医用钛表面激光微加工及其生物活性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钛合金具有比强度高、抗蚀性优异、生物相容性好等突出优点,在航空航天、生物医学、化工工业等领域中得到了广泛应用。本试验采用高功率连续波固体Nd:YAG激光在钛表面制备激光气体氮化层,采用脉冲Nd:YAG激光对纯钛及氮化样品进行激光微加工;采用扫描电子显微镜(SEM)、X-射线衍射仪(XRD)、恒电位仪、锁相放大器对激光表面改性层的微观组织、结构、表面形貌、电化学腐蚀性能进行了系统研究:并对激光氮化前后、激光微加工前后样品沉积类骨磷灰石的能力及生物相容性(溶血率、细胞毒性)进行评价。
     选择适当的激光辐照工艺参数,可在纯钛表面获得致密的TiN增强金属基复合材料改性层,改性层的表层为1~2μm厚的TiN封闭陶瓷层,改性层内部TiN增强相呈梯度分布,组织致密、无孔洞及裂纹,与基体间存在良好的冶金结合。电化学测试结果表明,经激光改性后,钛的腐蚀电位由-0.23V提高到-0.15V,腐蚀电流密度由2.5×10~(-6)A/cm~2降低到7.6×10~(-8)A/cm~2,从而可以有效的抑制了腐蚀反应的发生。
     激光微加工最佳工艺参数为:脉冲功率8W、脉冲频率10Hz、脉冲次数4次、脉冲宽度1ms。采用优化工艺参数,可以在样品表面得到呈规律排布,孔径约350~370μm,孔深约450μm,孔中心距为500μm的微孔群。氮化钛样品微孔的直径在孔深250μm左右有增加的趋势,孔底呈圆形,更加有利于骨组织的长入。
     生物矿化试验说明激光改性氮化层具有优异的生物相容性。钛及氮化钛激光微加工样品在SBF溶液中沉积7天,表面沉积物钙磷摩尔比分别为1.07和1.23,接近人体骨羟基磷灰石摩尔比1.67。
     间接接触溶血率测试结果表明,钛、氮化改性、钛微加工及氮化改性微加工样品溶血率分别为:1.2%、0.59%、3.3%、1.7%,所有样品溶血率均符合临床医用材料溶血率低于5%的要求。细胞毒性试验结果显示,4种样品在50%浸提液浓度下培养5天后的细胞毒性为1级,符合临床医学要求,4种样品均具有良好的生物相容性。
Titanium alloys have been widely used in aerospace,biomedical and chemical industry because of its high specific strength,excellent corrosion resistance and biocompatibility. Laser gas nitrided(LGN) layer was fabricated on the surface of the titanium irradiated by a continuous wave Nd-YAG laser.Pulse Nd-YAG laser was used to micromachine pure titanium and laser gas nitrided titanium.SEM,EDAX,XRD,potentiostat and lock amplifier were used to study the microstructure,composition,surface morphology and electrochemical corrosion properties.The ability of deposition of bone-like apatite and biological activity including hemolysis and cytotoxicity were also investigated before and after laser micromachining.
     Dense TiN strengthedned metal base composite layer was obtained on the surface of titanium with proper laser irradiation parameters.The outmost of the modified layer is TiN with the thickness of 1~2μm.The modified layer distributed by graduation.Laser gas nitrided layer was dense and free of crack.There was a good metallurgical bonding between the modification layer and the NiTi alloy substrate.Electrochemical test showed that the corrosion potential of titanium was increased from - 0.23 V to - 0.15 V while the corrosion current was reduce from 2.5×10~(-6) A/cm~2 to 7.6×10~(-8) A/cm~2 which indicated that the corrosion reaction was inhabited effectively through laser gas nitriding.
     The optimized parameters of laser micromachining are the power of 8W,frequency of 10Hz,pulse number of 4 and the pulse width of 1ms.Regularly patterned holes with the diameter of 350~370μm,depth of 450μm and hole pitch of 500μm were fabricated on pure titanium and LGN samples.The diameter of the LGN sample increased at the depth of about 250μm.The bottom of the hole is circular.The shape is favorable for the bone to grow into the holes.
     Biomineralization tests showed that the LGN layer is excellent in biocompatibility. After immersion in SBF for 7 days,the Ca/P atomic ratio of the deposition on titanium and LGN samples were respectively 1.07 and 1.23 very close to that of bone-apatite,which has the Ca/P atomic ratio of 1.67.
     The hemolysis of titanium,LGN sample,micromachined Ti and LGN Ti were 1.2%,9 %,3%and 1.7%which are less than 5%,meeting the requirement of biomedical materials.Cytotoxicity test showed that the cytotoxicity grade of the four samples is one after cell cultivation in the 50%infusions for five days,which indicated that all the materials are biocompatible.
引文
[1]Torquato S,Gibiansky L V,Silva M Jet al.Effective mechanical and transport properties of cellular solids.International Journal of Mechanical Sciences,1998,40(1):71-82.
    [2]俞耀庭,张兴栋.生物医用材料.天津:天津火学出版社,2000.
    [3]梁芳慧,王克光,周廉.不同过饱和钙化溶液中多孔钛表面磷灰石层的形成.稀有金属材料与工程.2004,33(2):166-170.
    [4]李伯琼.多孔钛的孔隙特征和力学性能的研究:(硕士学位论文).大连:大连交通大学,2005.
    [5]汤慧萍,张正德.金属多孔材料发展现状.稀有金属材料与工程,1997,26(1):1-6.
    [6]张喜燕,赵永庆.钛合金及其应用.化工学院出版社,2003.
    [7]牟战旗,梁成浩.钛合金生物医学材料的耐蚀性能.腐蚀与防护,1998,19(4):151.154.
    [8]罗丽娟,于振涛,周廉能.一种生物医用近β钛合金的力学性能和腐蚀性能研究.稀有金属,2005,29(2):224-226.
    [9]陈利,江秀全,伊飞等.TiN涂层的微观组织结构及力学性能分析.硬质合金,2006,23(1):8-10
    [10]Piscanec S,Colombi L,Ciacchi E et al.Bioactivity of TiN-coated titanium implants.Acta Materialia,2004,52:1237-1245.
    [11]齐新生,陈辉,李永刚.氮化钛薄膜喷镀金属人工股骨头初步临床应用.铁道医学,2001,29(3):172-173.
    [12]黄楠,扬萍,曾小兰等.Ti-O/Ti-N复合薄膜的离子束合成及人工心脏瓣膜材料表面改性研究.功能材料与器件学报,1997,3(1):40-46.
    [13]Nelea V,Morosanu C,Iliescu Met al.Hydroxyapatite thin films grown by pulsed laser deposition and radio-frequency magnetron sputtering comparative study.Applied Surface Science,2004,228:346-356.
    [14]万国江,黄楠,冷勇祥等.等离子浸没离子注入沉积纳米TiN薄膜的机械性能研究.无机材料学报,2003,18(4):904-910.
    [15]Ren C S,Mu Z X,Wang Y Net al.Corrosion behavior of TiN films prepared by vacuum arc deposition and nitrogen ion beam dynamic mixing implantation.Surface and Coatings Technology,2004,185:210-214.
    [16]Oh K T,Park Y S.Degroot K,Geesink R G.Plasma sprayed coatings ofhydroxylapatite on super austenitic stainless steels.Surface and Coatings Technology,1998,110(1):4-12.
    [17]Thomas K A,Kay J F,Cook S D et al.The effect of surface macrotexture and hydroxylapatite coating on the mechanical strengths and histoiogic profiles of titanium implant materials.Biomedical Materials Research,1995,21(12):1395-1414.
    [18]Yahia L H,Lombardi S,Hagemeister N.Improvement of cytocompatibility and biomechanical compatibility of NiTi shape memory alloys.Proceedings of the International Symposiumon Shape Memory Materials,1994:616-624.
    [19]胡传胜,袁泽喜.低温下的氮化钛化学气相沉积(一).外金属热处理,1997,3:9-11.
    [20]Cheng H E,Wen Y W.Correlation between process parameters,microstructure and hardness of titanium nitride films by chemical vapor deposition.Surface and Coatings Technology,2004,179:103-109.
    [21]殷景华,王雅珍.功能材料概论.哈尔滨:哈尔滨工业大学出版,1999.
    [22]赵化侨.等离子体化学与工艺.第一版.合肥:中国科学技术大学出版社.1993:189-207.
    [23]王茂祥,吴宗汉,孙承休.物理气相沉积技术在建筑装饰材料中的应用.物理,1998,27(7):426-428.
    [24]王玉魁,王传恩,张兴龙等.氮分压对PEMSIP法高速钢基体TiN涂层的影响.热加工工艺,1994.4:27-29.
    [25]Budke E,Krempel H J,Maidhof H et al.Decorative hard coatings with unproved corrosion resistance.Surface and Coatings Technology,1999,112:108-113.
    [26]Rickerby D S,Newbery R B.Structure,properties and applications of TiN coatings produced by sputter ion plating.International Conference on Ion and Plasma Assisted Techniques,Brighton,UK,27-29 May 1987.1988,38(3):161-166.
    [27]徐新乐.多弧离子镀技术的发展与应用.新技术新工艺,1995,6:42-43.
    [28]周细应,万润根,陈凯旋.多弧离子镀TiN技术.机械工程材料,1994,18(6):54-56.
    [29]焦文强,肖国珍,黄春良等.氮分压对离子镀氮化钛涂层的影响.稀有金属材料与工程,1994,23(5):61-64.
    [30]Kreutz E W,Krosche M,Sung H.TiN deposition of alloys using laser radiation.Surface and Coatings Technology,1992,53(I):57-63.
    [31]王华明,郭淑平,史岗.钛合金激光气体合金化表面.航空工程与维修,1997,(2):6-7.
    [32]Weerasinghe V M,West D R F,Damborenea J D.Laser surface nitriding of titanium and a titanium alloy.Journal of Materials Processing Technology,1996,58:79-86.
    [33]Yongqing F,Andrew W.Laser nitfiding of pure titanium with Ni,Cr for improved wear performance.Wear,1998,214:83-90.
    [34]Gyorgy E,Perez A,Serra Pet al.Surface nitridation of titanium by pulsed Nd:YAG laser irradiation.Applied Surface Science,2002,186(I):130-134.
    [35]李祥友,曾晓雁,黄维玲.激光精密加工技术的现状和展望.激光杂志,2000,21(5):1-3.
    [36]单振国,干福熹.当代激光之魅力.北京:人民教育出版社,2000.
    [37]王先逵,吴丹,刘成颖等.精密加工和超精密加工技术综述.中国机械工程,1995,5:570-578.
    [38]楼祺洪,高洪奕.激光微加工应用潜力的调查.激光与光电子学进展,1999,1:29-32.
    [39]刘必利,谢颂京,姚建华.激光焊接技术应用及其发展趋势.激光与光电子学进展,2005,42(9):43-47.
    [40]杜汉斌,胡伦骥,胡席远等.TCI合金激光焊接工艺探索.应用激光,2002,22(6):152-155..
    [41]王家淳,王希一蛰,惠松骁.HEl30合金激光焊接线能量与焦点位置的研究.中国激光,2003,30(2):179-1 84.
    [42]张军.Li-ion电池的激光焊接.中国机械工程,2001,12(5):213-215.
    [43]徐庆仁.国外激光加工技术的发展和应用(中).国际航空,1998,4:69-73.
    [44]Zhang Y W,Faghri A.Vaporization,melting and heat conduction in the laser drilling process.International Journal of Heat and Mass Transfer,1999,42:1775-1790.
    [45]Tunna L.Analysis of laser micro drilled holes through aluminium for micro-manufacturing applications.Optics and Lasers in Engineering,2005,43:937-950.
    [46]Gotz E,Emmel A,Holzwarth U et al.Effect of surface finish on the osseointegration of laser-treated titanium alloy implants.Biomaterials,2004,25:4057-4064.
    [47]Hallgren C,Reimers H,Chakarov D et al.An in vivo study of bone response to implants topographically modified by laser micromachining.Biomaterials,2003,24:701-710.
    [48]梁芳慧,王克光,周廉.预钙化处理后的钛表面磷灰石涂层的形成.材料科学与工程,2002,20(4):541-543.
    [49]Chen M F,Yang X J,Hu R X et al.Bioactive NiTi shape memory alloy used as bone bonding implants.Materials Science and Engineering,2004,C24:497-502.
    [50]高家诚,李龙川,王勇.表面改性纯镁的细胞毒性和溶血率.稀有金属材料与工程,2005,6(34):903-906.
    [51]魏任雄,谭金海,熊健.多孔碳酸钙陶瓷细胞相容性评价.武汉大学学报,2005,26(4):474-476.
    [52]Xue L,Islam M,Koul A K et al.Laser gas nitriding of Ti-6AI-4V Part 2:Characteristics of nitrided layers.Advanced Performance Materials,1997,4:389-408.
    [53]Lima M S F,Folio F,Mischler S.Microstructure and surface properties oflaser-remelted titanium nitride coatings on titanium.Surface and Coatings Technology,2005,199(1):83-91.
    [54]张国顺.现代激光制造技术.北京:化学r业出版社,2006.
    [55]辛风兰.高质量激光打孔技术的研究:(硕士学位论文).北京北京工业大学,2006.
    [56]Norlin A,Pan J,Leygraf C.Investigation of interfacial capacitance of Pt,Ti and TiN coated electrodes by electrochemical impedance spectroscopy.Biomolecular Engineering,2002,19(2):67-71.
    [57]晏绪光,高文斌,杨水其等.激光脉冲和工件参数对激光微孔加工质量的影响.激光应用,1994,14(3):127-130。
    [58]徐晓宙.生物材料学.北京:材料科学出版社,2006.
    [59]Man H C,Zhao N Q.Enhancing the adhesive bonding strength of NiTi shape memory alloy by laser gas nitriding and selective etching.Applied Surface Science,2006,253:1595-1600.
    [60]Mohammed E S,Martha E S,Helge F B.On the transformation behaviour,mechanical properties and biocompatibility of two NiTi-based shape memory alloys:NiTi42 and NiTi42Cu7.Biomaterials,2001,22(15):2153-2161.
    [61]段有容.骨诱导Ca、P系陶瓷材料中类骨磷灰石层的形成、表征和体外动态研究模型的初步建立:(博士学位论文).四川:四川大学生物医学工程系,2002.
    [62]Godley R,Starosvetsky D,Gotman I.Bonelike apatite formation on niobium metal treated in aqueous NaOH.Journal of Materials Science:Materials in Medicine,2004,15:1073-1077.
    [63]GB/T16886.医疗器械生物学评价.1997.
    [64]Ciapetti G,Cenni E,Pratelli Let al.In vitro evaluation of cell / biomaterial interaction by MTT assay.Biomaterials,1993,14(5):359-364.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700