van Leeuwenhoek,2002,81(1-4):665-680.
    [155]Schramm A,Larsen L H,Revsbech N P,et al.Structure and function of a nitrifying biofilm as determined by in situ hybridization and the use of microelectfides[J].Applied Environmental and Microbiology,1996,62(2):4641-4647.
    [156]张丹,刘耀平,徐慧,等.OLAND生物脱氮系统运行及其硝化菌群的分子生物学检测[J].应用与环境生物学报,2003,9(5):530-533.
    [157]Schramm A,Santegoeds C M,Nielsen H K,et al.On the accurrence of anoxic microniches,denitrification and sulfate reduction in aerated activated sludge[J].Applied Environmental and Microbiology,1999,65(9):4189-4196.
    [158]Moller S,Sternberg C,Andersen J B,et al.In situ gene expression in mixed-culture biofilms:evidence of metabolic interactions between community members[J].Applied Environmental and Microbiology,1998,64(2):721-732.
    [159]Beccari M,Passino R,Ramadori R,et al.Kinetic of dissimilatory nitrate and nitrite reduction in suspended growth culture[J].J Water Pollut Control Fed,1983,55(1):58-64.
    [160]Stephenson T,Judd S,Jefferson B.Membrane bioreaetors for wastewater treatment[M].Beijing:Chemical Industry Press,2003.
    [161]Van Benthum W A J,Derissen B P,Van Loonsdrecht M C M,et al.Nitrogen removal using nitrifying biofilm growth and denitrifying suspended growth in a biofilm airlift suspension reactor coupled with a chemostat[J].Water Research,1998,32(7):2009-2018.
    [162]Daims H,Nielsen P H,Nielsen J L,et al.Novel Nitrospira-like bacteria as dominant nitrite-oxidizers in biofilms from wastewater treatment plants:diversity and in situ physiology[J].Water Science and Technology,2000,41(4-5):85-90.
    [163]Knowles G,Downing A L,Barrett M J.Determination of kinetic constants for nitrifying bacteria in mixed culture with the aid of an electronic computer[J].Journal of General Microbiology,1965,38(2):263-278.
    [164]Blaszczyk M.Effect of medium composition on the denitrification of nitrate by Paracoccus denitrificans[J].Applied and Environmental Microbiology,1993,59(11):3951-3953.
    [165]Martienssen M,Schops R.Population dynamics of denitrifying bacteria in a model biocommunity [J].Water Research,1999,33(3):639-646.
    [166]Alefounder P R,Greenfield A J,Mccarthy J E G.Selection and organisation of denitrifying electron-transfer path-ways in Parracoccus denitrificans[J].Biochimica et Biophysica Acta,1983,724(1):20-39.
    [167]Andrews J F.The Monod equation:a revisit and a generalization to substrate inhibition situation[J].Biotechnology and Bioengineering,1968,10:707-711.
    [168]Song B K,Ward B B.Nitrite roductase genes in halobenzoate degrading denitdfying bacteria[J].FEMS Microbiology Ecology,2003,43(2):349-357.
    [169]纪磊.MBR中微生物聚合物与膜污染的关系[D].大连:大连理工大学,2006:33-36.
    [170]Liu H,Fang H P.Extraction of extracellular polymeric substances(EPS) of sludges[J].Journal of Biotechnology,2002,95(3):249-256.
    [171]陈钧辉,陶力,李俊.生物化学实验[M].第三版.北京:科学出版社,2003.
    [172]林加涵,魏文铃,彭宣宪.现代生物学实验(下册)[M].北京:高等教育出版社,2001.
    [173]赵斌,何绍江.微生物学实验[M].科学出版社,2002.
    [174]张明.硝化细菌应用技术研究[D].上海:华东师范大学,2003:42-45.
    [175]Han S S,Bae T H,Jang G G,et al.Influence of sludge retention time on membrane fouling and bioactivities in membrane bioreactor system[J].Process Biochemistry,2005,40(7):2393-2400.
    [176]Field R W,Wu D,Howell J A,et al.Critical flux concept for microfiltration fouling[J].Journal of Membrane Science,1995,100(3):259-272.
    [177]Jefferson B,Laine A L,Judd S J,et al.Membrane bioreactors and their role in wastewater reuse[J].Water Science and Technology,2000,41(1):197-204.
    [178]Nagaoka H,Ueda S,Miya A.Influence of bacterial extracellular polymers on membrane separation activated sludge process[J].Water Science and Technology,1996,34(9):165-172.
    [179]Pillay V L,Buckley C A.Cake formation in cross-flow microfiltration systems[J].Water Science and Technology,1992,25(10):149-162.
    [180]Lim B S,Choi B C,Yu S W,et al.Effects of operational parameters on aeration on/off time in an intermittent aeration membrane bioreactor[J].Desalination,2007,202(1-3):77-82.
    [181]Mulder J W,van Loosdrecht M C M,Hellinga C,et al.Full-scale application of the Sharon process for treatment of rejection water of digested sludge dewatering[J].Water Science and Technology,2001,43(11):127-134.
    [182]郭海燕.曝气动力循环一体化同时硝化反硝化生物膜反应器及其特性研究[D].大连:大连理工大学,2005.
    [183]叶建峰.废水生物脱氮处理新技术[M].北京:化学工业出版社,2006.
    [184]Hanaki K.The activity of heterotrophs on nitrification in a suspended growth reactor[J].Water Research,1990,24(3):289-296.
    [185]Le-Clech P,Chen V,Fane T A G.Fouling in membrane bioreactors used in wastewater treatment[J].Journal of Membrane Science,2006,284(1-2):17-53.
    [186]Liao B Q,Allen D G,Droppo I G,et al.Surface properties of sludge and their role in bioflocculation and settleability[J].Water Research,2001,35(2):339-350.
    [187]孟凡刚.膜生物反应器膜污染行为的识别与表征[D].大连:大连理工大学,2007:32.
    [188]Tsai Y L,Olson B H.Rapid method for direct extraction of DNA from soil and sediments[J].Applied Environmental and Microbiology,1991,57(4):1070-1074.
    [189]Leff L G,Dana J R,McArthur J V,et al.Comparison of methods of DNA extraction from stream sediments[J].Applied and Environmental Microbiology,1995,61(3):1141-1143.
    [190]杜连祥,路福平.微生物学实验技术[M].北京:中国轻工业出版社,2005.
    [191]Kowalchuk G A,Stephen J R,De Boer W,et al.Analysis if ammonia-oxidizing bacteria of the beta subdivision of the class Proteobacteria in coastal sand dunes by denaturing gradient gel electrophpresis and sequencing of PCR-amplified 16S ribosomal DNA fragments[J].Applied and Environmental Microbiology,1997,63(4):1498-1497.
    [192]Shannon C E,Weaver W.The mathematical theory of communication[M].Champaign University of Illinois Press,1949.
    [193]Tamura K,Dudley J,Nei M,et al.MEGA4:molecular evolutionary genetics analysis(MEGA)software version 4.0[J].Molecular Biology and Evolution,2007,24(8):1596-1599.
    [194]Saitou N,Nei M.The neighbor-joining method:a new method for reconstructiong phylogenetic trees [J].Molecular Biology and Evolution,1987,4(4):406-425.
    [195]邢德峰.产氢-产乙醇细菌群落结构与功能研究[D].哈尔滨:哈尔滨工业大学,2006:65-69.
    [196]Cottrell M T,Kirchman D L.Natural assemblages of marine proteobacteria and members of the Cytophaga-Flavobacter cluster consuming low- and high- molecular-weight dissolved organic matter [J].Applied Environmental and Microbiology,2000,66(4):1692-1697.
    [197]Song B K,Young L Y,Palleroni N J.Identification of denitrifier strain T1 as Thauera aromatica and proposal for emendation of the genus Thauera definition[J].International Journal of Systematic Bacteriology,1998,48(3):889-894.
    [198]Buchanan R E,Gibbons N E.Bergey's manual of determinative bacteriology[M].Eighth ed.Baltimore:The Williams and Wilkins Company,1974.
    [199]Wagner M,Erhart R,Manz W,et al.Development of an rRNA-targeted oligonucleotide probe specific for the genus Acinetobacter and its applicatioin for in situ monitoring in activated sludge[J].Applied and Environmental Microbiology,1994,60(3):792-800.
    [200]Okabe S,Naitoh H,Satoh H,et al.Structure and function of nitrifying biofilms as determined by molecular techniques and the use of microelectrodes[J].Water Science and Technology,2002,46(1-2):233-241.
    [201]Schramm A,De beer D,Van den Heuvel J C,et al.Microscale distribution of populations and activities of Nitrospira and Nitrospira spp.along a macroscale gradient in a nitrifying bioreactor:Quantification by in situ hybridization and the use of microsensors [J].Applied and Environmental Microbiology,1999,65(8):3690-3696.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700