超临界CO_2抗溶剂法制备负载营养药物的纳米颗粒
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
药物微粒化不仅可以减少药物的用量,还可以提高药物的生物利用度。超临界CO_2抗溶剂技术用于制备药物超细微粒,可避免传统方法存在的有机溶剂残留量大,产品粒径大,易变性等问题。该技术反应条件温和,尤其适用于热敏性、易降解物质的加工。本文以玉米蛋白作为载体材料,白藜芦醇和β-胡萝卜素为模型药物,采用超临界CO2抗溶剂法制备负载营养药物的玉米蛋白纳米颗粒,并研究其释放度和稳定性。本论文包括了以下两部分的工作:
     第一部分:负载白藜芦醇的玉米蛋白纳米粒的制备、表征及释放度研究。采用超临界CO2抗溶剂法制备了负载白藜芦醇的玉米蛋白纳米粒,用紫外测试考察了过程参数压力、温度以及芯材比对白藜芦醇在纳米粒中负载量的影响。用扫描电镜、X射线衍射等手段对制备的纳米粒进行表征,并且对释放度也进行了研究。结果表明,随着压力从8MPa升高到16MPa,白藜芦醇的负载量从8.16%减小到5.7%;随着温度从35℃升高到55℃,白藜芦醇的负载量从7.23%增加到8.38%;芯材比由1:30提高到1:2,白藜芦醇的负载量从2.16%升高到17.9%。制备的纳米粒为均匀的球形颗粒,玉米蛋白对白藜芦醇有较好的包合。释放度实验结果表明,纳米粒中白藜芦醇的释放速度比原料的释放速度慢,有缓释作用。第二部分:负载β-胡萝卜素的玉米蛋白纳米粒的制备、表征及抗光解稳定性研究。利用响应面设计对制备工艺进行优化,分别以β-胡萝卜素的负载量和包埋率的最大值为优化指标,系统考察了芯材比、温度、压力等主要因素对玉米蛋白包埋β-胡萝卜素的交互影响。采用扫描电镜,纳米粒度分析和X射线衍射等分析方法,对产品形貌,粒径和结构等进行了表征,并考察了其抗光解稳定性。结果表明:芯材比对载药量和包埋率的影响最显著,其次是压力,最后是温度。当芯材比为1:10,温度55℃,压力8MPa时,β-胡萝卜素的负载量达到最大值8.73%;当芯材比为1:30,温度35℃,压力16MPa时,β-胡萝卜素的包埋率有最高值85.4%。玉米蛋白和β-胡萝卜素形成Matrix结构,颗粒平均粒径100~200nm,粒径分布窄,球形度好。抗光解实验表明位于纳米粒子内部的β-胡萝卜素受到了保护,包埋可以提高其抗光解性。
     通过本文的研究,掌握了超临界CO_2抗溶剂法制备负载营养药物的纳米颗粒的规律,过程参数温度、压力、芯材比对药物负载量和包埋率的影响,及药物缓释和抗光解情况,提供了以天然高分子材料为载体制备纳米粒子运载系统的新资料。
Drug micronization ont only reduces the amount of administration, but also improves the bioavailability of actives. Comparing the products that prepared by traditional methods, drug micronized by supercritical CO_2 antisolvent (SAS) has some advantages such as small particle size, homogenous distribution, and low toxic solvent. The technology with wild reaction conditions is conducive to process heat-sensitive materials. In this study, using zein as carrier, resveratrol andβ-carotene as model drug, drug-loaded zein nanoparticles are prepared by SAS.
     The first part is the study of resvertrol-loaded zein nanoparticles. SAS was tested to prepare zein nanoparticles loaded with resveratrol. The effects of different operating parameters, such as pressure, temperature, and ratio on the loading weight of resveratrol were investigated. SEM and XRD were used to characterize the product, furthermore, in vitro drug release studies were also carried out. Results show that the yield of resveratrol decreases from 8.16% to 5.7% with the pressure from 8MPa up to 16MPa. When temperature rise from 35℃up to 55℃, the amount of drug loaded in zein nanoparticles increases from 7.23% to 8.38%. We also conclude that the yield of resveratrol increases from 2.16% to 17.9% at ratio from 1:30 up to 1:2. The nanoparticles with good sphericity and narrow size distribution can be prepared. The result of in vitro drug release studies proves that products exhibit a slower release than the single resveratrol.
     The second part is the study ofβ-carotene-loaded zein nanoparticles. Response surface methodology was used to optimize the preparation ofβ-carotene-loaded zein nanospheres with SAS. The mutual effect of the ratio betweenβ-carotene and zein, temperature, pressure was investigated. The morphology and size of particles were characterized. The stability ofβ-carotene loaded in nanoparticles was studied as well. Results show that the ratio has the most significant influence on the loading and encapsulation efficiency, followed by pressure and, finally, the temperature. Theβ-carotene loading reaches the maximum of 8.73%, when the ratio is 1:10, the temperature is 55℃,the pressure is 8MPa.Theβ-carotene loading achieves the maximum of 85. 4% , when the ratio is 1:30, temperature is 35℃,pressure is 16MPa. The structure ofβ-carotene-loaded zein particles is a Matrix with the sphere shape. The products have narrow size distribution from 100nm to 200nm. Anti-photolysis experiment shows that theβ-carotene encapsulated in nanoparticles is protected so that the stability is increased under exposuring to ultraviolet light.
     In summary, the rule of preparing nutriment-loaded nanoparticles by SAS has been mastered in this study. The effects of different operating parameters, such as pressure, temperature, and ratio on drug loading have been grasped. New information of using natural polymer as carrier to prepare nanoparticle delivery system has been provided.
引文
[1]阚思行,王晓文,唐劲天等.纳米药物控释系统研究进展[J].解放军药学学报, 2009, 25(2): 169-171.
    [2]陈蓓怡,于文利,赵亚平.超临界抗溶剂技术在药物微粒化领域的研究进展[J].现代化工, 2005, 25(2): 17-20.
    [3]匡洞庭,周桂江,刘广舜.超微粒子制备方法进展[J].大庆石油学院学报, 2000, 24(2): 31-35.
    [4] Steckel H, Thies J, Muller B W. Micronizing of steroids for pulmonary delivery by supercritical carbon dioxide [J]. International Journal of Pharmaceutics, 1997, 152(1): 99-110.
    [5]张镜澄.超临界流体萃取[M].北京:化学工业出版社.2000: 7-8.
    [6]洪流.超临界二氧化碳注入法制备药物营养物复合物的研究[硕士论文].上海:上海交通大学, 2010.
    [7]朱凯.超临界二氧化碳萃取技术在天然产物提取中的应用[J].现代化工, 2006, 26(2): 375-378.
    [8]朱恩俊.酒花及酒花制品在啤酒工业中的应用[J].安徽农业科学, 2006, 35(14): 3469-3471.
    [9]曹敏惠,陈章广,占升卫等.超临界CO2流体在天然食用色素提取中的应用研究进展[J].化学与生物工程, 2006, 23(6): 8-10.
    [10]张业辉,张桂,孙卫东等.枸杞中类胡萝卜素的提取研究[J].食品研究与开发, 2006, 27(11): 84-87.
    [11]Ernesto Reverchon, Iolanda De Marco. Supercritical fluid extraction and fractionation of natural matter [J]. The Journal of Supercritical Fluids, 2006, 38(2): 146-166.
    [12] Ernesto Reverchon. Supercritical fluid extraction and fractionation of essential oils and related products [J]. The Journal of Supercritical Fluids, 1997, 10(1): 1-37.
    [13]M. J. E. van Roosmalen, G. F. Woerlee, G. J. Witkamp. Dry-cleaning with high-pressure carbon dioxide-the influence of process conditions and various co-solvents (alcohols) on cleaning-results [J]. Journal of Supercritical Fluids, 2003, 27(3): 337-344.
    [14]李志义,刘学武,张晓冬等.超临界流体在微电子器件清洗中的应用[J].洗净技术, 2004, 2(5): 5-10.
    [15]刘建慧,牟天成,王更华.超临界二氧化碳在微电子技术中的应用[J].应用化工, 2008, 37(2): 330-333.
    [16]孙勤,孙丰来,杨阿三等.超临界二氧化碳制备微胶囊的研究进展[J].化工进展, 2004, 23(9): 953-957.
    [17] Ernesto Reverchon. Supercritical antisolvent precipitation of micro- and nano-particles [J]. Journal of Supercritical Fluids, 1999, 15: 1-21.
    [18] Jennifer Jung, Michel Perrut, Particle design using supercritical fluids: Literature and patent survey [J]. Journal of Supercritical Fluids, 2001, 20: 179-219.
    [19] Jong-Hyun Kim, Thomas E. Paxton, David L.Tomasko, Microencapsulation of naproxen using rapid expansion of supercritical solutions. Biotechnology Progress, 1996, 12(5): 650–661.
    [20] Mishima K, Matsuyama K, Furukawa A et a1.Formation of ordered structure in liquid phase and its use for materials design. Control of polymer coating thickness of microcapsules containing inorganic microparticles using cosolvency of supercritical carbon dioxide [J]. Kagaku Kogaku Ronbunshu, 2001, 27(6):700-706.
    [21] Mishima K, Matsuyama K, Tanabe D, et al. Microencapsulation of proteins by rapid expansion of supercritical solution with a non-solvent [J]. AIChE J, 2000, 46 (4): 857-865.
    [22] P M. Gallagher, M P. Coffey, V J. Krukonis, et al. Gas antisolvent recrystallization: New process to recrystallize compands insoluble in supercritical fluids. Supercritical Fluid Science and Technology, ACS, 1989, 334.
    [23]何卫中,朱自强,姚善泾.超临界抗溶剂沉析技术[J].化学工程, 2001, 29(4): 67-74.
    [24]马晓文,莫炜,宋后燕.超临界CO2流体技术在聚合物颗粒制备中的应用[J].国际药学研究杂志, 2007, 34(4): 271-273.
    [25] Taki S, Badens E, Charbit G. Controlled release system formed by supercritical anti-solvent coprecipitation of a herbicide and a biodegradable polymer [J]. Journal of Supercritical Fluids, 2001, 21(1): 61-70.
    [26] Young T J, Johnston K P, Mishima K, et a1. Encapsulation of lysozyme in a biodegradable polymer by precipitation with a vapour over liquid antisolvent [J] Journal of Pharmaceutical Sciences, 1999, 88(6): 640-650.
    [27] Tu L S, Dehghani F, Foster N R, Micronisation and microencapsulation of pharmaceuticals using a carbon dioxide antisolvent [J]. Powder Technology, 2002, 126(2): 134-149.
    [28] Reverchon E,Porta GD, Production of antibiotic micro- and nano- particles by supercritical fluid [J]. Powder Technol, 1999, 106(1-2): 23-29.
    [29]陈岚,张岩,李保国等.超临界流体增强溶液分散度法制备阿莫西林缓释微囊[J].化学工程, 2006, 34(1): 70-73.
    [30]陈岚,张岩,李保国等.压力对超临界流体技术制备药物微粒的影响[J].上海理工大学学报, 2004, 26: 220-223.
    [31] Miguel F, et al. Supercritical anti solvent precipitation of lycopene: Effect of the operating parameters [J]. J. of Supercritical Fluids, 2006, 36(3): 225-235.
    [32] Pratibhash Chattopadhyay, Ram B. Gupta. Protein nanoparticles formation by supercritical antisolvent with enhanced mass transfer [J]. Practicle technology and Fluidization, 2002, 48(2): 235-244.
    [33] Pratibhash Chattopadhyay, Ram B. Gupta. Protein nanoparticles formation by supercritical antisolvent with enhanced mass transfer [J]. AIChE Journal, 2002, 48: 235-243.
    [34]贾梦虹,滕新荣,张鹏等.超临界抗溶剂法制备缓释药物微粒[J].医药工程设计, 2007, 28(6): 52-55.
    [35] Krober H, Teipel U. Materials processing with supercritical antisolvent precipitation: process parameters and morphology of tartaric acid [J]. The Jurnal of Supercritical Fluids, 2002, 22(3): 229-235.
    [36] Yulu Wang, Yiping Wang, Jun Yang. The application of a supercritical antisolvent process for sustained drug delivery [J]. Powder Technology, 2006, 164(2): 94-102.
    [37] Elvassore N, Bertucco P, Caliceti P. Production of protein-loaded polymeric microcapsules by compressed CO2 in a mixed solvent [J]. Ind. Eng. Chem. Res, 2001, 40(3): 795-800.
    [38] Masoud Bahrami, Sima Ranjbarian. Production of micro- and nano-composite particles by supercritical carbon dioxide[J]. J. of Supercritical Fluids, 2007, 40: 263-283.
    [39]曾敬,赵桂贞,段纪东.药物控制释放的研究进展[J].化学通报,2006, 69: 1-5.
    [40]王昶光.小麦醇溶蛋白载体材料及其肝靶向给药系统的研究[博士论文].四川:四川大学. 2007.
    [41]林长春.超临界二氧化碳抗溶剂法制备玉米蛋白基纳米营养物[硕士论文].上海:上海交通大学, 2010
    [42]周亚伟.一种纳米组合物及其制备方法和应用[P].中国, 101317840A, 2008.
    [43] Rishi Shukla, Munir Cheryan. Zein: the industrial protein from corn [J]. Industrial Crops and Products, 2001, 13(3): 171-192.
    [44]赖丽芳.玉米醇溶蛋白亚微粒的制备及组织分布研究[硕士论文].山东:山东大学. 2008.
    [45]段纯明,董海洲.玉米醇溶蛋白的特性及应用研究[J].粮食与食品工业, 2007, 14(1): 27-31.
    [46] Cyril D. Evans, Ralph H. Manley. Solvents for zein[J]. Ind. Eng. Chem., 1941, 33(11): 1416-1417.
    [47] Cyril D. Evans, Ralph H. Manley. Ternary solvents for zein[J]. Ind. Eng. Chem., 1944, 36(5): 408-410.
    [48] Ralph H. Manley, Cyril D. Evans. Binary solvents for zein[J]. Ind. Eng. Chem., 1943, 35(6): 661-665.
    [49]吉宏武,玉米醇溶蛋白的特性与应用[J].粮食与食品工业, 2000, 2: 27-29.
    [50] H.X. Guo, Y.P. Shi. A novel zein-based dry coating tablet design for zero-order release [J]. International Journal of Pharmaceutics, 2009, 370(1-2): 81-86.
    [51] Dominique M.R. Georget, Susan A. Barker, Peter S. Belton. A study on maize proteins as a potential new tablet excipient [J]. European Journal of Pharmaceutics and Biopharmaceutics, 2008, 69(2): 718-726.
    [52] M.A. Del Nobile, A. Conte, A.L. Incoronato, O. Panza. Antimicrobial efficacy and release kinetics of thymol from zein films [J]. Journal of Food Engineering, 2008, 89(1): 57-63.
    [53] M. Mastromatteo, G. Barbuzzi, A. Conte, M.A. Del Nobile. Controlled release of thymol from zein based film [J]. Innovative Food Science and Emerging Technologies, 2009, 10(2): 222-227.
    [54] P.L. Dawsona, D.E. Hirtb, J.R. Rieckc, J.C. Actona, A. Sotthibandhud. Nisin release from films is affected by both protein type and film-forming method [J]. Food Research International, 2003, 36(9-10): 959-968.
    [55]王瑾晔,刘新铭,孙庆申.植物源性醇溶蛋白微球固体剂型的制备方法[P].中国, 1562373A, 2005.
    [56]王瑾晔,龚生举,伊维菌素微球缓释固体剂[P].中国, 1739542A, 2006.
    [57] Xin ming Liu, Qing shen Sun, Hua jie Wang, et al. Microspheres of corn protein, zein, for an ivermectin drug delivery system [J]. Biomaterials, 2005, 26(1): 109-115.
    [58] Howard Bernstein, Eric Morrel, Edith Mathiowitz, et al. Protein microspheres and methods of using them[P]. US, 5679377, 1997.
    [59] Edith Mathiowitz, Howard Bernstein, Eric Morrel, et al. Method for producing protein microspheres[P]. US, 5271961, 1993.
    [60] Jian Xi Fu, Hua Jie Wang, Yan Qing Zhou, et al. Antibacterial activity of ciprofloxacin-loaded zein microsphere films[J]. Materials Science and Engineering C, 2009, 29(4): 1161-1166.
    [61] Qixin Zhong, Minfeng Jin. Nanoscalar structures of spray-dried zein microcapsules and in vitro release kinetics of the encapsulated lysozyme as affected by formulations [J]. J. Agric. Food Chem., 2009, 57(9): 3886-3894.
    [62] Minfeng Jin, P. Michael Davidson, Svetlana Zivanovic, et al. Production of corn zein microparticles with loaded lysozyme directly extracted from hen egg white using spray drying: Extraction studies [J]. Food Chemistry, 2009, 115(2): 509-514.
    [63]江文沁,沈金芳,白藜芦醇的药理活性及作用机制[J].药学进展, 2003, 27(13): 159-162.
    [64] Elisabeth Wenzel, Veronika Somoza. Review metabolism and bioavailability of trans-resveratrol [J]. Mol Nutr Food Res, 2005, 49(5): 472-481.
    [65] Casas L, Mantell C, Rodríguez E J, et al. Extraction of resveratrol from the pomace of palomino fino grapes by supercritical carbon dioxide [J]. Journal of Food Engineering, 2010, 96(2): 304-308.
    [66] Floris T, Filippino G, Scrugli S, et al. Antioxidant compands recovery from grape residues by a supercritical antisolvent assisted process [J]. Journal of Supercritical Fluids, 2010, 54: 165-170.
    [67]吴翠栓,黄晶晶,艾秀丽等.β-胡萝卜素的研究进展[J].中国医院药学杂志, 2008, 28(16): 1381-1383.
    [68] Polidori MC, Stahl W, Echiler O, et al. Profiles of antioxidants in human plasma [J]. Free Radic Biol Med, 2001, 30(5): 456-462.
    [69] Facundo Mattea,ángel Martín, María JoséCocero. Carotenoid processing with supercritical fluids [J]. Journal of Food Engineering, 2009, 93 (3): 255-265.
    [70] Elton F, Alana M. D C, Mirian F, et al. Precipitation ofβ-carotene and PHBV and co-precipitation from SEDS technique using supercritical CO2 [J], Journal of Supercritical Fluids, 2008, 47: 259-269.
    [71] Hua Jie Wang, Zhi Xin Lin, Xin Ming Liu, et al. Heparin- loaded zein microsphere film and hemocompatibility [J]. Journal of Controlled Release, 2005, 105(1-2): 120-131.
    [72] Xinming Liu, Qingshen Sun, Huajie Wang, et al. Microspheres of corn protein, zein, for an ivermectin drug delivery system [J]. Biomaterials, 2005, 26(1): 109-115.
    [73]孙庆申,林志新,刘新铭等.玉米醇溶蛋白微球制备条件的探索以及体外释药行为研究[J].黑龙江畜牧兽医, 2005, 10: 13-15.
    [74] Jian Xi Fu, Hua Jie Wang, Yan Qing Zhou, et al. Antibacterial activity of ciprofloxacin-loaded zein microsphere films [J]. Materials Science and Engineering: C, 2009, 29(4): 1161-1166.
    [75] Berna A, Cháfer A, Montón J B, High-pressure solubility data of the system resveratrol (3)+ethanol(2)+CO2(1) [J]. Journal of Supercritical Fluids, 2001, 19: 133-139.
    [76]殷丽君,韩清华,刘海杰等.溶剂替换法制备β-胡萝卜素纳米粒子与稳定性[P].农业机械学报, 2009, 40(4): 112-115.
    [77] Lingyun Chen, Gabriel E. Remondetto, Muriel Subirade. Food protein-based materials as nutraceutical delivery systems [J].Trends in Food Science and Technology, 2006, 17(5): 272-283.
    [78]慕运动,响应面方法及其在食品工业中的应用[J].郑州工程学院报, 2001, 22(3): 91-94.
    [79] Raymond H Myers, Response surface methodology-current status and future directions[J]. Journal of Quality Technology, 1999, 31(1): 30-40.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700