路口瓶颈处交通状态的相图及元胞自动机模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
如今,交通拥堵已经成为城市公害,它增加能源消耗,导致环境污染,成为制约我国大中城市可持续发展的主要瓶颈,严重影响经济建设。解决交通拥堵的根本出路在于发展交通科学技术,开展交通流理论研究。交通流理论研究的目标是建立能描述实际交通一般特性的交通流模型,寻找交通流的基本规律,以揭示交通拥堵产生的机理。只有这样,才有可能实现从”治标”到”治本”的转化,为现代城市的可持续快速发展提供基本保障。因此,很有必要开展交通流理论的研究。
     元胞自动机是一种空间、时间和变量均离散的数学模型,具有算法简单、物理图像清晰、并行程度高等优越的特点。元胞自动机方法和相关的建模技术是描述、认识和模拟复杂系统行为的强有力的方法。如今,它已被广泛用于交通系统的研究,各种元胞自动机交通流模型也已陆续地被提出。由于在该模型中便于考虑各种实际交通因素,因此正被广泛用于研究交通流的各种复杂现象。
     基于交通动力学研究的复杂性和丰富性的特征,并在对国内外交通流理论的研究动态充分调研的基础上,本论文选取了若干受到广泛关注的动力学问题进行研究。研究内容包括一维、二维交通流的建模与模拟,路口瓶颈处交通流的数值模拟及理论分析研究。
     首先,一维元胞自动机交通流模型的研究:
     1、经典的Nagel-Schreckenberg模型中的随机慢化规则可以捕捉由于人的行为、各种外界条件等因素导致的固有的速度涨落,是产生自发的阻塞现象的关键,同时也引入了驾驶员因随机刹车导致的过度反应。本论文对其随机慢化规则进行了改进:当车辆的期望速度小于它本身的车头距时,以及车辆以速度等于1行驶时且等于车头距情况下,车辆也无需随机慢化;由于在单车道模型中不允许超车,只有当某个车辆的期望速度等于它车头距时,考虑到行车安全,车辆需要以一定的概率进行慢化。计算机模拟表明,本文改进模型的基本图敏感地依赖于延迟概率。与Nagel-Schreckenberg模型相比,本文模型中系统的最大流量值更接近实际道路测量结果,速度分布更为合理。因而,本文模型更适合模拟实际道路交通。
     2、本论文研究一维混合交通流的车间距的分布特性。计算机模拟表明,对于给定混合比例的系统,在低密度及中间密度情况下,其车间距分布情况因随机慢化概率不同而不同。对于给定随机慢化概率的系统,在低密度的情况下,混合比例系数对其车间距的分布有很大的影响。
     其次,构建路口瓶颈处交通状态的相图:
     1、本论文研究了由两条相互垂直的单车道构成的十字路口交通流模型的相图,此两车道均采用周期边界条件且并行更新。车辆的更新采用Fukui-Ishibashi确定性模型的演化规则且在十字路口处车辆不允许转向。其中,如果在十字路口上游的两条道上各有一辆车要占据或经过十字路口,需要遵循收益动力学的减速规则。依据构建相图的原则,本论文绘制了各种最大速度情况下的流量相图,通过比较发现它们均具有不同的拓扑结构,其结构与最大速度有关。并采用理论分析的方法推导了相图中各个区域的流量公式,这些结果也被计算机模拟所证实。
     2、类似于上面的研究,只不过模型中车辆的更新采用Nagel-Schreckenberg确定性模型的演化规则。本部分也绘制了各种最大速度情况下的流量相图,也采用理论的方法推导了相图中各个区域的流量公式。本论文中采用的理论分析方法不仅简单,而且可能被广泛地应用于其它交通瓶颈问题的研究。
     最后,提出了车辆可以换道的二维Bihan-Middleton-Levine元胞自动机交通流模型:
     本论文在经典的Biham-Middleton-Levine模型基础上,建立了较符合实际交通情况的车辆可以换道的二维城市交通模型。通过对正方形及长方形网格的交通系统进行计算机模拟,结果均发现新的自由流位形图,以及一些新的中间态,且中间态能维持在较大的密度范围内。
Traffic congestion has become a national urban public nuisance. It has resulted in the increase of energy consumption, environmental pollution and has become a ma-jor bottleneck restricting the sustainable development of large and medium-sized cities in China. Consequently, it has a great impact on economic development. The fun-damental way to solve the traffic congestion problem is to develop the transportation science and technology and carry out the study of traffic flow theory. The objective of the study of traffic flow theory is to establish traffic flow model which can describe general characteristics of actual traffic, find the basic law of traffic flow and then reveal mechanism of traffic congestion. Only in this way, we can achieve the transformation from "symptoms" to "disease" and provide basic protection for sustainable and rapid development of modern city. Therefore, it is necessary to study traffic flow theory.
     Cellular automata is a mathematical model which is discrete in space, time and variables. It has many great characteristics, such as simple algorithm, clear physi-cal pictures and high degree of parallelism. Cellular automata methods and relevant modeling techniques are powerful way to describe, perceive and simulate behaviors of complex system. Nowadays, cellular automata have been widely used in research of the transport system and a variety of cellular automata traffic flow models have also been proposed. Due to the fact that it is easy to consider various actual traffic factors in the model, it is widely used to study the various complex phenomena of traffic flow.
     Based on the complexity and richness of the traffic dynamics research, we first survey domestic and overseas relevant research developments of traffic flow theory, and then study a number of popular dynamics issues. The research contents include modeling and simulations of one-dimensional, two-dimensional traffic flow; computer simulations and theoretical analysis of traffic flow in the intersection bottlenecks.
     First of all, this dissertation has studied a one-dimensional cellular automata traffic flow model:
     1. In the evolutionary rules of the classical Nagel-Schreckenberg model, the ran-domization rule captures natural speed fluctuations due to human behavior or varying external conditions. This rule introduces overreactions of drivers when braking, pro-viding the key to the formation of spontaneously emerging jams. In this dissertation, the randomization rule is improved as follows:compared with the case that velocities are equal to or greater than2, it is notable that vehicles moving at their lower velocity1are relatively safe and the randomization rule may be neglected (not be considered). Here, none of vehicles is permitted to overtake in one lane, so the vehicle velocities must be less or equal to their corresponding gaps. That is to say, vehicle needs to slow down when their velocities equal their corresponding gaps and are no less than2. Ac-cording to simulation results, it has been found that the structure of the fundamental diagram of the new model is sensitively dependent on the values of the delay probabil-ity.In comparison with the Nagel-Schreckenberg model, one notes that the maximum flow value of the fundamental diagram in our model is more consistent with the results measured in the real traffic,and the velocity distributions of our model are relatively reasonable. Thus, our model is more fit for simulating actual traffic.
     2. Using the cellular automaton traffic flow model, we have studied the vehicle gap distribution of the mixed traffic flow. By computer simulations, one notes that the vehicle gap distribution varies with the delay probability in the case of low and intermediate vehicle density for the system with given mixing rate. Furthermore, one notes that the mixing rate has great effect on the vehicle gap distribution in the case of low vehicle density for system with given delay probability.
     Secondly, this dissertation has mapped out phase diagrams of traffic states in the intersection bottlenecks:
     1. This dissertation has studied phase diagrams of traffic flow at an unsignalized intersection consisting of two perpendicular one-lane roads where periodic boundary conditions are adopted and parallel update rules are employed. One simulates the mo-tion of vehicles by using deterministic Fukui-Ishibashi cellular automata traffic model. Vehicles are not allowed to turn at the intersection. At the intersection, if conflict hap-pens, the yielding dynamics will be implemented. Based on the principles for making phase diagrams, we have presented the phase diagrams for the cases of various maxi-mum vehicle velocities, and it is noted that the phase diagrams have several different topology structures which are shaped by maximum velocities. The flow formulas in all regions in the phase diagram have been derived. The results of theoretical analysis are in good agreement with simulation ones.
     2. Similar to the studies above, the following study allows vehicles to adopt the evolutionary rules of the deterministic Nagel-Schreckenberg cellular automata traffic model. We have also presented the phase diagrams for the cases of various maximum vehicle velocities. The flow formula in all regions in phase diagrams have also been deduced by the same way of the theoretical method. The theoretical analysis approach used in this dissertation is not only simple but also may be widely used in the study of other bottlenecks.
     Last but not least, this dissertation has put forward a two-dimensional cellular automata traffic flow model where vehicles can change lanes:
     Based on the classical Biham-Middleton-Levine model, this dissertation has es-tablished a two-dimensional urban traffic flow model where vehicles can change lanes. Comparatively speaking, this model can simulate actual traffic better. By using numer-ical simulations on the square and rectangular grid traffic systems, some new config-uration graphs have been found in free flow regime. In addition, some intermediate stable phases, where jams and freely flowing traffic coexist, have been discovered and stay within larger density range.
引文
[1]江泽民.对中国能源问题的思考。上海交通大学学报42(3)(2008)345.
    [2]王雷。一维交通流元胞自动机模型中自组织临界性级相变行为的研究.Ph.D thesis.合肥:中国科学技术大学2000.
    [3]姜锐.交通流复杂动态特征的微观和宏观模式研究.Ph.D thesis.合肥:中国科学技术大学2002.
    [4]高坤。从基本图方法到三相交通流理论—交通流元胞自动机模型理论研究.Ph.D thesis.合肥:中国科学技术大学2008.
    [5]孙晓燕.交通流复杂动态特性的交通流元胞自动机模型研究Ph. D thesis.合肥:中国科学技术大学2010.
    [6]孙舵。道路交通流元胞自动机模型中的相变现象研究.Ph. D thesis合肥:中国科学技术大学2011.
    [7]袁耀明.交通流元胞自动机模型的解析和模拟研究Ph. D thesis合肥:中国科学技术大学2009.
    [8]唐孝威,张训生,陆坤权.交通流与颗粒流.杭州:浙江大学出版社2004.
    [9]D. Chowdhury, L. Santen, and A. Schadschneider. Statistical physics of vehicu-lar traffic and some related systems. Phys. Rep.329 (2000) 199.
    [10]贾斌,高自友,李克平,李新刚.基于元胞自动机的交通系统建模与模拟.北京:科学出版社2007.
    [11]李力,姜锐,贾斌,赵小梅.现代交通流理论与应用.北京:清华大学出版社2011.
    [12]K. Nagel, P. Wagner and R. Woesler. Still flowing:Approaches to traffic flow and traffic jam modeling. Oper. Res.51(5) (2003) 681-710.
    [13]N. Wu. Vehicle auf Schnellstraen im Fundamentaldiagramm-Ein neues Model undseine Anwendungen. Straenverstechnik. In German 8 (2000) 378.
    [14]G. F. Newell. Mathematical models of freely moving traffic. J. Oper. Res. Soci. America 3 (1955) 176-188.
    [15]L. C. Edie. Car-following and steady-state theory for non-congested traffic. Oper. Res.9 (1961) 66-77.
    [16]F. L. Hall and K. Agyemang-Duah. Freeway capacity drop and the definition of capacity. Transp. Res. Rec.1320 (1991) 91-98.
    [17]B. S. Kerner and H. Rehborn. Experimental features and characteristics of traffic jams. Phys. Rev. E (1996) R1297-1230.
    [18]J. R. Windover and M. J. Cassidy. Some observed details for freeway traffic evolution. Transp. Res. A 35 (2001) 881-894.
    [19]C. F. Daganzo, M. J. Cassidy and R. L. Bertini. Possible explanations of phase transitons in highway traffic. Transp. Res. A 33 (1999) 365-379.
    [20]M. J. Cassidy. Bivariate relations in nearly stationary highway traffic. Transp. Res. B 32 (1998) 49-59.
    [21]D. Helbing. Traffic and related self-driven many-particle systems. Rev. Mod. Phys.73 (2001) 1067.
    [22]B. S. Kerner and H. Rehborn. Experimental features and characteristics of traffic jams. Phys. Rev. E 53 (1996) R1297-R1300.
    [23]B. S. Kerner. The Physics of Traffic. Berlin:Spronger (2004).
    [24]B. S. Kerner. Three-phase traffic theory and highway capacity. Physica A 333 (2004) 379-440.
    [25]B. S. Kerner. Empirical macroscopic features of spatial-temporal traffic patterns at highway bottlenecks. Phys. Rev. E 65 (2002) 046138.
    [26]Elad Tomer, Leonid Safonov and Shlomo Havlin. Presence of Many Stable Non-homogeneous States in an Inertial Car-Following Model. Phys. Rev. Lett.84 (2000) 382-385.
    [27]B. S. Kerner, P Konhauser, M Schilke. "Dipole-layer" effect in dense trafficflow. Phys. Lett. A 215 (1996) 45.
    [28]B. S. Kerner. Experimental features of self-organization in traffic flow. Phys. Rev. Lett.81(17) (1998) 3797-3800.
    [29]B. S. Kerner and H. Rehborn. Experimental properties of complexity in traffic flow. Phys. Rev. E 53 (1996) R4275-R4278.
    [30]D. Helbing, A. Hennecke and M. Treiber. Phase diagram of traffic states in the presence of inhomogeneities. Phys. Rev. Lett.82 (1999) 4360.
    [31]D. Helbing. Master:macroscopic traffic simulation based on a gas-kinetic non-local traffic model. Trasp. Res. B 35 (2001) 180-211.
    [32]T. Nagatani. Density waves in traffic flow. Phys. Rev. E 61 (2000) 3564.
    [33]J. P. Kinzer. Application of the theory of probability to problem of highway traffic. Politech. Inst. Brooklyn (1933).
    [34]W. F. Adams, Road traffic considered as a random series. J. Inst. Civil Eng.4 (1936) 121-130.
    [35]B. D. Greenshields. A study of traffic capacity. Proc. Highway Res. Board 14 (1934)448-477.
    [36]B. D. Greenshields, D. Shapiro and E. L. Ericksen. Traffic performance at urban street intersections. Tech. Rep. No.1 Yale Bureau of Highway traffic. New Haven Corn (1947).
    [37]M. J. Lighthill, G. B. Whitham, On kinematic waves:II. A theory of traffic flow on long crowded roads. Proceedings of the Royal Society, Ser. A 229 (1955) 317-345.
    [38]L. A. Pipes. An operational analysis of traffic dynamics. J Appl. Phy.24 (1953) 274-281.
    [39]H. J. Payne. Models of freeway traffic and control. In:Bekey, G.A. (Ed.), Math-ematical Models of Public Systems 1, Simulation Council, La Jolla, (1971) 51-
    [40]H. J. Payne. Freflo:a macroscopic simulation model for freeway traffic. Transpn. Res. Rec.722 (1979) 68-77.
    [41]I. Prigogine. Herman R. Kinetic Theory of Vehicular Traffic. Amsterdam:Else-vier (1971).
    [42]戴世强,冯苏苇,顾国庆.交通动力学:它的内容、方法和意义.自然杂志19(4)(1997)196-201.
    [43]刘慕仁,薛郁,孔令江.城市交通问题与交通流模型.力学与实践19(2005)1-6.
    [44]V. Neumann. Cellular automata. New York:Academic Press (1968).
    [45]M. Cremer, J. Ludwig. A fast simulation model for traffic flow on the basis of Boolean operations. J. Math. Comp. Simul.28 (1986) 297-303.
    [46]S. Wolfram. Statistical mechanics of cellular automata. Rev. Mod. Phys.55 (1983) 601-644.
    [47]M. Fukui and Y. Ishibashi. Traffic Flow in 1D Cellular Automaton Model In-cluding Cars Moving with High Speed. J. Phys. Soc. Jpn.65(1996) 1868-1870.
    [48]S. Maerivoet, B. De Moor. Traffic Flow Theory [M].05-154, Katholieke Univer-siteit Leuven, Department of Electrical Engineering ESAT-SCD(SISTA), July 2005.
    [49]K. Nagel, M. Schreckenberg. A cellular automaton model for freeway traffic. J. Phys. I France 2 (1992) 2221-2229.
    [50]W. Brilon, N. Wu. Evaluation of cellular automata for traffic flow simulation on freeway andurban streets. in:Traffic and Mobility:Simulation-Economics-Environment, Institut fur Kraftfahrwesen, RWTH Aachen, Duisburg,1999, pp. 163-180.
    [51]K. Nagel, M. Paczuski. Emergent traffic jams. Phys. Rev. E 51 (1995) 2909.
    [52]Bing-Hong Wang, Lei Wang, P. M. Hui and Bambi Hu. Analytical results for the steady state of traffic flow models with stochastic delay. Phys. Rev. E 58 (1998) 2876-2882.
    [53]Lei Wang, Bing-Hong Wang, and Bambi Hu. Cellular automaton traffic flow model between the Fukui-Ishibashi and Nagel-Schreckenberg models. Phys. Rev. E 63 (2001) 056117.
    [54]M. Takayasu and H. Takayasu.1/f noise in a traffic model. Fractals 1 (1993) 860-866.
    [55]Andreas Schadschneider and Michael Schreckenberg. Traffic flow models with "slow-to-start" rules. Ann. Physik6 (1997) 541-551.
    [56]Debashish Chowdhury, Ludger Santen, Andreas Schadschneider. Statistical physics of vehiculartraffic and some related systems. Phys. Rep.329 (2000) 199-329.
    [57]S. C. Benjamin, N. F. Johnson and P. M. Hui. Cellular automaton models of traffic flow along a highway containing a junction. J. Phys. A 29 (1996) 3119-3127.
    [58]Sven Maerivoet, Bart De Moor. Cellular automata models of road traffic. Phys. Rep.419 (2005) 1-64.
    [59]R. Barlovic, L. Santen, A. Schadschneider, M. Schreckenberg. Metastable states in cellular automata for traffic flow. Eur. Phys. J. B 5 (1998) 793-800.
    [60]O. Biham, A. A. Middleton, D. A. Levine, Self-organization and a dynamical transition in traffic flow models. Phys. Rev. A 46 (1992) R6124-R6127.
    [61]Raissa M. D'Souza, Coexisting phases and lattice dependence of a cellular au-tomaton model for traffic flow. Phys. Rev. E 71 (2005) 066112.
    [62]T. Nagatani, Anisotropic effect on jamming transition in traffic flow. J. Phys. Soc. Japan 62 (1993) 2656-2662.
    [63]M. Fukui, Y. Ishibashi. Evolution of traffic jam in traffic flow model. J Phys. Soc. Jpn.62 (1993) 3841-3844.
    [64]S. Tadaki, M. Kikuchi. Jam phases in a two-dimensional cellular-automaton model of traffic flow. Phys. Rev. E 50 (1994) 4564-4570.
    [65]S. Tadaki, M. Kikuchi. Self-organization in a two-dimensional cellular automa- ton model of traffic flow. J Phys. Soc. Jpn.64 (1995) 4504-4508.
    [66]J. Torok and J. Kertesz. The green wave model of two-dimensional traffic:tran-sitions in the flow properties and in the geometry of the traffic jam. Physica A 231(1996)515-533.
    [67]Duo Sun, Rui Jiang, and Bing-Hong Wang. Timing of traffic lights and phase separation in two-dimensional traffic flow. Comput. Phys. Commun.181 (2010) 301-304.
    [68]Duo Sun, Rui Jiang, Bing-Hong Wang. Phase separation in two-dimensional traffic flow. International Conference on Traffic and Granular Flow (2009) Springer.
    [69]Zhong-Jun Ding, Rui Jiang, and Bing-Hong Wang. Traffic flow in the Biham-Middleton-Levine model with random update rule. Phys. Rev. E 83 (2011) 047101
    [70]Zhong-Jun Ding, Rui Jiang, Wei Huang and Bing-Hong Wang. Effect of ran-domization in the Biham-Middleton-Levine traffic flow model. J. Stat. Mech. (2011)P06017.
    [71]Zhong-Jun Ding, Xiao-Yan Sun, Bing-Hong Wang. Violating traffic light behav-ior in the Biham-Middleton-Levine traffic flow model. International Conference on Advances in Computational Modeling and Simulation, Procedia Engineering 31 (2012) 1072-1076.
    [72]Ming Li, Zhong-Jun Ding, Rui Jiang, Mao-Bin Hu, Bing-Hong Wang. Traffic flow in a Manhattan-like urban system. J. Stat. Mech. (2011) P12001.
    [73]Qiao-Hong Sui, Zhong-Jun Ding, Rui Jiang, Wei Huang, Duo Sun, and Bing-Hong Wang. Slow-to-start effect in two-dimensional traffic flow. Comput. Phys. Commun.183 (2012) 547-551.
    [74]Jan de Gier, Timothy M Garoni and Omar Rojas. Traffic flow on realistic road networks with adaptive traffic lights. J. Stat. Mech. (2011) P04008.
    [75]Minoru Fukui, Yoshihiro Ishibashi. Two-dimensional city traffic model with pe- riodically placed blocks. Physica A 389 (2010) 3613-3618.
    [76]Xiao-mei Zhao, Dong-fan Xie, Bin Jia, Rui Jiang, Zi-you Gao. Disorder struc-ture of free-flow and global jams in the extended BML model. Phys. Lett. A 375 (2011)1142-1147.
    [77]Ke-Ping Li and Zi-You Gao. Controlling the states of traffic flow at the intersec-tions. Int. J. Mod. Phys. C 15 (2004) 553-562.
    [78]Ding-wei Huang and Wei-neng Huang. Optimization of traffic lights at cross-roads. Int. J. Mod. Phys. C 14 (2003) 539.
    [79]M. E. Foulaadvand, Z. Sadjadi, and M. R. Shaebani. Optimized traffic flow at a signalised intersection:traffic responsive sigalization. J. Phys. A:Math. Gen.37 (2004) 561-576.
    [80]Y. Ishibashi, M. Fukui. Phase diagrams for traffics on the crossroad. J. Phys. Soc. Japan 70 (2001) 2793.
    [81]Y. Ishibashi, M. Fukui. Phase diagrams for traffics on the crossroad:II. The cases of different velocities. J. Phys. Soc. Japan 70 (2001) 3747.
    [82]W. Zhang, W. Zhang, and W. Chen. Dilemma game in a cellular automaton model with a non-signalized intersection. Eur. Phys. J. B 85 (2012) 78.
    [83]Belbasi Somayyeh, Foulaadvand M. Ebrahim. Simulation of traffic flow at a signalized intersection. J. Stat. Mech.7 (2008) P07021.
    [84]Y. Feng, Y. Liu, P. Deo, H. J. Ruskin. Heterogeneous traffic flow model for a two-lane roundabout and controlled intersection. Int. J. Mod. Phys. C 18 (2007) 107-117.
    [85]Jia-Xiu Pan, Yu Xue, Yu-Juan Liang. Effect of road structure on the capacity of a signalized road intersection. Chin. Phys. B 18 (2008) 4169-4176.
    [86]M. E. Foulaadvand, M. Fukui, and S. Belbasi. Phase structure of a single urban intersection:a simulation study. J. Stat. Mech.7 (2010) P07012.
    [87]M. E. Foulaadvand, and M. A. Neek. Asymmetric simple exclusion process de-scribing conflicting traffic flows. Eur. Phys. Lett.80 (2007) 6002.
    [88]M. E. Foulaadvand, and S. Belbasi. Vehicular traffic flow at an intersection with the possibility of turning. J. Phys. A:Math. Gen.44 (2011) 105001.
    [89]M. E. Foulaadvand, and S. Belbasi Vehicular traffic flow at a non-signalised intersection. J. Phys. A:Math. Gen.40 (2007) 8289.
    [90]M E. Foulaadvand and S. Belbasi. Vehicular traffic flow at a non-signalized in-tersection. J. Phys. A:Math. Gen.40 (2007) 8289.
    [91]A. Ceder and K. Eldar. Optimal distance between two branches of uncontrolled split intersection. Transp. Res. A 36 (2002) 699-724.
    [92]Qing-Song Wu, Xiao-Bai Li, Mao-Bin Hu, and Rui Jiang. Study of traffic flow at an unsignalized T-shaped intersection by cellular automata model. Eur. Phys. J. B 48 (2005) 265-269.
    [93]Ding-Wei Huang. Complete traffic patterns around a T-shaped intersection. Int. J. Mod. Phys. C 21 (2010) 189-204.
    [94]Yu-Cih Peng, Chung-I Chou. Simulation of pedestrian flow through a "T" intersection:A multi-floor field cellular automata approach. Comput. Phys. Commun.182 (2011) 205-208.
    [95]Zhong-Jun Ding, Xiao-Yan Sun, Run-Ran Liu, Qiao-Ming Wang, Bing-Hong Wang. Traffic flow at a signal controlled T-shaped intersection. Int. J. Mod. Phys. C 21 (2010) 443-455.
    [96]Xiao-Bai Li, Rui Jiang, Qing-Song Wu. Cellular automaton model simulating traffic flow at an uncontrolled T-shaped intersection. Int. J. Mod. Phys. B 18 (2004) 2703-2707.
    [97]Xin-Gang Li, Zi-You Gao, Bin Jia, Xiao-Mei Zhao. Cellular automata model for unsignalized T-shaped intersection. Int. J. Mod. Phys. C 20 (2009) 501-512.
    [98]M. E. Fouladvand, Z. Sadjadi, and M. R. Shaebani. Characteristics of vehicular traffic flow at a roundabout. Phys. Rev. E 70 (2004) 046132.
    [99]Ding-wei Huang and Wei-neng Huang. Traffic signal synchronization. Phys. Rev. E 67 (2003) 056124.
    [100]Ding-wei Huang. Phase diagram of a traffic roundabout. Physica A 383 (2007) 603-612.
    [101]Rui-Xiong Chen, Ke-Zhao Bai, Mu-Ren Liu. The CA model for traffic-flow at the grade roundabout crossing. Chin. Phys.15 (2006) 1471-1476.
    [102]Ke-Zhao Bai, Hui-Li Tan, Ling-Jiang Kong, Mu-Ren Liu. Traffic flow of a roundabout crossing with an open boundary condition. Chin. Phys. B 19 (2010) 040510.
    [103]白克钊,邝华,刘慕仁,孔令江.开放边界条件下平面环行交叉路口交通流的相图研究.物理学报59(2010)5990-5995.
    [104]白克钊,陈瑞熊,刘慕仁,孔令江,郑容森.平面环行交叉路口交通流的研究.物理学报58(2009)4500-4505.
    [105]R. Wang, and H. J. Ruskin. Modeling Traffic Flow at a Single-lane Urban Roundabout. Comput. Phys. Commun.147 (2002) 570.
    [106]R. Wang, and H. J. Ruskin. Modelling traffic flow at multi-lane urban round-abouts. Int. J. Mod. Phys. C 17 (2006) 693-710.
    [107]P. Wagner. in:D. E. Wolf, M. Schreckenberg, A. Bachem (Eds.). Traffic and Granular Flow, World Scientific, Singapore, (1996) p.139.
    [108]H. Ez-Zahraouy, K. Jetto and A. Benyoussef. The effect of mixture lengths of vehicles on the traffic flow behaviour in one-dimensional cellular automaton. Eur. Phys. J. B 40 (2004) 111-117.
    [109]D. V. Ktitarev, D. Chowdhury, D. E. Wolf. Stochastic traffic model with random deceleration probabilities:Queueing and power-law gap distribution. J. Phys. A: Math. Gen.30 (1997) L221-L227.
    [110]N. Moussa. The influence of aggressive drivers on the properties of a stochastic traffic model. Eur. Phys. J. B 41 (2004) 421-431.
    [111]邝华,孔令江,刘慕仁.多速混合车辆单车道元胞自动机交通流模型的研究.物理学报53(2004)2894-2898.
    [112]邝华,孔令江,刘慕仁.考虑延迟概率因素对混合车辆敏感驾驶交通流模 型的研究.物理学报53(2004)4183-4144.
    [113]肖瑞杰,孔令江,刘慕仁.车辆的长度和速度对单车道混合交通流的影响.物理学报56(2007)740-746
    [114]郑容森,谭惠丽,孔令江,刘慕仁.双车道多速车辆混合交通流元胞自动机模型的研究.物理学报54(2005)3516-3522.
    [115]吴可非,孔令江,刘慕仁.双车道元胞自动机NS和WWH交通流混合模型的研究.物理学报55(2006)6275-6280.
    [116]肖世发,刘慕仁,孔令江.高速桥梁瓶颈模型属性的研究.物理学报55(7)(2006)3328-3335.
    [117]赵慕愚,宋利珠.相图的边界理论及其应用-相区及其边界构成相图的规律.北京:科学出版社2004.
    [118]庄育智,张维敬.相图研究的现状及发展.科学通报(09)(1991)641-645.
    [119]杜和峰.几个扩展的非对称简单排它过程模型的解析与模拟研究Master Degree thesis.合肥:中国科学技术大学2011.
    [120]T. Nagatani. The physics of traffic jams. Rep. Prog. Phys.65 (2002) 1331.
    [121]D. Helbing, and M. Treiber. Gas-Kinetic-Based Traffic Model Explaining Ob-served Hysteretic Phase Transition. Phys. Rev. Lett.81 (1998) 3042.
    [122]H. Y. Lee, H.-W. Lee, and D. Kim. Phase diagram of congested traffic flow:An empirical study. Phys. Rev. E 62 (2000) 4737.
    [123]A. Benyoussef, H. Chakib and H. Ez-Zahraouy. A simulation study of an asym-metric exclusion model with open and periodic boundaries for parallel dynam-ics. Eur. Phys. J. B 8 (1999) 275.
    [124]Rui Jiang, Bin Jia, and Qing-Song Wu. The stochastic randomization effect in the-on-ramp system:Single-lane main road and two-lane main road situations. J. Phys. A:Math. Gen.36 (2003) 11713.
    [125]S. Cheybani, J. Kert'esz, and M. Schreckenberg. Nondeterministic Nagel-Schreckenberg traffic model with open boundary conditions. Phys. Rev. E 63 (2000) 016108.
    [126]Rui Jiang, Qing-Song Wu, and Bing-Hong Wang. Cellular automata model sim-ulating traffic interactions between on-ramp and main road. Phys. Rev. E 66 (2002) 036104.
    [127]A. Benyoussef, H. Chakib, and H. Ez-Zahraouy. Anisotropy effect on two-dimensional cellular-automaton traffic flow with periodic and open boundaries. Phys. Rev. E 68 (2003) 026129.
    [128]T. Nagatani. Phase diagrams of noisy traffic states in the presence of a bottle-neck. Physica A,280 (2000) 602.
    [129]E. Brockfeld, R. Barlovic, A. Schadschneider, and M. Schreckenberg. Open boundaries in a cellular automaton model for traffic flow with metastable states. Phys. Rev. E 64 (2001) 056132.
    [130]E. Brockfeld, R. Barlovic, A. Schadschneider, and M. Schreckenberg. Optimiz-ing traffic lights in a cellular automaton model for city traffic. Phys. Rev. E 64 (2001) 056132.
    [131]T. Nagatani. Jamming transition in the traffic-flow model with two-level cross-ings. Phys. Rev. E 48 (1993) 3290-3294.
    [132]Y. Ishibashi and M. Fukui. Temporal variations of traffic flow in the Biham-Middleton-Levine model. J. Phys. Soc. Japan 63 (1994) 2882-2885.
    [133]K. H. Chung, P. M. Hui and G. Q. Gu. Two-dimensional traffic flow problems with faulty traffic lights. Phys. Rev. E 51 (1995) 772-774.
    [134]T. Nagatani. Anisotropic effect on jamming transition in traffic flow [J]. J. Phys. Soc. Japan 62 (1993) 2656-2662.
    [135]J. A. Cuesta, F. C. Martines and J. M. Molera. Phase transition in two-dimensional traffic-flow models. Phys. Rev. E 48 (1993) R4175-R4178.
    [136]T. Nagatani. Effect of jam-avoiding turn on jamming transition in two-dimensional traffic flow model. J. Phys. Soc. Japn.63(4) (1994) 1228-1231.
    [137]G. Q. Gu, K. H. Chung, P. M. Hui. Two-dimensional traffic flow model problems in inhomogeneous lattice. Physica A 217 (1995) 339-347.
    [138]M. Fukui, H. Oikawa and Y. Ishibashi. Flow of carscrossing with unequal ve-locities in a two-dimensional cellular automaton model. J. Phys. Soc. Japn.65 (1996)2514-2517.
    [139]A. Mhirech, H. Ez-Zahraouy and A. A. Ismaili. Effect of damaged vehicle evac-uation on traffic flow with open boundaries. Phys. Rev. E 81 (2010) 011132.
    [140]Rui Jiang, Qing-Song Wu, Bing-Hong Wang. Cellular automata model simulat-ing traffic interactions between on-ramp and main road. Phys. Rev. E 66 (2002) 036104.
    [141]Qiao-Ming Wang, Rui Jiang, Xiao-Yan Sun, Bing-Hong Wang. Assigning on-ramp flows to maximize highway capacity. Physica A 388 (2009) 3931-3938.
    [142]Bin Jia, Rui Jiang, Qing-Song Wu. Traffic behavior near an off ramp in the cellular automaton traffic model. Phys. Rev. E 69 (2004) 056105.
    [143]Xin-Gang Li, Zi-You Gao, Bin Jia and Rui Jiang. Traffic dynamics of an on-ramp system with a cellular automaton model. Chin. Phys. B 19 (2010) 060501.
    [144]Jun-fang Tian, Bin Jia, Xin-gang Li, Rui Jiang, Xiao-mei Zhao, Zi-you Gao. Synchronized traffic flow simulating with cellular automata model. Physica A 388(2009) 4827-4837.
    [145]Chang-Fu Tang, Rui Jiang, Qing-Song Wu. Phase diagram of speed gradient model with an on-ramp. Physica A 377 (2007) 641-650.
    [146]Rui Jiang, Qing-Song Wu. The adaptive cruise control vehicles in the cellular automata model. Phys. Lett. A 359 (2006) 99-102.
    [147]徐吉谦.交通工程总论.北京:人民交通出版社(2002).
    [148]肖帕德,德罗斯著.祝玉学,赵学龙(译).物理系统的元胞自动机模拟.北京:清华大学出版社(2003).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700