PEM燃料电池的传输模拟与结构优化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
质子交换膜燃料电池是一个多物理场、多相、多尺度的动态复杂系统。工作中,反应气体从流道到反应区经历了电堆(米级)、流道(毫米级)、扩散层(微米级)和催化层及膜(纳米级)的多尺度变化,而目前的研究并没有充分揭示质子交换膜燃料电池中的传递现象及其机理。通过对燃料电池进行计算机模拟,能最大限度的揭示燃料电池内部的工作机理及工作状态,进而对燃料电池结构进行优化设计,以降低实验成本,提高电池性能。
     本文研究了流道结构对电池性能的影响。考虑电池的综合性能,流道尺寸存在一个最优值,在本设计中深度为0.5mm时最好;电池运行时低电流密度下,流道宽与岸宽比越小,电池性能越好,高电流密度时情况正好相反;流道宽度与岸宽之比为1:1时,电池的综合性能最好。在综合考虑电池性能和结构强度时,半圆形的截面流道最好;随着壁面接触角增大(疏水性的增强),排水时间减小,但在壁面接触角到达90°后,减小的幅度减小。
     对PEM燃料电池扩散层的孔隙率变化、亲疏水性以及厚度进行了深入研究。结果表明:对于均一孔隙率结构的扩散层,增加孔隙率和接触角,减少厚度时,有利于扩散层内的排水和导气;孔隙率梯度变化的扩散层更有利于液态水的排出;平面内孔隙率间隔分布的扩散层有利于气、水的传输,能提高电池的性能。
     研究了PEM燃料电池膜中水传递的主要影响因素。结果表明:提高运行温度,减小质子交换膜厚度,加大阴极侧空气的过量系数,增大阴阳极气体的相对湿度、操作压力和电流密度,膜中的水含量都会增加,有助于提高电池性能。
     分析了影响电堆气体分配均匀性的主要因素。结果表明:减小进气的速度,增加进气的压力,可以提高电堆气体分配的均匀性。但同时小的进气的速度会带来水管理的问题,大的进气压力会增加电池的寄生功率;电堆阴极单进口进气时,U形进气方案要优于Z形进气方案;电堆阴极双入口进气时采用两端双入口进气最佳;增大电堆总管截面积或采用变截面总管可以有效的提高电堆中各单电池气体分配的均匀性;回收反应中的汽化水产生的废热能提高电堆的性能。
     综上所述,本文从多尺度角度,通过对电池中水气的传输以及堆中反应气的分配模拟,对PEMFC进行了从微观到介观,再到宏观的系统分析,从而得出有意义的成果,以加强对电池原理的深入研究,从而促进燃料电池性能的提高。
PEMFC(Proton Exchange Membrane Fuel Cell) is a complex dynamic system of multi-physics fields,multi-phase and multi-scale.Reaction gas flows from channel to reaction zone in operation condition,and scales change from stack(meter class),to channel(millimeter class),GDL(Gas Diffusion Layer)(micron class) and catalyst layer(nano-meter class).Phenomenon and mechanism of transportation in PEMFC have not been studied thoroughly in recent research.Modeling of PEMFC using software can show the working conditions inside the PEMFC and reveal the mechanism.With structure optimization,the performance of PEMFC can be improved and the cost can be reduced.
     Influence of channel structure on performance of PEMFC has been studied. PEMFC operates at the best performance when the depth of channel is 0.5mm.Under low current density condition,performance improves with the decrease of ratio of width of channel to the width of shore.Road to the structure of the convection cell performance impact was studied.Condition under high current density is quite the contrary.The total performance reach peak when the width of channel equals the width of shore.As for the cross-section of channel,PEMFC has the best performance and structural intensity with cross-section of semicircle.Time of water drain out of the channel decreases with the increase of contact angle(improvement of hydropholic characteristic),and decreases little when contact angle reaches 90°.
     Porosity,hydrophilic and hydropholic characteristics and thickness of GDL are studied.Results show that it's better for the transfer of gas and water with the increase of porosity and decrease of contact angle and thickness when the porosity is uniform.And the gradient change in porosity is better for the transfer of liquid water. GDL with porosity spacing distribution in plane is better for the transfer of gas and water,so can improve the performance of PEMFC.
     The main factors influence the water transfer in the membrane of PEMFC is studied.Water content in membrane and performance of PEMFC increase with the increase of temperature,stoichiometry of air,relative humidity of react gas,operation pressure and current density,decrease of thickness of membrane.
     Main factors affect gas distribution in stack is studied.Results show that gas distributes even with low inlet velocity and high inlet pressure.At the meanwhile,low inlet velocity will cause problem of water drainage and high inlet pressure will cause problem of more accessory power.U-type is better than Z-type under condition of single inlet in cathode.And two inlets at the ends of cathode have the best PEMFC performance.Gas distributes even with increase of area of cross-section of main inlet or using variable cross-section.Reuse of the waste heat produce in water can also improve the performance of PEMFC.
     In summarization,study of PEMFC is made from micro scale to macro scale. Transfer of water in channel and gas distribution in stack is studied with the combination of micro structure of channel and macro structure of stack,which is the coupling of multi-scale.Results of study are useful for insight understanding of mechanism of PEMFC and improving of performance of PEMFC.
引文
[1]农宝廉.燃料电池现状与未来.电源技术,1998,22(5):216-221.
    [2]农宝廉.燃料电池—高效环境友好的发电方式.北京:化学工业出版社,2000,11.
    [3]新能源电动汽车关键技术.武汉理工大学发展规划报告.2002,10.
    [4]钟文教,钟史明,任渊源.21世纪燃料电池绿色电站,热电技术.2002,(2):12-15.
    [5]农宝廉.燃料电池—原理·技术·应用.北京:化学工业出版社,2003.
    [6]Berning T,Djilali N.Three-dimensional computational analysis of transport phenomena in a PEM fuel cell-a parametric study.Journal of Power Sources,2003(124):440-452.
    [7]Watkins D S,Dircks K W,Epp D G.Novel fuel cell fluid flow field plate.US Patent 4988583,1991.
    [8]Young G,Lee W,Park G,Yang T,Kim C.Effects of channel and rib widths of flow field plates on the performance of a PEMFC.International Journal of Hydrogen Energy,2005(30):1363-1366.
    [9]Maharudrayya S,Jayanti S,Deshpande A.P.Flow distribution and pressure drop in parallel-channel configurations of planar fuel cells.Journal of Power Sources,2005,(144):94-106.
    [10]Karimil G,Baschuk J.J.,Li X.Performance analysis and optimization of PEM fuel cell stacks using flow network approach.Journal of Power Sources,2005,(147):162-177.
    [11]Kumar A,Reddy R G.Effect of channel dimensions and shape in the flow-field distributor on the performance of polymer electrolyte membrane fuel cells.Journal of.Power Sources,2003;113(1):11-18.
    [12]Hentall P L,Barry L J,Mepsted G O.New Materials for Polymer Electrolyte Membrane Fuel cell Current Collectors.Journal of Power Sources,1999;80(1-2):235-241.
    [13]Gibb P R.Fuel Cell Fluid Flow Field Plate and Methods of Making Fuel Cell Fluid Flow Field Plate.WO00/41260,2000.
    [14]张海峰,农宝廉,候明,张华民.流场尺寸对质子交换膜燃料电池性能的影响.电源技术,2004,(8):494-497.
    [15]Ying W,Yang T,Lee W,J,Chang S.Three-dimensional analysis for effect of channel configuration on the performance of a small air-breathing proton exchange membrane fuel cell(PEMFC).Journal of Power Sources,2005,(145):572-581.
    [16]Kulikovsky A A.Performance of a polymer electrolyte fuel cell with long oxygen channel.Electrochemistry Communcation,2002,(4):527-534.
    [17]Borup R L,Vanderborgh N E.Design and testing criteria for bipolar plate materials for PEM fuel cell application.Material Research Society,1995,(393):151-155.
    [18]Johnson M C,Wilkinson D P,Kenna J,Vanderleeden OR,Zimmerman J,Tabatabaian M.US Patent,No.6,586,1128,2003.
    [19]Yang J.US Patent,No.6,635,378,2003.
    [20]Liu H C,Yan W M,Soong C Y,et al.Reactant gas transport and cell performance of proton exchange membrane fuel cells with tapered flow field design.Journal of Power Sources,2006,158(1):78-87.
    [21]Wilkinson D P,Lamont G J,Voss H H,Schwab C.Embossed fluid flow field plate for electrochemical fuel cells.US Patent,No.5,521,018,1996.
    [22]Dohle H.,Kornyshev A A.,Kulikovsky A.A,J.Mergel,D.Stolten.The current voltage plot of PEM fuel cell with long feed channels.Electrochemistry Communications,2001,(3):73-80.
    [23]Sousa J R,Ernesto R G,Mathematical modeling of polymer electrolyte fuel cells.Journal of Power Sources,2005,(147):32-45.
    [24]Jiao Kui,Zhou Biao,Quan Peng.Liquid water transport in parallel serpentine channels with manifolds on cathode side of a PEM fuel cell stack.Journal of Power Sources,2006,(154):124-137.
    [25]Gurau V[P].US Patent,No.6,551,736,2003.
    [26]Issacci F,Rehg T J.US Patent,No.6,686,084,2004.
    [27]Wang Lin,Liu Hongtan.Performance studies of PEM fuel cells with interdigitated flow fields.Journal of Power Sources,2004,(134):185-196.
    [28]Rock J A.US Patent,No.6,503,653,2003.
    [29]胡军,衣宝谦,明平文等.一种混合流场.中国专利,CN1734818A.2006-2-15.
    [30]胡里清.一种可使燃料电池种的质子交换膜得到均匀水分布的方法.中国专利,CN1393951A.2003-1-29
    [31]盛武林,燕希强,侯明等.一种质子交换膜燃料电池流场结构.中国专利,CN2893939Y,2007-4-25.
    [32]Chapman A,Mellor I.Development of biomimetic flow field plates for PEM fuel cells.Eighth grove fuel cell symposium,September 2003,London,UK.
    [33]Kazim A,Liu H T,Forges P.Modeling of Performance of PEM Fuel Cells with Conventional and Interdigitated Flow Fields.Journal of Applied Electrochemistry,1999,(29):1409-1416.
    [34]Scholt J,H¨aussler F,K¨uppers W,J¨orissen L,Lehnert Z.Development of a stack having an optimized flow field structure with low cross transport effects.Journal of Power Sources,2006,60(5):60-65.
    [35]Sun L,Oosthuizen P,McAuley K.A numerical study of channel-to-channel flow cross-over through the gas diffusion layer in a PEM-fuel-cell flow system using a serpentine channel with a trapezoidal cross-sectional shape.Journal of Power Sources,2006,(45):1021-1026.
    [36]Ying W,Sohn Y,Lee W,Kea J,Kim C.Three-dimensional modeling and experimental investigation for an air-breathing polymer electrolyte membrane fuel cell(PEMFC).Journal of Power Sources,2005,(145):563-571.
    [37]Kumar A,Reddy R.Effect of gas flow-field design in the bipolar/end plates on the steady and transient state performance of polymer electrolyte membrane fuel cells.Journal of Power Sources,2006,155(2):264-271.
    [38]Quan P,Lai M C.Numerical study of water management in the air flow channel of a PEM fuel cell cathode.Journal of Power Sources,2007,164:222-237.
    [39]Quan P,Zhou B,Sobiesiak A,et al..Water behavior in serpentine micro-channel for proton exchange membrane fuel cell cathode.J.Power Sources,2005,152(1):131-145.
    [40]Zhan Z G,Xiao J S,Pan M,et al.Characteristics of droplet and film water motion in the flow channels of polymer electrolyte membrane fuel cells.J.Power Sources,2006,160(1):1-9.
    [41]Jiao K,Zhou B,Quan P.Liquid water transport in parallel serpentine channels with manifolds on cathode side of a PEM fuel cell stack.Journal of Power Sources,2006,154(1):124-137.
    [42]Jiao K,Zhou B,Quan P.Liquid water transport in straight micro-parallel-channels with manifolds for PEM fuel cell cathode.Journal of Power Sources,2006,157:226-243.
    [43]Jiao K,Zhou B.Innovative gas diffusion layers and their water removal characteristics in PEM fuel cell cathode.Journal of Power Sources,2007,169:296-314.
    [44]Jiao K,Zhou B.Effects of electrode wettabilities on liquid water behaviours in PEM fuel cell cathode.Journal of Power Sources,2008,175:106-119.
    [45]Zhu X,Sui P C,Djilali N.Numerical simulation of emergence of a water droplet from a pore into a microchannel gas stream.Microfluidics and Nanofluidics,2007,10.1007/sl0404-007-0209-9.
    [46]Berning T.Three-Dimensional computational analysis of transport phenomena in a PEM Fuel Cell(D).University of Victoria.2002.
    [47]明鸣若,朱新坚,顾安忠等.质子交换膜燃料电池的水热管理.电池.2003,33(4):258-260.
    [48]Sun W,Peppley B A,Karan K.Modeling the influence of GDL and flow-field plate parameters on the reaction distribution in the PEMFC cathode catalyst layer.J.Power Sources.2005,141(1):42-53.
    [49]Jeng,K T,Lee S F,Fand T G,et al.Oxygen mass transfer in PEM fuel cell gas diffusion layers.J.Power Sources.2004,138(1-2):41-50.
    [50]Roshandel R,Farhanieha B,Saievar-Iranizad E.The effects of porosity distribution variation on PEM fuel cell performance.Renewable Energy.2005,30(18):1557-1572.
    [51]张竹茜,张欣欣,于帆.PEMFC电极孔隙率的优化研究.热科学与技术.2006,5(2):106-115.
    [52]王晓丽,张华民,张建鲁,等.质子交换膜燃料电池气体扩散层的研究进展.化学进展.2006,18(4):507-513.
    [53]Kong C S,Kim D Y,Lee H K,et al.Influence of pore-size distribution of diffusion layer on mass-transport problems of proton exchange membrane fuel cells.J.Power Sources.2002,108:185-191.
    [54]Ferng Y M,Sun C C,Su A1.Numerical simulation of thermal-hydraulic characteristics in a proton exchange membrane fuel cell.Int J of Energy Research.2003,27(5):495-5111.
    [55]Li P W,Schaefer L,Wang Q M,et al.Multi-gas transportation and electrochemical performance of a polymer electrolyte fuel cell with complex flow channels.J Power Sources.2003,115(1):90-100.
    [56]Maggio G;Recupero V,Pino L.Modeling polymer electrolyte fuel cells:an innovative approach.J of Power Sources.2001,101(2):252-266.
    [57]Li M C,Wang C Y.Effects of hydrophobic polymer content in GDL on power performance of a PEM fuel cell.Electrochimica Acta.2004,49(24):4149-4156.
    [58]Jordan L R,Shukla A K,Behersing T.Diffusion layer parameters influencing optimal fuel cell performance.Journal of Power Sources.2000,86(1-2):250-254.
    [59]Kong C S,Kim D Y,Lee H K,et al.Influence of pore-size distribution of diffusion layer on mass-transport problems of proton exchange membrance fuel cells.Journal of Power Sources,2002,108(1-2):185-191.
    [60]Okadae T.The effect of magnetic field on the oxygen reduction reaction and its application in PEMFC.Electrochimica Acta.2003,48(3):531-539.
    [61]Nguyen T V,Knobbe M W.A liquid water management strategy for PEM fuel cell stacks.J. Power Sources.2003,114(1):70-79.
    [62]Nam J H,Kaviany M.Effective diffusivity and water-saturation distribution in single- ahd two-layer PEMFC diffusion medium.Int.J.Heat andMass Transfer.2003,46(24):4595-4611.
    [63]Qi Z G.,Kaufman A.Improvement of water management by a microporous sublayer for PEM fuel cells.J.Power Sources.2002,109(1):38-46.
    [64]Ge S H,Yi B L.A mathematical model for PEMFC in different flow modes.J Power Source.2003,124(1):1-11.
    [65]Wilkinson P D,St-Pierre J.In-plane gradients in fuel cell structure and conditions for higher performance.J.Power Sources.2003,113(2):101-108.
    [66]Chua H S,Yeha C,Chenb FL.Effects of Porosity Change of Gas Diffuser on Performance of Proton Exchange Membrane Fuel Cell.Journal of Power Sources,2003,123(1):1-9.
    [67]Lee H K,Parkj H,Kim D Y,et al.A study on the characteristics of the diffusion layer thickness and porosity of the PEMFC.J of Power Sourcess.2004,13(1):200-206.
    [68]Mirzazadeh J,Saievar I E,Nahavandi L.An analytical approach on effect of diffusion layer on ORR for PEMFCs.Journal of Power Sources.2004,131(1-2):194-199.
    [69]Li P W,Schaefer L.Multi-gas transportation and electrochemical performance of a polymer electrolyte fuel cell with complex flow channels.J.Power Sources,2003,115:90-100.
    [70]Hontanon E,Escudero M J.Optimisation of flow-field in polymer electrolyte membrane fuel cells using computational fluid dynamics techniques.J.Power Sources,2000,86:363-368.
    [71]Meier F,Eigenberger G.Transport parameters for the modelling of water transport in ionomer membranes for PEM-fuel ceils.Electrochimica Acta,2004,49:1731-1742.
    [72]Reid P L,Duncan S C.Gas humidification process,US Patent 1988,4:759-882.
    [73]Chow C Y,Wozniczka B W.Electrochemical fuel cell stack with humidification section located upstream from the electrochemically active section,US Patent,1995,5:382-478.
    [74]Shimpalce S.Numerical Prediction of Gas-Humidification Effects on Energy Transfer in PEM Fuel Cells.PhD dissertation of the University of South Carolina,USA.2001.
    [75][19]Berning T.Three-Dimensional Computational analysis of Transport Phenomena in a PEM Fuel cell.PhD dissertation of the University of Victoria,Canada.2002.
    [76]Hyun D,Kim J.Study of external humidification method in proton exchange membrane fuel cell.J.Power Sources,2004,126:98-103.
    [77]于景荣,农宝廉,韩明,明平文.无外增湿操作质子交换膜燃料电池.电源技术,2001,25(5):327-329.
    [78]Shimpalee S.Effect of humidity on PEM fuel cell performance.Proceedings of the ASME heat transfer division[C].1999,1:367-378.
    [79]Ge S H,Li X G,Hsing I M.Internally humidified polymer electrolyte fuel cells using water absorbing sponge.Electrochimica Acta.2005,50:1909-1916.
    [80]Buchi F N.Operating proton exchange membrane fuel cells without external humidification of the reactant gases:Fundamental aspects.J.Electrochem Soc,1997,144:2767-2772.
    [81]Watanabe M.et al.Analyses of self-humidification and suppression of ga crossover in Pt-dispersed polymer electrolyte membranes for fuel cells J.Electrochem Soc,1998,145:1137-1142.
    [82]Amphlett J C,Baumert R M,Mann R F,et al.Performance modelling of the Ballard Mark IV solid polymer electrolyte fuel cell.J.Electrochem.Soc.1995,142:1-15.
    [83]Candussoa D,Harela F,Bernardinisa A et al.Characterisation and modelling of a 5kW PEMFC for transportation applications.International Journal of Hydrogen Energy,2005.
    [84]肖合林,侯献军,颜伏伍.燃料电池发动机系统计算分析.武汉理工大学学报,2004.5(26).
    [85]武洁云,卢兰光,奉玮,黄海燕,裴普成,欧阳明高.Development of a 20kW fuel cell engine for research.机械工程学报,2005(12):58-61.
    [86]Karimi G,Baschuk J J,Li X.Performance analysis and optimization of PEM fuel cell stacks using flow network approach.Journal of Power Sources,2005(147):162-177.
    [87]Barreras F,Lozano A,Vali no L,C Mar in,APascau.Flow distribution in a bipolar plate of a proton exchange membrane fuel cell:experiments and numerical simulation studies.Journal of Power Sources,2005(144):54-66.
    [88]杨武,裴普成,武洁云等.燃料电池发动机空气系统特性的仿真.清华大学学报(自然科学版)2004.44(5):705-708.
    [89]Su Z.H2 Fuel Cell Stack Performance Studies Based on a Dynamical Model.Journal of Qingdao University,2004.519(1):78-86.
    [90]秦敬玉,毛宗强,徐景明等.过量空气系数对燃料电池发动机输出特性的影响.汽车工程,2004,26(4):379-385.
    [91]Karimi G,Baschuk J J,X.Li.Performance analysis and optimization of PEM fuel cell stacks using flow network approach.Journal of Power Sources 2005(147):162-177.
    [92]Cownden R,Nahon M.Rosen M A.Modeling and analysis of a solid polymer fuel cell system for transportation applications.Int.J.Hydrogen Energy.2001,26:615-623.
    [93]Fronk M H,Wetter D L,Masten D A,et al.PEM fuel cell system solutions for transportation.SAE 2000-01-0374.
    [94]Kui J,Zhou B,Peng Q.Liquid water transport in straight micro-parallel-channels with manifolds for PEM fuel cell cathode.Journal of Power Sources,2006,157,226-243.
    [95]Kui J,Zhou B,Peng Q.Liquid water transport in parallel serpentine channels with manifolds on cathode side of a PEM fuel cell stack.Journal of Power Sources,2006(154):124-137.
    [96]Trung V N,Mack W.K.A liquid water management strategy for PEM fuel cell stacks.Journal of Power Sources.2003(114):70-79.
    [97]Jiang R Zh,Deryn Chu.Stack design and performance of polymer electrolyte membrane fuel cells.Journal of Power Sources,2000(93):125-31.
    [98]Li X,Becker U.A three dimensional CFD Model for PEMFC.Second International Conference on Fuel Cell Science,Engineering and Technology Rochester,NY.June 2004,p14-16.
    [99]Chua H S,Yeha C,Chenb F L.Effects of porosity change of gas diffuser on performance of proton exchange membrane fuel cell.J.Power Sources,2003,123:1-9.
    [100]CARL A R.Solid polymer electrolyte fuel cell stack water management system[P].US:4 769 297,1988.
    [101]CARL A R.Water and heat management in solid polymer fuel cell stack[P].US:4 826 742,1989.
    [102]DAVID P W.Embossed fluid flow field plate for electrochemical fuel cell[P].US:5 521 018.1996.(Ballard)5.
    [103]DAVID P W.Methood of fabricating an embossed fluid flow field plate[P].US:5 527 363,1996.
    [104]KIRK B W.Laminated fluid flow field assembly for electrochemical fuel cells[P].US:5 300 370,1994.
    [105]DAVID S W.Fuel cell fluid field plate[P].US:5 108 849,1992.DAVID P W.Electrochemical fuel cell stack with concurrent flow of coolant and oxidant stream and countcurrent flow of fuel and oxidant streams[P].US:5 773 160,1998.
    [106]WILL LAM D E.PEM2Type fuel cell assembly having multiple parallel fuel cell sub2stack employing shared fluid plate assembles and shared membrane electrode assemblies[P].US:5 945 232,1999.
    [107]CLARENCE Y C.Integrated Reactant and coolant fluid flow field layer for an electrochemical fuel cell[P].US:5 804 326,1998.
    [108]YOSHIAKI E.Solid polymer electrolyte fuel cell[P].US:5 922 485,1999.
    [109]REGINALD G S.Fuel cells employing integrated fluid management platelet technology[P].US:5858567,1999.
    [110]PETER A L.Proton exchange membrane fuel cell[P].US:5879826,1999.
    [111]Qi Z G.,Kaufman A.Improvement of Water management by a Microporous Sublayer for PEM Fuel Cells[J].Power Sources,2002,109:38-46.
    [112]Pasaogullari U,Wang C Y.Two-phase Transport and the Role of Micr0-porous Layer in Polymer Electrolyte Fuel Cells[J].Electrochimica Acta.2004,49(25):4359-4369.
    [113]Gurau V,Barbir F,Liu H.An Analytical Solution of a Half-cell Model for PEM Fuel Cells [J].Electrochem Soc.2000,147(7):4485-4493.
    [114]Jinsheng Xiao,Kun Liu,Wenhua Zhao,Weibiao Fu.Thermal Shock Experiment and Simulation of Ceramic/Metal Gradient Thermal Barrier Coating.Key Engineering Materials Vols.336-338(2007),1818-1822.
    [115]汪圣龙.质子交换膜燃料电池梯度扩散层研究[D]。武汉,武汉理工大学,2005.
    [116]J.贝尔.多孔介质流体动力学.北京:中国建筑工业出版社,1983.8.
    [117]杨文熊.传输概论.上海:上海交通大学出版社,1988.10.
    [118]刘家祺.分离过程与技术.天津:天津大学出版社,2001.12.
    [119]王启杰.对流传热传质分析.西安:西安交通大学出版社,1991.6.
    [120]Pasaogullari U,Wang C Y.Two-phase transport and the role of micro-porous layer in polymer electrolyte fuel cells.Electrochimica Acta.2004,49:4359-4369.
    [121]Pasaogullari U,Wang C Y.Liquid water transport in gas diffusion layer of polymer electrolyte fuel cells.Electrochem.Soc.2004,151:399-406.
    [122]Djilali N,Lu D M.Influence of heat transfer on gas and water transport in fuel cells.International journal of Thermal Sciences,2002,41:29-40.
    [123]Hyun D,Kim J.Study of external humidification method in proton exchange membrane fuel cell.J.Power Sources,2004,126:98-103.
    [124]于景荣,农宝廉,韩明,明平文.无外增湿操作质子交换膜燃料电池.电源技术,2001,25(5):327-329.
    [125]Shimpalee S.Effect of humidity on PEM fuel cell performance.Proceedings of the ASME heat transfer division[C].1999,1:367-378.
    [126]Ge S H,Li X G,Hsing I M.Internally humidified polymer electrolyte fuel cells using water absorbing sponge.Electrochimica Acta.2005,50:1909-1916.
    [127]Buchi F N.Operating proton exchange membrane fuel cells without external humidification of the reactant gases:Fundamental aspects.J.Electrochem Soc,1997,144:2767-2772.
    [128]Watanabe M.et al.Analyses of self-humidification and suppression of ga crossover in Pt-dispersed polymer electrolyte membranes for fuel cells J.Electrochem Soc,1998,145:1137-1142.
    [129]王诚,毛宗强,徐景明,谢晓峰.新型自增湿膜电极的制备及其燃料电池性能.高等学校化学学报.2003,24:140-142.
    [130]Wood III D L,Yi J S,Nguyen T V.Effect of direct liquid water injection and interdigitated flow field on the performance of proton exchange,membrane fuel cells.Electrochimica Acta,1998,43(24):3795-3809.
    [131]许思传,程钦,李祓.燃料电池轿车用焓轮加湿器的设计[J].汽车技术,2006,3:18-21.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700