新型正畸支抗用微种植体钛合金的制备与生物相容性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究通过动物实验,结果表明,微种植体位于骨皮质厚的部位,其支抗稳定性明显高于其他部位的微种植体,微种植体的稳定与种植体和骨的结合率有关。
     为提高微种植体与骨结合率,开发新微种植体材料,本研究采用粉末冶金法制备Ti-In系合金,并检测其组织结构、机械性能,进行腐蚀实验。通过毒性实验、溶血实验、MTT实验等评价其生物安全性。结果表明,采用粉末冶金方法并加入适量In元素制备的钛合金,其弹性模量与骨接近,机械强度较好,提高了抗腐蚀性。加入少量硬脂酸锌制备的Ti-In合金空隙更均匀。该类合金具有低弹性模量、中高强度、耐腐蚀和安全无毒的特点,适合作为口腔种植体的材料。
Objective: The purpose of this study was to quantify the is tomorphometric properties of the bone-implant interface to analyze the use of small titanium crews as an orthodontic anchorage and to establish an adequate healing period. Ti alloys are used in orthopaedic applications owing to their appropriate mechanical properties and their excellent corrosion resistance. The release of titanium and the other alloying elements into the surrounding tissue has been reported due either to passive corrosion or accelerating processes such as wear.In study,the general toxicity tests including acutetoxicitytest, haemolysistest, MTT assay of Ti-In alloys were carried out.
     Materials and methods:
     In study miniscrews of 1.2 mm diameter and 8 mm length were used, A 1.2 mm pilot hole was drilled through the soft tissue and into the cortical bone. After insertion of the implants, a two mimiscrew was attached to serve as a hook for the application of the orthodontic force. Analysis of variance models were used to examine the effects of healing and application of force on the histomorphometric indices of the maxilla and mandible. The model comparison, corrected for a random dog effect, was used to correlate all measurements from the same dog. In addition, the method analyzed fixed effects for healing period, location (cup or molar), and all interactions. The starting elemental powders Ti, In and ZN had an average particle size. Subsequently, the samples were vacuum encapsulated in flexible rubber molds and cold isostatically pressed with a pressure of 700MPa for 5 s. The samples of blended powder with a pressure into a square 13mm with an edge length of 5mm.
     The microstructure was revealed by swabbing the, samples with a Kroll solution (3 ml HF, 6 ml HNO3, 100 ml H2O) for 10–20 s, shows the corresponding SEM micrographs.Green ,bodies were sintered in a niobium crucible under high vacuum conditions. The density of the sintered Ti–In samples was characterized by measuring the samples dimensions and weight. The activated samples were exposed to SBF with ionic concentrations nearly equal to human blood plasma.
     Corrosion potential and corrosion rate were measured using a Potentiostate machine. The corrosion test was performed in a solution (SBF) without dissolved oxygen at 37°C. Saturated Caromel Electrode was used for the standard electrode and platinum was used for the counter electrode. The experimental apparatus for the corrosion test was connected and controlled with an IBM computer. The corrosion rate was calculated using the Tafel extrapolation method.
     Acute toxicity test Thirthy white male mice were use as experimental animal. The weight of each mouse was about 20g. All of these animal were divided into three groups at random and there were 10 mice in each group.
     MTT (3-dimethylthiazol-2,5-diphenyltetrazolium bromide) colorimetric assay Osteoblast-like cells (MG-63) were plated at a density of 2.5×104 cells/100μl/well in 96-well plates. After overnight incubation, bisphosphonates were added at concentrations ranging from [10?4 ] to [10?12 ] and cultures continued for 24, 48, and 72 h. In continuation of the protocol, the medium was aspirated and 50μl of MTT was added to each well and cultures continued for 2 h at 37°C. This time period permitted the cellular conversion of MTT to insoluble formazan. The cells were thenlysed, and the formazan solubilized with acidic propanol at room temperature for 24 h. Two hundred microliters of supernatant were transferred to microplate wells and colorimetric changes were quantified in a microplate reader at the wavelength of 540 nm. The MTT assay was performed in triplicate and repeated in six cultures.
     Results: Miniscrews were achieved by67% of the 24 implants placed in 3 dogs and 100% of the elastomeric chain-loaded implants. All of the loaded implants remained integrated. Mandibular implants had higher bone-implant contact than maxillary implants. Within each arch, the significant histomorphometric indices noted for the "two-week unloaded" healing group were: increased labeling incidence, higher woven-to-lamellar-bone ratio, and increased osseous contact. Analysis of these data indicates that small titanium screws were able to function as rigid osseous anchorage against orthodontic load for 2 months with a minimal (under2 weeks) healing period. The mechanical properties of Ti–In alloy with the commercially used Ti alloys for implants were shown in. The yield strength (YS) and ultimate tensile strength (UTS) of the Ti–In alloy are above 1380 MPa. The Ti–In alloy has good mechanical properties compare to CP Ti. in The modulus of elasticity are 25 MPa, a loss of bone and weakness of bone fracture were increased in the interface between bone and implant. The modulus of elasticity of bone in a human body is 20 GPa. And that of CP Ti and the Ti–In alloy are about1380MPa, respectively. The new designed Ti–In alloy in this study approach a modulus of elasticity of bone compare to CP Ti.
     Conclusion: There are In this study, newly designed biomedical Ti–In alloy shows excellent several characteristics. At the first, this alloy material composed with non-toxic elements is adequate for biocompatibility. The next thing is better corrosion resistivity with In contents compared to conventional biomaterials such as CP Ti. The last thing is its superior mechanical properties such as UTS, YS and modulus of elasticity.
引文
1. Cheng SJ, Tseng IY, Lee JJ, et al. A prospective study of the risk factors associated with failure of mini-implants used for orthodontic anchorage. Int J Oral Maxillofac Implants, 2004, 19: 100–106
    2. Trisi P, Rebaudi A. Progressive bone adaptation of titanium implants during and after orthodontic load in humans. Int J Periodontics Restorative Dent, 2002, 22: 31–43
    3. Alliot B, Piotrowski B, Marin P, et al. Regeneration procedures in immediate transmucosal implants: an animal study. Int J Oral Maxillofac Implants, 1999, 14(6): 841–848
    4. Roberts WE, Helm FR, Marshall KJ, et al. Rigid endosseous implants for orthodontic and orthopedic anchorage. Angle Orthod, 1989, 59(4):247–256
    5. Creekmore TD, Eklund MK. The possibility of skeletal anchorage. J Clin Orthod, 1983, 17(4): 266–269
    6. Travess HC, Williams PH, Sandy JR. The use of osseointegrated implants in orthodontic patients: 2. Absolute anchorage. Dent Update, 2004, 31(6): 355–356, 359–360, 362
    7. Wehrbein H, Merz BR, Diedrich P. Palatal bone support for orthodontic implant anchorage--a clinical and radiological study. Eur J Orthod, 1999, 21(1): 65–70
    8. Kanomi R. Mini-implant for orthodontic anchorage. J Clin Orthod, 1997, 31(11): 763–767
    9. Deguchi T, Takano-Yamamoto T, Kanomi R, et al.The use of small titanium screws for orthodontic anchorage. J Dent Res, 2003, 82 (5): 377–381
    10. Bae SM, Park HS, Kyung HM, et al.Clinical application of micro-implant anchorage. J Clin Orthod, 2002, 36(5): 298–302
    11. Melsen B, Costa A. Immediate loading of implants used for orthodontic anchorage. Clin Orthod Res, 2000, 3(1): 23–28
    12. Park HS, Kwon TG, Sung JH. Nonextraction treatment with microscrew implants. Angle Orthod, 2004, 74(4): 539–549
    13. Costa A, Raffainl M, Melsen B. Miniscrews as orthodontic anchorage: a preliminary report. Int J Adult Orthodon Orthognath Surg, 1998, 13(3): 201–209
    14. 寻春雷, 曾祥龙, 王兴. 微型自攻钛钉种植体支抗压低切牙的初步应用研究. 口腔正畸学, 2004, 11(1): 29–32
    15. 正畸中骨的生理学、新陈代谢和生物力学.见: GraberTM 等. 徐芸主译.口腔正畸学:现代原理与技术.第一版,天津:天津科技翻译出版公司,1996,191–234
    16. Haanaes HR, Stenvik A, Beyer-Olsen ES, et al. The efficacy of two-stage titanium implants as orthodontic anchorage in the preprosthodontic correction of third molars in adults--a report of three cases. Eur J Orthod, 1991, 13(4): 287–292
    17. Roberts WE. Bone dynamics of osseointegration, ankylosis, and tooth movement. J Indiana Dent Assoc, 1999, 78(3): 24–32
    18. Ohmae M, Saito S, Morohashi T, et al. A clinical and histological evaluation of titanium mini-implants as anchors for orthodontic intrusion in the beagle dog. Am J Orthod Dentofacial Orthop, 2001, 119(5): 489–497
    19. Odman J, Lekholm U, Jemt T, et al. Osseointegrated implants as orthodontic anchorage in the treatment of partially edentulous adult patients. Eur J Orthod, 1994, 16(3): 187–202
    20. Glatzmaier J, Wehrbein H, Diedrich P. Biodegradable implants for orthodontic anchorage. A preliminary biomechanical study. Eur J Orthod, 1996, 18(5): 465–469
    21. Maino BG, Bednar J, Pagin P, et al. The spider screw for skeletal anchorage. J Clin Orthod, 2003, 37(2): 90–97
    22. Roberts WE, Marshall KJ, Mozsary PG. Rigid endosseous implant utilized as anchorage to protract molars and close an atrophic extraction site. Angle Orthod, 1990, 60(2): 135–152
    23. Schroeder A, van der Zypen E, Stich H, et al. The reactions of bone, connective tissue, and epithelium to endosteal implants with titanium-sprayed surfaces. J Maxillofac Surg, 1981, 9(1): 15–25
    24. Linder-Aronson S, Nordenram A, Anneroth G. Titanium implant anchorage in orthodontic treatment an experimental investigation in monkeys. Eur J Orthod, 1990, 12(4): 414–419
    25. Roberts WE, Arbuckle GR, Analoui M. Rate of mesial translation of mandibular molars using implant-anchored mechanics. Angle Orthod, 1996, 66(5): 331–338
    26. Brunski JB. Biomechanical factors affecting the bone-dental implant interface. Clin Mater, 1992, 10(3):153–201
    27. Gray JB, Steen ME, King GJ, et al. Studies on the efficacy of implants as orthodontic anchorage. Am J Orthod, 1983, 83(4): 311–317
    28. Pazzaglia UE. Periosteal and endosteal [reaction to reaming and nailing: the possible role of revascularization on the endosteal anchorage of cementless stems. Biomaterials, 1996, 17(10): 1009–1014
    29. Ohmae M, Saito S, Morohashi T, et al A clinical and histologicalevaluation of titanium mini-implants as anchors for orthodontic intrusion in the beagle dog.Am J Orthod Dentofacial Orthop. 2001,119(5):489–497
    30. Deguchi T, Nasu M, Murakami K, et al. Quantitative evaluation of cortical bone thickness with computed tomographic scanning for orthodontic implants.Am J Orthod Dentofacial Orthop,2006,129 (6):721.7–12.
    31. 陈安玉 口腔种植学 四川科学技术出版社 1991, 第一版, 93
    32. Chae JM. A new protocol of Tweed-Merrifield directional force technology with microimplant anchorage.Am J Orthod Dentofacial Orthop. 2006,130(1):100–109
    33. Block MS, Hoffman DR. A new device for absolute anchorage for orthodontics. Am J Orthod Dentofacial Orthop, 1995, 107(3): 251–258
    34. Smalley WM, Shapiro PA, Hohl TH, et al. Osseointegrated titanium implants for maxillofacial protraction in monkeys. Am J Orthod Dentofacial Orthop, 1988, 94(4): 285–295
    35. Wehrbein H, Diedrich P. Endosseous titanium implants during and after orthodontic load--an experimental study in the dog. Clin Oral Implants Res, 1993, 4(2): 76–82
    36. Haanaes HR. Implants and infections with special reference to oral bacteria. J Clin Periodontol, 1990, 17(7): 516–524
    37. Roberts WE, Smith RK, Zilberman Y, et al. Osseous adaptation to continuous loading of rigid endosseous implants. Am J Orthod, 1984, 86(2): 95–111
    38. Zitzmann NU, Berglundh T, Ericsson I, et al. Spontaneous progression of experimentally induced periimplantitis. J Clin Periodontol, 2004, 31(10):845–849
    39. Smith JR. Bone dynamics associated with the controlled loading of bioglass-coated aluminum oxide endosteal implants. Am J Orthod, 1979, 76(6): 618–636
    40. Southard TE, Buckley MJ, Spivey JD, et al. Intrusion anchorage potential of teeth versus rigid endosseous implants: a clinical and radiographic evaluation. Am J Orthod Dentofacial Orthop, 1995, 107(2): 115–120
    41. Odman J, Grondahl K, Lekholm U, et al. The effect of osseointegrated implants on the dento-alveolar development. A clinical and radiographic study in growing pigs. Eur J Orthod, 1991, 13(4): 279–286
    42. Thilander B, Odman J, Grondahl K, et al. Aspects on osseointegrated implants inserted in growing jaws. A biometric and radiographic study in the young pig. Eur J Orthod, 1992, 14(2): 99–109
    43. 陶姗. 新型生物医用近β型钛合金的组织及力学性能. 昆明理工大学硕士学位论文, 2005
    44. 顾汉卿. 生物材料的现状及发展(四). 中国医疗器械信息, 2001, 7(6): 39–44
    45. Nag S, Banerjee R, Fraser HL. A novel combinatorial approach for understanding microstructural evolution and its relationship to mechanical properties in metallic biomaterials. Acta Biomaterialia, 2007, 3( 3) : 369–376
    46. 李佐臣, 李常亮, 裘松波, 等. 外科植入 TAMZ 合金生物学评价. 稀有金属材料与工程, 1998, 27(1) : 59–62
    47. 奚廷斐, 杨晓芳. 生物材料生物相容性的分子水平评价研究. 生物医学工程学杂志, 1999, 16(S1): 63–66
    48. 于振涛, 周廉, 王克光. 生物医用β型钛合金的设计与开发. 稀有金属快报, 2004, 1
    49. 李佐臣, 周廉, 李军, 等. 外科植入物用第三代新型医用钛合金研究. 钛工业进展, 2003, 20(4–5): 46–48
    50. 王桂生, 朱明. 外科植入物用钛合金研究进展和标准化现状. 稀有金属, 2003, 27(1): 43–48
    51. Mohammadi S.Wictorin L. Erisconetal IE. Cast titanium an implant material . J Mate.Sci Mater Med, 1995, 6: 223–229
    52. Ungcrsbock A,Geret V, P ohler O, et al.Tissue reaction to bone plates made of pure titanium : a prospective, quamtitative clinical study J Mater Sci Mater Med, 1995(6) : 223–229
    53. Doraiswamy D, Ankem S. The effect of grain size and stability on ambient temperature tensile and creep deformation in metastable beta titanium alloys. Acta Materialia, 2003, 51, 1607–1619
    54. Okazaki Y, Rao S, Ito Y, et al. Corrosion resistance, mechanical properties, corrosion fatigue strength and cytocompatibility of new Ti alloys without Al and V. Biomaterials, 1998, 19: 1197–1214
    55. 姚滨南. 人工关节基本原理与材料. 哈尔滨医学, 2004, 24(1): 42–44
    56. 冯颖芳, 康浩方, 张震. 钛合金医用植入物材料的研究及应用. 稀有金属, 2001, 25(5): 349–354
    57. 张毅. 生物体用不锈钢及钴铬合金现状. 上海钢研, 1999, (4): 58–61
    58. Long M, Rack HJ. Titanium alloys in total joint replacement--a materials science perspective. Biomaterials, 1998, 19(18): 1621–1639
    59. 何宝明. 生物医用钛及其合金材料的开发应用进展、市场状况及问题分析. 新材料产业, 2003, 116(7): 23–28
    60. Iijima D, Yoneyama T, Doi H, et al. Wear properties of Ti and Ti-6Al-7Nb castings for dental prostheses. Biomaterials, 2003, 24(8): 1519–1524
    61. 宁聪琴, 周玉. 医用钛合金的发展及研究现状. 材料科学与工艺, 2002, 10(1): 100–102
    62. Okazaki Y, Rao S, Ito Y, et al. Corrosion resistance, mechanical properties, corrosion fatigue strength and cytocompatibility of new Ti alloys without Al and V. Biomaterials, 1998, 19(13): 1197–1215
    63. Ho WF, Ju CP, Lin JH. Structure and properties of cast binary Ti-Mo alloys. Biomaterials, 1999, 20(22): 2115–2122
    64. 张玉梅. 钛及钛合金在口腔科应用的研究方向. 生物医学工程学杂志, 2000, 17(2): 206–208
    65. 鲍利索娃 钛合金相学 国防工业出版社 1986.
    66. 于振涛, 周廉. 生物医用 β 型钛合金 de 设计与开发. 稀有金属快报, 2004, 23 (1): 5–10
    67. 刘伟东, 屈华, 刘艳, 等. 高合金化β钛合金拉伸延性的价电子理论分析. 金属学报, 2002, 38(10): 1037–1041
    68. 杨晓芳, 奚廷斐. 生物材料生物相容性评价研究进展. 生物医学工程学杂志, 2001, 18(1): 123–128
    69. Okazaki Y. Effect of friction on anodic polarization properties of metallic biomaterials. Biomaterials, 2002, 23(9): 2071–2077
    70. 于思荣. 金属系牙科材料的应用现状及部分元素的毒副作用. 金属功能材料,2000,7(1): 1–6
    71. 任伊宾, 杨柯, 梁勇. 新型生物医用金属材料的研究和进展. 材料导报, 2002, 16(2):12–15
    72. 李军, 周廉, 李佐臣, 等. 新型医用钛合金 Ti-12.5Zr-2.5Nb-2.5Ta 的研究. 稀有金属材料与工程, 2003, 32(5): 398–400
    73. Okazaki Y, Gotoh E. Comparison of metal release from various metallic biomaterials in vitro. Biomaterials, 2005, 26(1): 11–21
    74. Okazak Y, Nishimura E, Nakada H, et al. Surface analysis of Ti-15Zr-4Nb-4Ta alloy after implantation in rat tibia. Biomaterials, 2001, 22(6): 599–607
    75. 张玉梅, 王勤涛, 赵铱民. 新型医用 Ti75,TiZr 合金的生物腐蚀行为研究. 稀有金属材料与工程, 2004, 33(1):19–22
    76. 长征, 晓敏. 医用生体材料的开发. 金属功能材料, 2004, (1): 45–48
    77. 张安元, 杨龙. 钛合金片修补胸壁缺陷 9 例. 中国煤炭工业医学杂志, 2004, 7(2): 168
    78. Mikulec LJ, Puleo DA. Use of p-nitrophenyl chloroformate chemistry to immobilize protein on orthopedic biomaterials. J Biomed Mater Res, 1996, 32(2): 203–208
    79. Williams KR, Williams AD. Impulse response of a dental implant in bone bynumerical analysis.Biomaterials, 1997, 18(10): 715–719
    80. Merritt K, Brown SA. Distribution of cobalt chromium wear and corrosion products and biologic reactions. Clin Orthop Relat Res, 1999, (329 Suppl): S233–243
    81. Pan J, Leygraf C, Thierry D, et al. Corrosion resistance for biomaterial applications of TiO2 films deposited on titanium and stainless steel by ion-beam-assisted sputtering. J Biomed Mater Res, 1997, 35(3): 309–318
    82. Czarnowska E, Wierzchon T, Maranda-Niedbala A, et al. Improvement of titanium alloy for biomedical applications by nitriding and carbonitriding processes under glow discharge conditions. J Mater Sci Mater Med, 2000, 11(2): 73–81
    83. Sella C, Martin JC, Lecoeur J, et al. Corrosion protection of metal implants by hard biocompatible ceramic coatings deposited by radio-frequency sputtering. Clin Mater, 1990, 5(2–4): 297–307
    84. Okazaki Y, Gotoh E, Manabe T, et al. Comparison of metal concentrations in rat tibia tissues with various metallic implants. Biomaterials, 2004 , 25(28): 5913–20
    85. Le MK, Zhu XM. In vitro corrosion resistance of plasma source ion nitrided austenitic stainless steels. Biomaterials, 2001, 22(7): 641–647
    86. 雷明凯. 生物医用奥氏体不锈钢磨损腐蚀问题. 大连理工大学学报, 2000; 40(S1): 65–69
    87. Wataha JC, Hanks CT, Craig RG. The in vitro effects of metal cations on eukaryotic cell metabolism. J Biomed Mater Res, 1991, 25(9): 1133–1149
    88. Lee SH, Brennan FR, Jacobs JJ, et al. Human monocyte/macrophage response to cobalt-chromium corrosion products and titanium particles in patients with total joint replacements. J Orthop Res, 1997, 15(1): 40–49
    89. Lucas LC, Dale P, Buchanan R, et al. In vitro vs in vivo corrosion analyses of two alloys. J Invest Surg, 1991, 4(1): 13–21
    90. el-Saadani M, Esterbauer H, el-Sayed M, et al. A spectrophotometric assay for lipid peroxides in serum lipoproteins using a commercially available reagent. J Lipid Res, 1989, 30(4): 627–630
    91. Quinlan GJ, Gutteridge JM. Oxygen radical damage to DNA by rifamycin SV and copper ions. Biochem Pharmacol, 1987, 36(21): 3629–3633
    92. Hermes-Lima M, Willmore WG, Storey KB. Quantification of lipid peroxidation in tissue extracts based on Fe(III)xylenol orange complex formation. Free Radic Biol Med, 1995, 19(3): 271–280
    93. Jiang ZY, Hunt JV, Wolff SP. Ferrous ion oxidation in the presence of xylenol orange for detection of lipid hydroperoxide in low densitylipoprotein. Anal Biochem, 1992, 202(2): 384–389
    94. Nourooz-Zadeh J, Tajaddini-Sarmadi J, Wolff SP. Measurement of plasma hydroperoxide concentrations by the ferrous oxidation-xylenol orange assay in conjunction with triphenylphosphine. Anal Biochem, 1994, 220(2): 403–409
    95. Allen KG, Huang CJ, Morin CL. Determination of picomole quantities of hydroperoxides by a coupled glutathione peroxidase and glutathione disulfide specific glutathione reductase assay. Anal Biochem, 1990, 186(1):108–111
    96. 方允中 李文杰 自由基与酶——基础理论及其在生物学和医学中的应用
    97. 萧华山, 何文锦, 傅文庆, 等. 一种用分光光度计检测氧自由基的新方法. 生物化学与生物物理进展, 1999, 26(2): 180–182
    98. Zamburlini A, Maiorino M, Barbera P, et al. Direct measurement by single photon counting of lipid hydroperoxides in human plasma and lipoproteins. Anal Biochem, 1995, 232(1): 107–113
    99. Zamburlini A, Maiorino M, Barbera P, et al. Measurement of lipid hydroperoxides in plasma lipoproteins by a new highly-sensitive 'single photon counting' luminometer. Biochim Biophys Acta, 1995, 1256(2): 233–240McAuley JP, Gow KV, Covert A, et al.Analysis of a Lane-plate internal fixation device after 64 years in vivo. Can J Surg. 1987;30(6):424-427
    100. McAuley JP, Gow KV, Covert A, et al.Analysis of a Lane-plate internal fixation device after 64 years in vivo. Can J Surg. 1987;30(6):424-427
    101. Frei B, Yamamoto Y, Niclas D, et al. Evaluation of an isoluminol chemiluminescence assay for the detection of hydroperoxides in human blood plasma. Anal Biochem, 1988, 175(1): 120–130
    102. 罗丽娟, 于振涛, 周廉. 一种生物医用近β钛合金的力学性能和腐蚀性能研究. 稀有金属, 2005, 29(2): 254–256
    103. 魏宝明 金属腐蚀理论及应用 化学工业出版社 1984, 第一版, 1–350
    104. Wisbey A, Gregson PJ, Peter LM, et al. Effect of surface treatment on the dissolution of titanium-based implant materials. Biomaterials, 1991,12(5): 470–473
    105. 宋应亮, 徐君伍, 马轩祥, 等. 种植义齿固定螺丝服役前后的电镜观察. 中华口腔医学杂志, 1997, 32(2): 108–110
    106. Thomson-Neal D, Evans GH, Meffert RM. Effects of various prophylactic treatments on titanium, sapphire, and hydroxyapatite-coated implants: an SEM study. Int J Periodontics Restorative Dent, 1989, 9(4): 300–311
    107. Ravnholt G. Corrosion current and pH rise around titanium coupled to dental alloys. Scand J Dent Res, 1988, 96(5): 466–472
    108. Ward LP, Subramanian C, Strafford KN, et al. Sliding wear studies of selected nitride coatings and their potential for long-term use in orthopaedic applications. Proc Inst Mech Eng [H]. 1998, 212(4): 303–315
    109. Oda Y,Ueno S,Kudoh Y. An application of powder metallurgy to dentistry Bull Tokyo Dent Coll. 1995, 36(4): 175–182
    110. Hikosaka T,Tanaka Y,Hoshiai K, Application of sintered Ti powder to dental prostheses. ,Nihon Hotetsu Shika Gakkai Zasshi. 2005,49(2): 242–52
    111. 丁旭艳, 梁星; 巢永烈, 等. 真空烧结粉末冶金法制作钛合金试件的物理性能测试. 华西口腔医学杂志, 2000, 18(3): 147–149
    112. 殷声, 赖和怡译.粉末冶金原理和应用 冶金工业出版社 1989, 214–220
    113. Kujala S, Ryhanen J, Danilov A, et al. Effect of porosity on the osteointegration and bone ingrowth of a weight-bearing nickel-titanium bone graft substitute. 2003, 24(25): 4691–4697
    114. Ryhanen J, Kallioinen M, Tuukkanen J, et al. Bone modeling and cell-material interface responses induced by nickel-titanium shape memory alloy after periosteal implantation.Biomaterials, 1999, 20(14): 1309–1317
    115. Bing-Yun Li, Li-Jian Rong and Yi-Yi Li Anisotropy of dimensional change and its corresponding improvement by addition of TiH2 during elemental powder sintering of porous NiTi alloy. Materials Science and Engineering A, 1998, 255 (1-2) : 70–74
    116. 苏娟, 钱东浩, 周小新, 等. 自蔓延高温合成多孔陶瓷(Al2O32TiB2) 的研究. 粉末冶金技术, 2006, 24(1): 25–28
    117. 高一平 粉末冶金新技术—电火花烧结 冶金工业出版社 1992, 12
    118. 李丙运, 戎利建, 李依依. 生物医用多孔 TiNi 形状记忆合金的研究进展. 材料研究学报, 2000, 14(6): 561–567
    119. 倪明一, 周华明(金中茂,等译). 国外粉末冶金标准手册 科学技术文献出版社重庆分社 1980
    120. Morris DG, Morris MA.NiTi intermetallic by mixing,milling and interdiffusing elemenal components. Materials Science and Engineering,1989,A110:139–149
    121. Bing-Yun Li, Li-Jian Rong and Yi-Yi Li The influence of addition of TiH2 in elemental powder sintering porous Ni–Ti alloys Materials Science and Engineering A, 2000, 281 ( 1-2): 169–175
    122. Ning Zhang, P. Babayan Khosrovabadi, J. H. Lindenhovius et al. TiNi shape memory alloys prepared by normal sintering Materials Science and Engineering A, 1992, 150( 2): 263–270
    123. [美]库恩 HA, 劳利 A.高性能粉末冶金译文集. 国防工业出版社 1982
    124. Green SM, Grant DM.and Wood JV. XPS characterisation of surface modified Ni-Ti shape memory alloy. Materials Science and Engineering A, 1997, 224, (1-2): 21–26
    125. Piliero SJ, Carson S, LiCalzi M, et al. Biocompatibility evaluation of casting alloys in hamsters. J Prosthet Dent, 1979, 41(2): 220–223
    126. 胡飞, 朱胜利, 杨贤金. 用粉末冶金法制备医用多孔 TiNi 合金的研究.金属热处理, 2002, 27(7): 6–8
    127. 师昌绪 材料科学技术百科全书 中国大百科全书出版社 1995, 第一版, 98–100
    128. Serrano GD, Pelegrina JL, Cond AM, et al. Helical dislocations as vacancy sinks in β phase Cu–Zn–Al–Ni alloys. Materials Science and Engineering: A, 2006, 433, (1-2): 149–154
    129. Kasano F, MorimitsuT. Utilization of nickel-titanium shape memory alloy for stapes prosthesis. Auris Nasus Larynx, 1997, 24, ( 2 ): 137–142
    130. Cui FZ, Luo ZS. Biomaterials modification by ion-beam processing. Surface and Coatings Technology, 1999, 112 ( 1-3): 278–285
    131. Schneider GB, Perinpanayagam H, Clegg M, et al. Implant surface roughness affects osteoblast gene expression. J Dent Res, 2003, 82(5): 372–376
    132. Schneider GB, Zaharias R, Stanford C. Osteoblast integrin adhesion and signaling regulate mineralization. Dent Res, 2001, 80(6): 1540–1544
    133. Ducy P, Zhang R, Geoffroy V, et al. Osf2/Cbfa1: a transcriptional activator of osteoblast differentiation. Cell, 1997, 89(5): 747–754
    134. 熊国平, 孙昕, 张国志, 等. 国产微型钛钉即刻负载正畸支抗临床应用初步研究. 中国口腔种植学杂志, 2005, 10(3): 128–130
    135. 兰泽栋, 林珠, 龙红月, 等. 皮质骨厚度对支抗种植体-骨界面应力分布的影响. 中国口腔种植学杂志, 2004, 9(2): 54–57
    136. Ducheyne P. Effect of bioactive glass particle size on osseous regeneration. J Biomed Mater Res. 1999, 46(2): 301–304
    137. Brune D. Toxic elements in silicate cements. Scand J Dent Res, 1979, 87(6): 466–469
    138. Okte E, Sultan N, Dogan B, Asikainen S. Bacterial adhesion of Actinobacillus actinomycetemcomitans serotypes to titanium implants: SEM evaluation. A preliminary report. J Periodontol, 1999, 70(11):1376–1382
    139. Al-Hity RR, Kappert HF, Viennot S, et al. Corrosion resistance measurements of dental alloys, are they correlated? Dent Mater, 2006, 26,Epub ahead of print
    140. ISO 10271:2001—牙科合金—腐蚀实验测试方法
    141. Biehl V, Wack T, Winter S, et al. Evaluation of the haemocompatibility of titanium based biomaterials. Biomol Eng. 2002;19(2-6):97-101
    142. 张杰魁; 陈治清人体硬组织替换材料弹性模量变化对种植界面力学状态的影响——三维各向异性有限元分析 华西口腔医学杂志 , 1998; 16(3);274
    143. Wataha J.C., Biocompatibility of dental casting alloys: a review, J Prosthet Dent, 2000, 83, 223–234
    144. 张玉梅, 王勤涛, 郭天文. 牙科用 Ti-Zr 合金的生物安全性评价. 生物医学工程学杂志, 2001, 18(1): 9–11
    145. 吕晓迎, Kappert HF. 牙科合金材料有效细胞毒性定量分析计算法.口腔材料器械杂志, 1998, 7(2): 68–70

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700