牙科用钛合金组织与性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钛及其合金具有优越的机械性能、生物相容性和耐腐蚀性等优点,广泛应用于牙科修复材料。以往使用的合金有Ti-6Al-4V和Ti-6Al-7Nb等合金,但这些合金中含有有毒元素Al和V。近年来,国内外许多学者都集中于无毒牙科修复用钛合金的研究。Mo、Nb属于β相稳定元素,可以提高合金强度和塑性,有利于降低合金的弹性模量,且生物相容性良好。本文采用LZ5型离心铸钛机制备了Ti-Mo、Ti-Nb及Ti-Mo-Nb合金材料,系统研究了Ti-Mo、Ti-Nb及Ti-Mo-Nb合金的显微组织、力学性能、摩擦磨损特性和腐蚀特性,并对优化的β型Ti-Mo-Nb合金的生物相容性和铸造性能进行了研究,采用熔模精密铸造工艺制备了口腔修复用牙冠。
     研究结果表明,随着Mo含量的增加,Ti-Mo合金的显微组织细化,压缩强度降低,塑性增强;随着Nb含量的增加,Ti-Nb合金的显微组织发生明显变化,压缩弹性模量降低;Ti-20Nb合金的压缩强度最大,Ti-5Nb合金的塑性最好。Mo、Nb加入量相同时,Ti-Mo合金的维氏硬度、压缩强度及压缩弹性模量高于Ti-Nb合金。三种Ti-Mo-Nb合金由等轴晶组成,随着Nb含量的增加,合金的密度、维氏硬度、压缩强度和压缩弹性模量降低,抗弯强度增高、塑性增强。与Ti-10Mo合金相比,Ti-10Mo-10Nb合金的维氏硬度和压缩弹性模量降低,压缩强度、抗弯强度和塑性增强。
     摩擦磨损试验表明,Ti-Mo合金中Ti-10Mo合金的稳态摩擦系数最小,随着Mo含量的增加,Ti-Mo合金的磨损深度减小,抗磨能力增强;Ti-Nb合金中Ti-10Nb合金的稳态摩擦系数最小,Ti-5Nb合金的磨损深度最小,耐磨性较好,Ti-15Nb合金的磨损深度最大,耐磨性较差。随着Nb含量的增加,Ti-Mo-Nb合金的磨损深度减小,抗磨性增强。加载载荷对Ti-10Mo-10Nb合金耐磨性的影响不大;Hank’s溶液对Ti-10Mo-10Nb合金有润滑减磨的作用;Ti-10Mo-10Nb合金的氧化膜中含有TiO_2和Nb2O5,其抗磨性增强,氧化时间增长,氧化膜中TiO_2的含量增加,表面变疏松。Ti-Mo、Ti-Nb及Ti-Mo-Nb合金的磨损机制为粘着磨损和磨粒磨损共同作用。
     腐蚀试验表明,Hank’s溶液和pH2.5乳酸溶液中,Ti-Mo及Ti-Nb合金中Ti-10Mo合金的自腐蚀电位较高;0.9%NaCl溶液中,Ti-5Mo合金的自腐蚀电位较高。在Hank’s溶液中,Ti-Mo及Ti-Nb合金中Ti-5Nb合金易钝化且钝化区间较宽;在0.9%NaCl溶液中,Ti-20Mo合金易钝化且钝化区间较宽;在pH2.5乳酸溶液中,Ti-10Nb合金易钝化且钝化区间较宽。Hank’s溶液、0.9%NaCl溶液和pH2.5乳酸溶液中,Ti-15Mo合金的钝化膜较稳定。
     在Hank’s溶液和pH2.5乳酸溶液中,Ti-10Mo-10Nb合金的自腐蚀电位与纯钛相近。在Hank’s溶液、0.9%NaCl溶液和pH2.5乳酸溶液中,Ti-10Mo-10Nb合金与其它两种Ti-Mo-Nb合金和纯钛相比更容易从活化态进入到钝化态,而且钝化区间较长。几种Ti-Mo-Nb合金钝化膜的稳定性相差不大。从钝化膜的形成难易程度和钝化膜的稳定性两方面考虑,Ti-10Mo-10Nb合金的耐蚀性好于纯钛。Ti-10Mo-10Nb合金在pH值为2的乳酸溶液中的自腐蚀电位较高,在pH值为2.5的乳酸溶液中易钝化,且钝化区间较宽,在pH值为4的乳酸溶液中钝化膜较稳定。Ti-10Mo-10Nb合金的钝化膜中含有TiO_2及少量的Nb2O5和MoO3。在含有Cl-的腐蚀介质中,Ti-10Mo-10Nb合金发生了点蚀。
     Ti-10Mo-10Nb合金的生物相容性试验表明,该合金的溶血率为0.883%,远远小于5%,不会引起急性溶血;口腔粘膜刺激试验中肉眼及组织学观察均未见明显的炎症及上皮增长等组织学改变,表明该合金对口腔粘膜无刺激性或损伤。该合金植入白鼠4周后的组织中,纤维包膜较疏松,与组织的界限不清,可见少量炎细胞,主要为中性细胞、淋巴细胞、单核细胞和浆细胞,未见多核巨细胞和异物巨细胞;植入8周后,纤维囊壁趋向变薄,炎细胞数量减少,主要为单核细胞和淋巴细胞,该合金引起的组织反应为轻度。生物相容性试验表明Ti-10Mo-10Nb合金具有良好的生物相容性。
     铸造性能试验表明,Ti-10Mo-10Nb合金在牙科专用铸钛机上具有良好的铸造性能,室温下铸流率(CV)可达98%,并用该合金成功的制备了牙冠。Ti-10Mo-10Nb合金与铸钛专用包埋料的反应层中,Al元素扩散层的厚度大约为20μm,Si、Zr元素在反应层中分布不均匀,扩散层的厚度大约为15μm,Ti、Mo元素出现了偏析现象。以上所有试验结果表明,Ti-10Mo-10Nb合金具有优异的综合性能,适宜作为牙科材料。
Titanium and its alloys are promising candidate materials for dental applications due to their excellent mechanical properties, biocompatibility and corrosion resistance. Ti-6Al-4V and Ti-6Al-7Nb alloys have been used ago. But elements Al and V exhibit high cytotoxicity. Recently, many researchers have concentrated on developing new type of titanium alloys without toxic elements. Asβphase stabilizer in titanium alloys, Mo and Nb have shown good biocompatibility. Adding Mo and Nb to titanium alloy can increase its strength and ductility, while can decrease its elastic modulus. In present paper, Ti-Mo, Ti-Nb and Ti-Mo-Nb alloys were prepared using LZ5 type centrifugal casting technique. The microstructures, mechanical properties, wear resistance and corrosion resistance of Ti-Mo, Ti-Nb and Ti-Mo-Nb alloys were investigated. The compatibility and casting characteristic of selectedβtype Ti-Mo-Nb alloy that has the excellent properties have been studied. The dental crawn has been made by investment casting technique.
     The investigations have shown that with the increase of Mo content, Ti-Mo alloys revealed refined microstructure, reduced compression strength, but increased plasticity. For Ti-Nb alloys, the increase of Nb content modified the microstructure of Ti-Nb alloys significantly and decreased their compression elastic modulus, in which Ti-20Nb alloy showed the largest compression strength and Ti-5Nb alloy showed the best plasticity. With same content in Ti, Mo addition results in higher Vickers hardness, compression strength and elastic modulus than Nb does. All the three kinds of Ti-Mo-Nb alloys show equiaxed crystalline microstructure. The increasing Nb contents of Ti-Mo-Nb alloys result in the decrease of density, Vickers hardness, compression strength and compression elastic modulus, and the increase of bending strength and plasticity. Comparing to Ti-10Mo alloy, a lower Vickers hardness and compression elastic modulus and higher compression strength, bending strength and plasticity were obtained for Ti-10Mo-10Nb alloy.
     Wear tests showed that the increasing Mo content leads to a reduction of wear depth of Ti-Mo alloy and increase of wear resistance, with a smallest steady friction coefficient for Ti-10Mo alloy. For Ti-Nb alloys, Ti-10Nb alloy shows a smallest steady friction coefficient, Ti-5Nb alloy shows the smallest wear depth and best wear resistance and Ti-15Nb alloy shows the largest wear depth and worst wear resistance. For Ti-Mo-Nb alloys, the increasing Nb content reduced the wear depth and increased wear resistance. The applied load did not influence evidently the wear resistance of Ti-10Mo-10Nb alloys. Hank’s solution was found to act as lubricant during wear tests for Ti-10Mo-10Nb alloys. After surface oxidation treatment, TiO_2 and Nb2O5 formed on the surface of Ti-10Mo-10Nb alloys, leading to an increase of wear resistance. The prolonged oxidation resulted in the formation of larger volume fraction of TiO_2 and surface became loosen. The wear mechanism for all the tested alloys is a combination of adherence wearing and debris wearing.
     Corrosion tests revealed Ti-10Mo alloy showed higher self-corrosion potential for all Ti-Mo and Ti-Nb alloys in Hank’s solution and pH2.5 lactic acid solution. Ti-5Mo alloy showed higher self-corrosion potential for all Ti-Mo and Ti-Nb alloys in 0.9%NaCl solution. For all Ti-Mo and Ti-Nb alloys, Ti-5Nb alloy was easy to passivate with a wider passivation range in Hank’s solution, Ti-20Mo alloy was easy to passivate with a wide passivation range in 0.9%NaCl solution and Ti-10Nb alloy was easy to passivate with a wide passivation range in pH2.5 lactic acid solution. For all Ti-Mo and Ti-Nb alloys, the passivation film of Ti-15Mo alloy was stabler in Hank’s solution, 0.9%NaCl solution and pH2.5 lactic acid solution.
     In Hank’s solution and pH2.5 lactic acid solution, the self-corrosion of Ti-10Mo-10Nb alloy and pure titanium was nearly. In Hank’s solution, 0.9%NaCl solution and pH2.5 lactic acid solution, Ti-10Mo-10Nb alloy was easier to progress from activation state to passivation state with a wider passivation range, comparing to other two Ti-Mo-Nb alloys and pure titanium. However, no evident difference was found for the dissolution rate of the passivation film for all Ti-Mo-Nb alloys. Considering the stability and easiness of formation of the passivation film, Ti-10Mo-10Nb alloy showed a better corrosion resistance than pure titanium does. Ti-10Mo-10Nb alloy showed a highest self-corrosion potential in pH2 lactic acid solution, an easy passivation and wide passivation range in pH2.5 lactic acid solution, and a stable passivation film in pH4 lactic acid solution. The passivation film consists of mainly TiO2 and small amount of Nb2O5 and MoO3. Pit corrosion had taken place when Cl- ion contained solution was applied to Ti-10Mo-10Nb alloy.
     Biocompatibility tests revealed a hemolysis coefficient of 0.883% for Ti-10Mo-10Nb alloy, which was much smaller than 5% and wouldn’t cause acute hemolysis. No evident inflammation and histological change such as epidermic growth were observed in stimulation tests of mucous membranes of mouth, indicating that Ti-10Mo-10Nb alloy isn’t irritant and trauma to the mucous membranes of mouth. 4 weeks after implantation of Ti-10Mo-10Nb alloy into white rat, the fabulous capsule was found to be loose without a clear boundary with tissues, while small amount of inflammation cells were observed such as neutrophil cells, lymphocytes, monocytes and plasma cells, no multinuclear girnt cells and foreign body giant cells were found. 8 weeks after the implantation, fabulous capsule wall turned thinner, the amount of inflammation cells reduced with remaining monocytes and lymphocytes. The histological reaction is regarded as light for this alloy. Biocompatibility tests revealed that Ti-10Mo-10Nb alloy has the excellent biocompatibility.
     Casting characteristic tests revealed that an excellent casting performance of Ti-10Mo-10Nb alloy in the specified dental titanium casting machine. A 98% of casting value can be reached at room temperature. Crowns have been cast successfully using this alloy. In the reaction layer of Ti-10Mo-10Nb alloy with investment materials, Al showed a diffusion thickness of about 20μm, the distribution of Si and Zr was not uniform with a diffusion thickness of about 15μm, and segregation was observed for Ti and Mo. The all test results indicated that Ti-10Mo-10Nb alloy has the excellent properties and is suitable to be as dentisty mateial.
引文
1 陈治清. 口腔材料学. 北京: 人民卫生出版社, 2003: 1-3
    2 M. H. Fathi, M. Salehi, A. Saatchi, V. Mortazavi, S. B. Moosavi. In Vitro Corrosion Behavior of Bioceramic, Metallic, and Bioceramic-metallic Coated Stainless Steel Dental Implants. Dental Materials. 2003, 19: 188-198
    3 M. Browne, P. J. Gregson. Metal Ion Release from Wear Particles Produced by Ti-6Al-4V and Co-Cr Alloy Surfaces Articulating against Bone. Materials Letters. 1995, 24: 1-6
    4 张新平, 于思荣, 夏连杰, 何镇明. 钛及钛合金在牙科领域中的研究现状. 稀有金属材料与工程. 2002, 31(4): 246-251
    5 于思荣. 金属系牙科材料的应用现状及部分元素的毒副作用. 金属功能材料. 2000, 7(1): 1-6
    6 郭天文. 口腔科铸钛理论和技术. 西安: 世界图书出版公司, 1997: 1-8
    7 汪大林, 江中明. 牙科合金材料应用研究现状. 特种铸造及有色合金. 1998, 3: 42-44
    8 K. Wang. The Use of Titanium for Medical Applications in the USA. Materials Scinence and Engineering A.1996, 213: 134-137
    9 汪大林, 罗远伦, 戴玮霞, 彭玉田. 精密铸钛技术在义齿类铸件上的应用.铸造. 1997, 4: 32-35
    10 N. R. Van. Review Titanium: the Implant Materials of Today. Journal Materials Science. 1987, 22: 3801-3811
    11 A.Molinari, G. Straffelini, B.Tesi, T. Bacci. Dry Sliding Wear Mechanisms of the Ti6Al4V Alloy. Wear, 1997, 208: 105-112
    12 M. Niinomi. Mechanical Properties of Biomedical Titanium Alloys. Materials Scinence and Engineering A, 1998, 243: 231-236
    13 W. F. Ho, C. P. Ju, C. Lin. Structure and Properties of Cast Binary Ti-Mo Alloys. Biomaterials, 1999, 20: 2115-2112
    14 M. Kikuchi, Y. Takada, S. Kiyosue, M. Yoda, M. Woldu, Z. Cai, O. Okuno, T. Okabe. Mechanical Properties and Microstructures of Cast Ti-Cu Alloys. Dental Materials, 2003, 19: 174-181
    15 于思荣. 生物医用钛合金的研究现状及发展趋势. 材料科学与工程.2000, 2: 53-56
    16 黄正华, 张忠明, 郭学锋. 钛及其合金在牙科方面的应用. 中国稀土学报. 2002, 20(增刊): 219
    17 张新平, 于思荣, 何镇明, 韩秋华. 新型Ti-Fe-Mo-Mn-Nb-Zr系钛合金的力学性能. 中国有色金属学报, 2002, 12(s1): 78-82
    18 D. Kuroda, M. Niinomi, M. Morinaga, Y. Kato, T. Yashiro. Design and Mechanical Properties of New β Type Titanium Alloys for Implant Materials. Materials Science and Engineering A. 1998, 243: 244-249
    19 唐农轩. 医用金属材料及其应用. 稀有金属材料与工程. 1998, 27 (3): 25
    20 冯本政. 牙科用的金属材料. 口腔材料器械杂志. 2000, 9(3): 171
    21 张新平. 牙科用新型钛合金功能性研究. 吉林大学博士论文. 2003, 3: 1-25
    22 何玉玲. 牙科用塑料材料及使用配方. 塑料科技. 1999, 3: 23-26
    23 J. Rieu and P. Gceuriot.Ceramic Composites for Biomedical Applications. Clinical Materials. 1993, 12(4): 211-217
    24 J. Rieu. Ceramic Formation on Metallic Surfaces for Medical Applications. Clinical Materials. 1993, 12 (4): 227-235
    25 C. Gioka, C. Bourauel, S. Zinelis, T. Eliades, N. Silikas, G. Eliades. Titanium orthodontic brackets: structure, composition, hardness and ionic release. Dental materials. 2004, 20: 693-700
    26 Y. Matsumoto, K. Oki, M. Tanaka, F. Fujigami, Y. Harada, M. Morinaga. Room-temperature ductility and surface notch sensitivity of chromium alloyed with vanadium and molybdenum. Materials Science and Engineering A. 2004, 385: 133-139
    27 N. M. Taher, A. S. Al Jabab. Galvanic corrosion behavior of implant suprastructure dental alloys. Denatal Materials.2003, 19: 54-59
    28 D. B. Mahler and R. W. Bryant. Microleakage of Amalgam Alloys: An Update. JADA.1996, 127(9): 1351-1356
    29 K. F. Leinfelder. An Evaluation of Casting Alloys Used for Restorative Procedures. JADA. 1997, 128(1): 37-45
    30 M. Kaga, H. Nakajima, T. Sakai. Gallium Alloy Restorations in Primary Teeth. JADA. 1996, 127 (8): 1195-1200
    31 T. Matkovic, L. Slokar, P. Matkovie. Structure and properties of biomedicalof Co-Cr-Ti alloys. Journal of Alloys and Compounds. 2006, 407: 294-298
    32 汪大林, 徐君伍, 于家斗. 钛在口腔修复医学中的应用. 稀有金属材料与工程. 1993, 22 (3): 61-67
    33 汪大林. 牙科医学中金属与合金材料的应用现状和存在的问题. 生物医学工程学杂志. 1993, 10(10): 364-367
    34 S. M. Cohen and T. Viswanadhan. Castability Optimization of Palladium Based Alloys. Journal of Prosthetic Dentistry.1996, 76(2): 125-131
    35 K. Seymour, L. Zou, D.Samarawickrama. Assessment of Shoulder Dimensions and Analuses of Porcelain Bonded to Metal Crown Preparations. Journal of Prosthetic Dentistry. 1996, 75(4): 406-411
    36 H. F. Morris. Properties of Cobalt-chromium Metal Ceramic Alloys after Heat treatment. Journal of Prosthetic Dentistry. 1990, 63(4): 426-433
    37 P. K. Vallittu and H. Forss. Adhesion of Glass Ionomer Cement to Ceramal Metal Alloy. Journal of Prosthetic Dentistry. 1997, 77(1): 12-16
    38 冯颖芳, 康浩芳, 张震. 钛合金医用植入物材料的研究及应用. 稀有金属. 2001, 25(5): 349-354
    39 T. Akahori and M. Niinomi. Fracture Characteristics of Fatigued Ti-6Al-4V ELI as an Implant Material. Materials Science and Engineering A.1998, 243: 237-243
    40 C. Leinenbach, C. Fleck, D. Eofler. The Cyclic Deformation Behaviour and Fatigue Induced Damage of the Implant Alloy Ti6Al7Nb in Simulated Physiological Media. International Journal of Fatigue. 2004, 26: 857-864
    41 D. M. Gordin, T. Gloriant, G. Texier, I. Thibon, D. Ansel, J. L. Duval, M. D. Nagel. Development of a β-type Ti-12Mo-5Ta Alloy for Biomedical Applications: Cytocompatibility and Metallurgical Aspects. Journal of Materials Science: Materials in Medicine. 2004, 15: 885-891
    42 M. Long and H. J. Rack. Review Titanium Alloys in Total Joint Replacement-a Materials Science Perspective. Biomaterials. 1998, 19: 1621-1639
    43 W. Lemm, V. Unger, E. S. Bucherl. Blood Compatibility of Polymers: in Vitro and in Vivo Tests. Medical Biological Engineering Computing. 1980, 18(4): 521-526
    44 M. Semlitsch, F. Staub, H. Webber. Titanium-aluminium-niobium Alloy,Development for Biocompatible, High Strength Surgical Implants. Biomedical Technology.1985, 30: 334-339
    45 E. Berg. Dentists’ Opinions on Aspects of Cast Titanium Restorations. Journal of Dentistry.1997, 25(2): 113-117
    46 K. Yokoyama, T. Ichikawa, H. Murakami, Y. Miyamoto, K. Asaoka. Fracture Mechanisms of Retrieved Titanium Screw Thread in Dental Implant. Biomaterials. 2002, 23: 2459-2465
    47 H. J. Rack, J. I. Qazi. Titanium alloys for biomedical applications. Materials Science and Engineering C. 2006, 26: 1269-1277
    48 H. M. Silva, S. G. Schneider, C. M. Neto. Study of nontoxic aluminum and vanadium-free titanium alloys for biomedical applications. Science and Engineering C. 2004, 24: 679-682
    49 Z. Cai, H. Nakajima, M. Woldu, A. Berglund, M.Bergman, T. Okabe. In Vitro Corrosion Resistance of Titanium Made Using Different Fabrication Methods. Biomaterials. 1999, 20: 183-190
    50 M. A. Khan, R. L. Williams, D. F. Williams. In-vitro Corrosion and Wear of Titanium Alloys in the Biological Environment. Biomaterials. 1996, 17: 2117-2126
    51 M. Koike and H. Fujii. The Corrosion Resistance of Pure Titanium in Organicacids. Biomaterials. 2001, 22: 2931-2936
    52 K. Ida, Y. Tani, S. Tsutsumi, T. Togaya, T. Nambu, K. Suese, T. Kawazoe, M. Nakamura, H. Wada. Clinical Application of Pure Titanium Crowns. Dental Materials Journal. 1985, 4: 191-195
    53 B. Bergman, C. Bessing, G. Ericson, P. Lundquist, H. Nilson, M. Andersson. A 2-year Follow-up Study of Titanium Crowns. Acta Odontol Scand. 1990, 48: 113-117
    54 T. Hirata, T. Nakamura, F. Takashima, T. Maruyama, M. Taira, J.Takahashi. Studies on Polishing of Ag-Pd-Cu-Au Alloy with Five Dental Abrasives. Journal of Oral Rehabilitation. 2001, 28(8): 773-777
    55 T. Kawazoe and K. Suese. Clinical Application of Titanium Crowns. Journal of Dental Medicine. 1989, 30(3): 317-328
    56 A. Kuroiwa and Y. Igarashi. Application of Pure Titanium to Metal Framework. Journal of Japan Prosthodont Society.1998, 42: 547-558
    57 P. G. Laing. Clinical Experience with Prosthetic Materials: Historical Perspectives, Current Problems and Future Directions. ASTM-STP 1979, 684: 199-211
    58 M. F. Semlitsch, H. Weber, R. M. Streicher. Joint Replacement Components Made of Hot-forged and Surface-treated Ti-6Al-7Nb Alloy. Biomaterials. 1992, 13: 181-188
    59 D. Iijima, T. Yoneyama, H. Doi, H. Hamanaka, N. Kurosaki. Wear Properties of Ti and Ti-6Al-7Nb Castings for Dental Protheses. Biomaterials. 2003, 24: 1519-1524
    60 Y. Okazaki, S. Rao, T. Tateishi, Y. Ito. Cytocompatibility of Various Metal and Development of New Titanium Alloys for Medical Implants. Materials Science and Engineering A. 1998, 243: 250-256
    61 H. Shimizu, T. Habu, Y. Takada, K. Watanabe, O. Okuno, T. Okabe. Mold Filling of Titanium Alloys in Two Different Wedge-shaped Molds. Biomaterials. 2002, 23: 2275-2281
    62 M. Kikuchi, Y. Takada, S. Kiyosue, M. Yoda, M. Woldu, Z. Cai, O. Okuno, T. Okabe. Grindability of Cast Ti-Cu Alloys. Dental Materials. 2003, 19: 375-381
    63 K. Watanabe, O. Miyakawa, Y. Takada, O. Okuno, T. Okabe. Casting Behavior of Titanium Alloys in a Centrifugal Casting Machine. Biomaterials. 2003, 24: 1737-1743
    64 M.Yoda, T. Konno, Y. Takada, K. Iijima, J.Griggs, O. Okuno, K. Kimura, T. Okabe. Bond Strength of Binary Titanium Alloys to Porcelain. Biomaterials. 2001, 22: 1675-1681
    65 J. Zhu, A. Kamiya, T. Yamada, W. Shi, K. Nagamuma. Influence of Boron Addition on Microstructure and Mechanical Properties of Dental Cast Titanium Alloys. Materials Science and Engineering A. 2003, 339: 53-62
    66 Y. Okazaki, Y. Ito, K. Kyo, T. Tateishi. Corrosion Resistance and Corrosion Fatigue Strength of New Titanium Alloys Formedical Implants Without V and Al. Materials Science and Engineering A. 1996, 213: 138-147
    67 新家光雄. 生体用β型チタン合金的开发. 齿材器. 1998, 10: 843-846
    68 T. Maeshima, S. Ushimaru, K. Yamauchi, M. Nishida. Effect of heat treatment on shape memory effect and superlasticity in Ti-Mo-Sn alloys.Materials Science and Engineering A. 2006, 438-440: 844-847
    69 N. Sakaguchi, M. Niinomi, T. Akahon, J. Takeda, H. Toda. Effect of Ta content on mechanical properties of Ti-30Nb-XTa-5Zr. Materials Science and Engineering C. 2005, 25: 370-376
    70 Y. Okazaki, E. Gotoh, T. Manabe, K. Kobayashi. Comparison of Metal Concentrations in Rat Tibia Tissues with Various Metallic Implants. Biomaterials. 2004, 25: 5913-5920
    71 R. Banerjee, S. Nag, J. Stechschulte, H. L. Fraser. Strengthening Mechanisms in Ti-Nb-Zr-Ta and Ti-Mo-Zr-Fe Orthopaedic Alloys. Biomaterials. 2004, 25: 3413-3419
    72 M. Geetha, A. K. Singh, K. Muraleedharan, A. K. Gogia, R. Asokamani. Effect of Thermomechanical Processing on Microstructure of a Ti-13Nb-13Zr Alloy. Journal of Alloys and Compounds. 2001, 329: 264-271
    73 T. Kasuga, M. Nogami, M. Niinomi, T. Hattori. Bioactive Calcium Phosphate Invert Glass-ceramic Coating on β-type Ti-29Nb-13Ta-4.6Zr Alloy. Biomaterials. 2003, 24: 283-290
    74 E. Eisenbarth, D. Velten, M. M?ller, R. Thull, J. Breme. Biocompatibility of β-stabilizing Elements of Titanium Alloys. Biomaterials. 2004, 25: 5705-5713
    75 C. Morant, M. F. López, A. Gutié, J. A. Jiménez. AFM and SEM Characterization of Non-toxic Vanadium-free Ti Alloys Used as Biomaterials. Applied Surface Science. 2003, 220: 79-87
    76 S. J. Li, M. Niinomi. T. Akahori, T. Kasuga, R. Yang, Y. L. Hao. Fatigue Characteristics of Bioactive Glass-ceramic-coated Ti-29Nb-13Ta-4.6Zr for Biomedical Application. Biomaterials. 2004, 25: 3369-3378
    77 S. J. Li, R. Yang, M. Niinomi, Y. L. Hao, Y. Y. Cui. Formation and Growth of Calcium Phosphate on the Surface of Oxidized Ti-29Nb-13Ta-4.6Zr Alloy. Biomaterials. 2004, 25: 2525-2532
    78 M. Niinomi. Fatigue Performance and Cyto-toxicity of Low Rigidity Titanium Alloy, Ti-29Nb-13Ta-4.6Zr. Biomaterials. 2003, 24: 2673-2683
    79 D. Zaffe, C. Bertoldi, U. Consolo. Element Release from Titanium Devices Used in Oral and Maxillofacial Surgery. Biomaterials. 2003, 24: 1093-1099
    80 葛世荣, 王成焘. 人体生物摩擦学的研究现状与展望. 摩擦学学报. 2005,25 (2): 186-191
    81 D. Dowson and V. Wright. The reology of lubricants. Ed. By Davenport T C, Institute of Petroleum.1973, 81-88
    82 黎红, 黄楠, 周仲荣. 生物摩擦学及表面工程的研究现状和进展. 中国表面工程. 2000, 1: 6-10
    83 J. D. Hudson, G. R. Goldstein, M. Georgescu. Enamel Wear Caused by Three Different Restorative Materials. Journal of Prosthetic Dentistry. 1995, 74 (6): 647-654
    84 M. A. Khan, R. L. Williams, D. F. Williams. Conjoint Corrosion and Wear in Titanium Alloys. Biomaterials. 1999, 2: 765-772
    85 C. Ohkuboa, I. Shimura, T. Aoki, Wear Resistance of Experimental Ti-Cu Alloys. Biomaterials. 2003, 24: 3377-3381
    86 M. Niinomi, D. Kuroda, K. Fukunaga, M. Morinaga, Y. Kato, T. Yashiro, A. Suzuki. Corrosion Wear Fracture of New β Type Biomedical Titanium Alloys. Materials Science and Engineering A. 1999, 263: 193-199
    87 M. A. Khan, R. L. Williams, D. F. Williams. In-vitro Corrosion and Wear of Titanium Alloys in the Biological Environment. Biomaterials. 1996, 17: 2117-2126
    88 P. Derand and P. Vereby. Wear of Low-fusing Dental Porcelains. Journal of Prosthetic Dentistry. 1999, 81(4): 460-463
    89 R. Koczorowski and S. Wloch. Evaluation of Wear of Selected Prosthetic Materials in Contact with Enamel and Dentin. Journal of Prosthetic Dentistry. 1999, 81(4): 453-459
    90 黎红, 周仲荣, 张杰, 陈光雄. 天然牙及几种牙科修复材料的摩擦磨损性能比较研究. 摩擦学学报 .2001, 21(3): 172-175
    91 H. Li.and Z. R. Zhou.Wear behaviour of human tooth in dry and article saliva condition. Wear. 2001, 249: 980
    92 黎红, 张孟平, 冯洁琳, 李娟. 钛修复体的口腔生物摩擦学特性研究. 中华口腔医学杂志. 2004, 39(1): 63-65
    93 郑靖, 周仲荣. 天然牙釉质/纯钛摩擦磨损行为的研究. 润滑与密封. 2003, 6: 7-8
    94 K. Yokoyama, K. Hamada, K. Moriyama, K. Asaoka. Degradation and fracture of Ti-Ni superelastic wire in an oral cavity. Biomaterials. 2001, 22:2257-2262
    95 H. Güleryüz and H. Cimeno?lu. Effect of thermal oxidation on corrosion and corrosion-wear behaviour of a Ti-6Al-4V alloy. Biomaterials. 2004, 25: 3325-3333
    96 Y. Q. Fu, A. W. Batchelor, K. A. Khor. Fretting wear behavior of thermal sprayed hydroxyapatite coating lubricated with bovine albumin. Wear. 1999, 230: 98-102
    97 C. Met, L. Vandenbulcke, M. C. Sainte Catheine. Friction and wear characteristics of various prosthetic materials sliding against smooth diamond-coated titanium alloy. Wear. 2003, 255: 1022-1029
    98 Y. Q. Fu, N. L. Loh, A. W. Batchelor, D. X. Liu, X. D. Zhu, J. He, K. Xu. Improvement in fretting wear and fatigue resistance of Ti-6Al-4V by application of several surface treatments and coatings. Surface and Coating Technology. 1998, 106: 193-197
    99 M. Ueda, M. M. Silva, C. Otani, H. Reuther, M. Yatsuzuka, C. M. Lepienski, L. A. Berni. Improvement of tribological properties of Ti6Al4V by nitrogen plasma immersion ion implantation. Surface and Coating Technology. 2003, 169-170: 408-410
    100 L. Tan, R. A. Dodd, W. C. Crone. Corrosion and wear-corrosion behavior of NiTi modified by plasma source ion inplantation. Biomaterials. 2003, 24: 3931-3939
    101 V. Imbeni, C. Martini, D. Prandstraller, G. Poli, C. Trepanier, T. W. Duerig. Preliminary study of micro-scale abrasive wear of a NiTi shape memory alloy. Wear. 2003, 254: 1299-1306
    102 A. Bloyce, P. Y. Qi, H. Dong, T. Bell. Surface modification of titanium alloys for combined improvements in corrosion and wear resistance. Surface and Coating Technology. 1998, 107: 125-132
    103 P. A. Dearnley, K. L. Dahm, H. Cimeno?lu. The corrosion-wear behaviour of thermally oxidized CP-Ti and Ti-6Al-4V. Wear. 2004, 256: 469-479
    104 金红. 医用钛合金及其表面改性技术的研究现状. 稀有金属. 2003, 27(6): 794-798
    105 J. Lansmaa, B. Kasemo, S. Hansson. Accelerated oxide growth on titanium implants during autoclaving caused by flouring contamination.Biomaterilas.1986, 1: 23-27
    106 D. Thomson-Neal, G. H. Evans, R. M. Meffert. Effect of various prophylactic treatments on titanium sapphire and hydroxyapatite coated-implants, an SEM study. International Journal of Periodontics Restorative Dentistry. 1989, 2: 300-311
    107 G. Ravenholt. Corrosion current and pH rise around titanium coupled to dental alloys. Scandinavian Journal of Dental. Research. 1989, 3: 466-472
    108 宋应亮, 徐君伍, 马轩祥. 口腔环境中钛及钛合金腐蚀研究现状. 国外医学生物医学工程分册. 2000, 23(4): 243-246
    109 彭式韫, 汪阿冬, 马仁增. 钛及钛合金作牙髓腔骨内种植体的研究. 中国口腔医学杂志. 1990, 25(5): 277-279
    110 宋应亮, 徐君伍, 马轩祥. 种植义齿固定螺丝服役前后的电镜观察. 中华口腔医学杂志. 1997, 32 (2): 108-111
    111 M. Nakagawa, S. Matsuya, K. Udoh. Corrosion behavior of pure titanium and titanium alloys in Fluoride-containing solutions. Journal of Dental Materials. 2001, 20(4): 305-314
    112 Y. Oda, M. Funasaka, T. Sumii. Corrosion of dental titanium alloys binary system of Ti-Al,Ti-Cu,Ti-Ni. Shika Zairyo Kikai. 1990, 9(2): 314-319
    113 M. Aziz-Kerrzo, K. G.Conroy, A. M. Fenelon, S. T. Farrel, C. B. Breslin. Electrochemical studies on the stability and corrosion resistance of titanium-based implant materials. Biomaterilas. 2001, 22(12): 1531-1540
    114 I. Berit and J. BoBergman. Corrosion of titanium and amalgam couples: effect of fluoride, area size, and surface preparation and fabrication procedures. Dental Materials. 1995, 11(1): 41-61
    115 S. P. Kedici, A. A. Aksut, M. A. Kilicarslan. Corrosion behaviors of dental metals and alloys in different media. J Oral Retail. 1998, 25(10): 800-808
    116 L. Reclaru and J. M. Meyer. Study of corrosion between a titanium implant and dental alloys. J Dent. 1994, 22(3): 159-168
    117 R. Venugopalan and L. C. Lucas. Evaluation of restorative and implant alloys galvanic alloy coupled t otitanium. Dental Materials. 1998, 14(3): 165-172
    118 B. Grosgogeat, L. Reclaru, M. Lissac. Measurement and evaluations of galvanic corrosion between titanium/Ti6Al4V implants and dental alloys byelectrochemical techniques and auger spectrometry. Biomaterials.1999, 20: 933-941
    119 T. K. Vaidyarathan, J. Vaioyanathan, H. Linke. Tarnish of dental alloys by oral microorganisms. Journal of Prosthetic Dentistry. 1991, 5: 709-714
    120 K. Screenivas, E. R. Michael, J. B.Thomas. Microbial colonization of dental implants in partially edentulous subjects. Journal of Prosthetic Dentistry. 1993, 2: 141-143
    121 B. Willershausen, A. Callaway, C. Ernat. Influence of oral bacteria on the surface morphology of various dental materials under in vitro conditions. International dental Journal. 1995, 5: 298-301
    122 宋应亮, 徐君伍, 马轩祥. 牙龈卟啉菌381对纯钛及钛75合金种植体表面失泽的腐蚀. 第四军医大学学报. 2000, 8: 915-917
    123 宋应亮, 徐君伍, 马轩祥. 白色念珠菌对铸钛、Co-Cr合金、Ni-Cr合金修复体失泽腐蚀的影响. 实用牙科医学杂志. 2000, 2: 111-114
    124 宋应亮, 徐君伍, 马轩祥. Aay4对钛及钛75合金表面失泽腐蚀的研究.中华牙科医学杂志. 2000, 4: 256-258
    125 I. Gurappa. Characterization of different materials for corrosion resistance under simulated body fluid conditions. Materials Characterization. 2002, 49: 73-79
    126 N. A. Ismaeel, S. Ahmad, U. M. Anees. Corrosion behavior of titanium metal in the presence of inhibited sulfuric acid at 50℃. Desalination. 2000, 129: 45-51
    127 C. Aparicio, F. J. Gil, C. Fonseca, M. Barbosa, J. A. Planell. Corrosion behaviour of commercially pure titanium shot blasted with different materials and sizes of shot particles for dental implant applications. Biomaterials. 2003, 24: 263-273
    128 C. S. Brossia and G. A. Gragnolino. Effect of palladium on the corrosion behavior of titanium. Corrosion Science. 2004, 46: 1693-1711
    129 H. H. Huang. Effect of fluoride and albumin concentration on the corrosion behavior of Ti-6Al-4V alloy. Biomaterials. 2003, 24: 275-282
    130 M. F. López, J. A. Jiménez, A. Gutiérrez. Corrosion study of surface-modified vanadium-free titanium alloys. Electrochimica Acta. 2003, 48: 1395-1401
    131 M. F. López, A. Gutiérrez, J. A. Jiménez. In Vitro corrosion behaviour of titanium alloys without vanadium. Electrochimica Acta. 2002, 47: 1359-1364
    132 Z. Cai, T. Shafer, I. Watanabe, M. E. Nunn, T. Okabe. Electrochemical characterization of cast titaniumalloys. Biomaterials. 2003, 24: 213-218
    133 杨晓芳, 奚廷斐. 生物材料生物相容性评价进展. 生物医学工程学杂志. 2001, 18(1): 123-128
    134 M. D.Yourtee, P. Y. Tong, L. A. Rose. Effect of spivoorthocarbonate volumemodifier comonomers on the in vitro toxicology of evial non-shrinlering dental epoxycopolymers. Research Communications in Molecular Pathology and Pharmacology. 1994, 86(3): 347
    135 C. J. Clifford and S. Downes. A comparative study of the use of colorimtric assays in the assessment of biocompatibility. Journal of Materials Science Materials in Medicine. 1996, 7: 637
    136 张玉梅, 王勤涛, 郭天文. 牙科用Ti-Zr合金的生物安全性评价.生物医学工程学杂志. 2001, 18(1): 9-11
    137 李佐臣, 李常亮, 袭松波, 汪大林, 郭天文. 外科植入TAMZ合金生物学评价. 稀有金属材料与工程. 1998, 27(1): 59-62
    138 K. Paul and J. A.Davidson. Chemical amd electrochemical aspects of the biocompatibility of titanium and its alloys. ASTM Special Technical. Publication 1272 May 1996: 163-167
    139 M. L. Villarraga, R. C. Anderson, R. T. Hart. Mechanisms of titanium release from posterior cervical spine plates in a canine model based on computational and biocompatibility studies. Key Engineering Materials. 2001, 198-199: 69-100
    140 H. Matsuno, A.Yokoyama, F. Watari, M. Uo, T. Kawasaki.Biocompatibility and osteogenesis of refractory metal implants, titanium, hafnium, niobium, tantalum and rhenium. Biomaterials. 2001, 22(11): 1253-1262
    141 K. Yamaguchi, H. Konishi, S. Hara, Y. Motomura. Biocompatibility studies of titanium-based alloy pedicle screw and rod system: histological aspect. The Spine Journal. 2001, 1: 260-268
    142 D. Bogdanski, M. K?ller, D. Müller, G. Muhr, M. Bram, H. P.Buchkremer, D. St?ver, J. Choi, M. Epple. Easy assessment of the biocompatibility of Ni-Ti alloys by in vitro cell culture experiments on a functionally grades Ni-NiTi-Ti material. Biomaterials. 2002, 23: 4549-4555
    143 K. B. Il, L. M. Ho, C. W. Yong. Biocompatibility of surface trated pure titanium and Ti-6Al-4V alloy. Materials Transactions. 2001, 42(12): 2590-2596
    144 C. R. Ortiz, V. Rudy, T. Elizabeth, S. W. Stafford, L. E. Murr. Biocompatibility of aged titanium-tantalum alloys. Journal of Scanning Microscopes. 2000, 22(2): 103
    145 E. Czarnowska. Properties of the surface layers on titanium alloy and their biocompatibility in vitro tests. Biomaterials. 2001, 22(11): 203-214
    146 S. M?ndl and B. Rauschenbach. Improving the biocompatibility of medical implants with plasma immersion ion implantation. Surface and Coatings Technology. 2002, 156: 276-283
    147 D. Krupa, J. Baszkiewicz, J. A. Kozubowski, A. Barcz, J. W. Sobczak, A. Biliński, M. Lewandowska-Szumiel, B. Rajchel. Effect of calcium-ion implantation on the corrosion resistance and biocompatibility of titanium. Biomaterials. 2001, 22: 2139-2151
    148 D. Krupa, J. Baszkiewicz, J. A. Kozubowski, A. Barcz, J. W. Sobczak, A. Biliński, M. lewandowska-Szumie?, B. Rajchel. Effect of phosphorous-ion implantation on the corrosion resistance and biocompatibility of titanium. Biomaterials. 2002, 23: 3329-3340
    149 S. M?ndl, R. Sader, G. Thorwarth, D. Krause, H. F. Zeilhofer, H. H. Horch, B. Rauschenbach. Biocompatibility of titanium based implants treated with plasma immersion ion implantation. Nuclear Instruments and Methods in Physics Research B. 2003, 206: 517-521
    150 程静涛, 郭天文. 牙科铸钛系统. 生物医学工程学杂志. 1997, 14(4): 388-392
    151 汪大林, 彭玉田. 钛及钛合金义齿部件的加工.国外医学口腔医学分册. 1995, 22 (1): 35-39
    152 H. Hamanaka, H. Dio, T. Yoneyama. Dental Casting of Titanium and Ni-Ti Alloys by Casting Machine. Journal of Dental Research. 1989, 68 (11): 1529-1533
    153 汪大林, 彭玉田, 罗远伦. 牙科专用铸钛机.特种铸造及有色合金. 1997,2: 43-45
    154 阎俏梅, 张建中. 口腔铸钛包埋材料的研究进展. 上海口腔医学杂志. 2001, 10(1): 76-78
    155 张芳. Ti-15Mo-3Nb合金表面活化处理及其生物相容性的研究. 河北工业大学硕士论文. 2005, 1: 24
    156 游中厚, 黄勇胜. 新型钛合金-21s的研究. 成非情报, 2001, 2: 8-10
    157 于振涛, 周廉, 王克光. 生物医用β型钛合金的设计与开发. 稀有金属快报. 2004, 23(1): 5-10
    158 M. Morinage, N. Yukawa, H. Ezaki. Solid solubilities in transition-metal-based f.c.c. alloys. Philosophical Magazine A. 1985, 51(2): 223-246
    159 罗丽娟. 近β钛合金TLM的应力应变行为、腐蚀性能及管材制备工艺研究. 西北工业大学硕士论文. 2005, 7:36-44
    160 丁弘仁, 马轩祥. 牙用低贵金属合金机械性能的研究. 实用口腔医学杂志. 2002, 18(2): 109-110
    161 Y. Mantani and M. Tajima. Phase transformation quenched α? martensite bu aging in Ti-Nb alloys. Materials Science and Engineering A. 2006, 438-440: 315-319
    162 葛鹏, 赵永庆, 周廉. β钛合金的强化机理. 材料导报. 2005, 19(12): 52-55
    163 李军. 新型医用钛合金TZNT机械性能、耐腐蚀性能及生物相容性能的研究. 东北大学硕士论文. 2002: 39-67
    164 李玉宝. 生物医学材料. 北京: 化学工业出版社, 2003: 117
    165 S. J. Li, R.Yang, S. Li, Y. L. Hao, Y. Y. Cui, M. Niinomi, Z. X. Cuo. Wear characteristics of Ti-Nb-Ta-Zr and Ti-6Al-4V alloys for biomedical applications. Wear. 2004, 257: 869-876
    166 秦林, 范爱兰, 吴培强, 唐宾, 徐重. Ti6Al4V合金渗镀Mo-N陶瓷层的微动摩擦学性能. 稀有金属材料与工程. 2006, 35(7): 1053-1056
    167 何奖爱, 王玉玮. 材料磨损与耐磨材料. 沈阳: 东北大学出版社, 2001: 34-58
    168 M. B. Peterson, S. J. Calabrese, B. Stupp. Lubricating with Naturally Occurring Double Oxide Films. NTIS ADA 124248. U.S. Development of Commerce, 1992
    169 M. B. Peterson, S. Z. Li, X. X. Jiang. Lubrication of Alloys with Naturally Occurring Oxide Films, Final Report, China Program. NSF GrantINT.8617231, 1989
    170 孙秋霞. 材料腐蚀与防护. 北京: 冶金工业出版社, 2003: 65
    171 成艳. 镀钽TiNi合金的组织结构与生物相容性. 哈尔滨工业大学博士论文. 2004: 85
    172 张新平, 于思荣, 何镇明, 王翠妍. 新型牙科用Ti合金铸造成形性研究. 特种铸造及有色合金. 2004, 2: 25-26

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700