生物工程用低弹性模量钛合金组织与性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物工程用钛合金具有高强度、高比强度和良好的抗腐蚀性能从而被广泛用作人体骨和牙齿等硬组织修复和替换材料。目前生物工程中应用的钛合金还存在许多不足,如含Al和V等有毒元素,弹性模量较高等。另外,与α和α+β钛合金相比,β钛合金具有更低的弹性模量和良好的综合力学性能,所以近年来大量的工作集中在β钛合金的研究和开发上,而对无毒元素Ta和Zr对β钛合金组织和性能的影响规律研究较少。因此,在Ti-20Nb的基础上研究元素Ta和Zr对β钛合金组织和性能的影响,为生物钛合金的研发提供理论依据是十分必要的。
     在此基础上,开发了新的Ti-20Nb-10.5Ta-13Zrβ钛合金,并研究了该合金的显微组织、弹性模量、强度、塑性、疲劳性能和生物学腐蚀性能,为该合金在生物工程实际应用提供了实验依据。
     Ta含量为8%~15.5%的Ti-20Nb-Ta系合金固溶处理后,在β相基体上生成长针状α″相,且随Ta含量的增加长针α″相长大。时效处理后,亚稳α″马氏体相分解成α+β相,且随着时效温度的增加α+β相长大。固溶与时效处理后,Ti-20Nb-Ta系合金强度较Ti-20Nb合金有所提高,同时合金塑性保持较高水平。合金的弹性模量随Ta含量的增加先增大后减小,然后再增大,在含Ta10.5%附近,E达到较低值,固溶后E=60GPa,时效后E=65GPa。当Ta含量超过13%时,E值增加明显。
     Zr含量为5%~17%的Ti-20Nb-10.5Ta-Zr系合金固溶处理后,合金的显微组织也由β+α″马氏体相组成。时效处理后,亚稳α″马氏体相在540℃以上完全分解,同时有细针状的α相析出。随着时效温度的升高,细针状α相长大,当温度达到600℃时,出现了大块的β相区域。Ti-20Nb-10.5Ta-Zr系合金力学性能的变化对固溶处理和时效处理很敏感,不同Zr含量的合金,弹性模量达到低值的时效温度不同。无论是固溶处理还是在合适温度下的时效处理,当Zr含量为13%~17%时,合金的弹性模量都趋于稳定值,固溶处理后E值为65~65.5GPa,时效处理后E值为65.5~68GPa。
     Ti-20Nb-10.5Ta-13Zr合金具有较好的疲劳性能,其疲劳极限为320MPa,
Titanium alloys of bioengineering have been widely used as hard tissue repairing and replacing materials, such as body skeletons and teeth etc, due to their high strength 、high contrast- strength and excellent corrosion resistance. However, there are many shortages in titanium alloys used in bioengineering, toxicity of alloying element such as Al and V, and high moduli of elasticity. Otherwise, many researches have been done on the investigation and exploitation of β titanium alloys ,because of their low moduli of elasticity and upstanding integrate mechanical properties,comparing with α and α + β titanium alloys. But little investigation has been done about the effect of elements Ta and Zr on microstructure and mechanical properties. We investigate the effect of element Ta and Zr, basing on Ti-20Nb alloys, and offer the theoretic foundation, aiming at these issues.
    A new β titanium alloy, Ti-20Nb-10.5Tα-13Zr, was designed for bioengineering application. Microstructure 、 moduli of elasticity、 mechanical properties and corrosion resistance(in body fluid) of the alloy were investigated in this paper.
    After solution treatment, long needle-like α " martin formed in the base of β and grew up with the increasing of element Ta, for the Ti-20Nb-Ta series alloys contained 8 ~ 15.5% Ta. After aging treatment, metastable α " decomposed to α+β , which developed with the increasing temperature of aging. The strength of Ti-20Nb-Ta series alloys were improved and plasticity still kept high level, comparing with Ti-20Nb alloy. The modulus of elasticity of alloy increased then decreased, and next increased again. When alloy contained 10.5% Ta, E value achieved low level: after solution treatment E=60GPa, after aging treatment E=65GPa. When Ta exceeded 13%, E obviously increased.
    After solution, β +α " microstructure formed in the Ti-20Nb-10.5Ta-Zr series alloys, contained 5~17% Zr. After aging, metastable α " decomposed
引文
[1] 王迎军,刘康时.生物医学材料的研究与发展[J].中国陶瓷,1998,34(5):26~29.
    [2] Black J. Marcel Dekker, Inc., [C].New York: New York University Publication, 1992.
    [3] Wesolowski SA, Dennis C. Fundamentals of Vascular Grafting. New York: McGraw-Hill publication, 1963.
    [4] Ruetschi Paul. Alkaline aqueous electrolyte cell for biomedical application [J]. Electrochem Soc. 1980,127(8):1667~1678.
    [5] 顾汉卿,徐国风.生物医学材料学[M].天津:天津科技翻译出版公司,1993.
    [6] 浦素云.金属植入材料及腐蚀[M].北京:北京航空航天大学出版社,1990.pp.1.
    [7] Van Noort R. Titanium: the implant of today[J].J Mater Sci,1987,22:3801~3811.
    [8] 崔福斋,冯庆玲.生物材料学[M].北京:科学出版社,1997.
    [9] 陈长春,孙康,吴人杰.髋关节置换用股骨假肢体材料的研究与应用[J].材料导报,1998,12(6):1~5.
    [10] Bothe R T, Beaton L E, Davenport H A. Reaction of bone to multiple metallic implants[J]. Surg Gynecol Obstet, 1940,71:598~602.
    [11] Branemark K P, Breine V, Lindstrom J, et al. Osseointegrated implants in the treatment of edentulous Jaw: experience from a 10-Year Period[J]. Scand J Plast Reconstruct Surg, 1969,3:81~82.
    [12] Branemark K P, Hansson B, Adell R, et al. Intraosseous anchorage dental prostheses: I experimental studies[J]. Scand Reconstruct Surg Suppl, 1977,16:1~4.
    [13] 宁兴龙.钛合金的开发与应用.钛工业进展,1996,3:39.
    [14] 佐佐木,佳男.钛合金植入物的应用.金属,1996,166(9):64.
    [15] Niinomi M, Materials Science&Engineering, 1998, 243(6):231.
    [16] 立石哲也.1995,30(2):141.
    [17] 李佐臣,李常亮,裘松波,等.外科植入钛合金生物学性能评价[J].稀有金属材料与工程,1998,27(1):59~61.
    [18] Zitter H, Plenk Jr. the Electromechanical behavior of metallic of their biocompatibility[J]. Biomed Mater Res, 1987, 21: 881.
    [19] 俞耀庭.生物医用材料[M].天津:天津大学出版社,2000.
    [20] Tengvall P, Lundstrom I. Physico-chemical considerations of titanium as a biomaterial [J]. Clin Mater, 1992,9:115~134.
    [21] Cheal EJ, Spector M, Hayes WC. Role of loads and prosthesis material properties on the mechanics of the proximal femur after total hip arthroplasty [J]. Orthop Res, 1992, 274: 375-376.
    [22] Dujovne AR, Bobyn Jd, Nrygier JJ, Miller Je, Brooks CE. Mechanical compatibility of noncemented hip prostheses with the human femur[J]. Arthroplasty, 1993, 8(1): 7~22.
    [23] Huiskes R, Weinans H, van Rietbergen B. The relationship between stress shielding and bone resorption around total hip stems and the effects of flexible materials versus interface. Clin orthop relat Res, 1992, 274:124~134.
    [24] Sumner Dr, Galante JO. Determinants of stress shielding: design versus materials versus interface. Clin orthop relat Res, 1992, 274:202~212.
    [25] Wang K. The use of titanium for medical applications in the USA. Mater Sci Eng, 1996, A213:134~137.
    [26] Steinemann SG, Perren SM. Titanium alloys as metallic biomaterials. In: lut jering G, Zwicker U, Bunk W, editors. Titanium' 84: Science and technology, Deutsche Gesellschaft Fur Metallkunde EV:1985,4:1327~1334.
    [27] Wang K. The use of titanium for medical applications in the USA. Mater Sci Eng, 1996, A213:134~137.
    [28] Long M, Rack HJ. Titanium alloys in total joint replacement-a materials science perspective. Biomaterials, 1998,19:1621~1639.
    [29] 张玉梅,郭天文,李佐臣.钛及钛合金在口腔科应用的研究方向[J].生物医学工程学杂志,2000,17(2):206-208.
    [30] Laing P, Fergosun A, Hodge E. Tissue reaction in rabbit muscle exposed to metallic implants [J]. Biomed Mater Res, 1967, 1: 135~149.
    [31] Buly RL. Titanium wear debris in failed cemented total hip arthroplasty [J]. Arthroplasty, 1992, 7(3): 315~323.
    [32] Zwicker R, Buehler K, Mueller R, Mechanical properties and tissue rections of a titanium alloy for implant material. Science and technology. 1980, 5:505~514.
    [33] Semlistsch M, Staub F, Webber H. Titanium-aluminum-niobium alloy, development for biocompatible, high strength surgical implants. Biomed technik, 1985,30:334~339.
    [34] Okazaki Y, Ito Y, Kyo K, rateishi r. Corrosion resistance and corrosion fatigue strength of new titanium alloys for medical implants without V and Al. Mater Sci Eng, 1996, A213: 138~147.
    [35] Song Y, Xu DS, Yang R, Li D, Wu WT, Guo ZX, Theoretical study of the effects of alloying elements on the strength and modulus of β-type bio-titanium alloys. Mater Sci Eng, 1999, A260:269~ 274.
    
    [36] Song Y, Yang R, Guo ZX, Li D. In: Niinomi M, Lesuer DR. Okabe T, Lippard HE, Taleff EM, editors. Structural Biomaterials for the 21~(st) Century. Warrendale (PA), TMS:2001, 273 — 280.
    
    [37] Wang K, Gustavson L, Dumbleton J. Low modulus, high strength, biocompatible titanium alloy for medical implants. In: Froes Fh, Caplan IL, editors. Titanium' 92: Science and Technology. Warrendale (PA), TMS:1993, 2697 — 2704.
    
    [38] Wang K, Gustavson LJ, Dumbleton JH. The characterization of Ti-12Mo-6Zr-2Fe —a new alloy developed for surgical implants. In: Eylon D, Boyer RR, Koss DA, editors. Beta Titanium alloys in the 1990' s. Warrendale (PA), TMS:1993, 49 — 60.
    
    [39] Robare EW, Bugle CM, Davidson JA, Daigle KP. Development of processing methods for Ti-13Nb-13Zr. Advances in the Science and Technology of Titanium Alloy Processing. Warrendale(PA), TMS:1997, 283 — 291.
    
    [40] Davidson JA, MishraAK, Kovacs P, Poggie RA. New surface-hardened, low-modulus, corrosion-resistant Ti-13Nb-13Zr alloy for total hip arithroplasty. Bio-Med Mater Eng, 1994, 4(3):231-243.
    
    [41] Senlistsch M, Staub F, Webber H. Titanium-aluminum-niobium alloy, development for biocompatible, high strength surgical implants. Biomed Technik, 1985, 30:334-339.
    
    [42] Okazaki Y, Ito Y, Kyo k, Tateishi T. Corrosion resistance and corrosion fatigue strength of new titanium alloys for medical implants without V and Al elements. Mater Sci Eng. 1996, A213:138— 147.
    
    [43] Niinomi M. Mechanical properties of biomedical titanium alloys. Mater Sci Eng, 1998, A243: 231~246.
    [44] Wagner L, Lut jering G, Jaffee RI. In Microstructure/property relationships in titanium aluminides and alloys, TMS-AIME, 1991, 521.
    [45] Boyer RR, Oesign Properties of a high strength titanium alloy, Ti-10V-2Fe-3Al, Journal of metals 1980,32:61.
    [46] Boyer RR. Applications of Beta Titanium alloys in airframes, in: Beta Titanium Alloys of the 1990s, TMS, 1993, 335.
    [47] Tengvall P, Lundstrom I. Physico-chemical considerations of titanium as a biomaterial[J]. Clin Mater, 1992,9:115~134.
    [48] 卡恩,哈森,克雷默主编,朱鹤孙等译.医用与口腔材料[M].北京: 科学技术出版社,1999.
    [49] Ratzer HJ, Buhl H. Repassibation of titanium and titanium alloys. Titanium Science and Technology, 1984,2641.
    [50] Breme J, Schmid HJ. Implant system based on bonier metals, in Heimke G oseo integrated implants. CRC Press, 1989, 31.
    [51] 谢华生,刘时兵,苏贵桥,李荣德.植入用Ti-Nb合金弹性模量及力学性能与显微组织的研究[J].铸造,2005,54:348~350.
    [52] 周彦邦.钛合金铸造概论[M]。北京:航空工业出版社,2000.
    [53] Kaufman L, Bernstein H,Computer Calculations of Phase Diagrams. New York, Academic Press, 1970.
    [54] Moffat DL, Larbalestier DC. The competition between martensite and omega in quenched Ti-Nb alloys. Metall Trans, 1988,19A:1677~1686.
    [55] E.A.鲍利索娃主编,陈石卿译.钛合金金相学[M].北京:国防工业出 版社,1986.
    [56] 新家光雄.生体用β型合金开发,1998,37(10):843~846.
    [57] 刘瑛,邓波,陈淦生,仲增墉.应用d电子合金设计理论优GH907合金组织及持久性能[J],材料工程,1997,7:23~29.
    [58] 王金友,葛志明,周彦邦.航空用钛合金[M].上海:上海科学技术出版社,1985.
    [59] 桂忠楼,孙理.d-电子理论在单晶高温合金发展中的应用[J].航空材料学报,1994,14(3):48~54.
    [60] 黑川大介,新家光雄,福井寿男,等.铁钢,2000,86(9):602.
    [61] Fan Z, Tsakiropoulos P, Miodownik AP. Yield strength of two ductile phase alloys. Mater Sci Tech 1993,9:863~868.
    [62] Ledbetter H, Datta S. Cast-Iron elastic contents: effect of graphite aspect patio. Z Metallkd 1992,83:195~198.
    [63] Fan Z, Miodownik AP, Tsakiropoulos P. Micro structural characterization of two phases materials. Mater Sci Tech 1993, 9:1094~1100.
    [64] Fan Z. On the Young's moduli of Ti-6Al-4V alloys. Scripta Metall Mater. 1993,29:1427~1432.
    [65] Cho K, Gurland J. The law of mixtures applied to the plastic deformation of two-phase alloys of coarse microstructures. Metall Trans 1988,19A:2027~2040.
    [66] Peters M, Gysler A, lut jering G. Influence of microstructure on the fatigue behavior of Ti-6Al-4V. In: Kimura H, Izumi O, editors. Titanium'80:Science and Technology. Warredale TMS, 1981,1777~1786.
    [67] Rudinger K, Fischer D. Relationship between primary alpha content, tensile properties and high cycle fatigue behavior of Ti-6Al-4V. In: lut jering G, Zwicker U, Bunk W, editors. Titanium'84:Science and Technology, 1985,4:2123~2130.
    [68] Wagner L, Gerdes C, Lut jering G. Influence of surface treatment on fatigue strength of Ti-6Al-4V. In: lut jering G, Zwicker U, Bunk W, editors. Titanium'84: Science and Technology, 1985,4:2147~2154.
    [69] C.莱茵斯,M.皮特尔斯主编,陈振华等译.钛与钛合金[M],北京: 化学工业出版社,2005.
    [70] Kasuga T, Mizuno T, Watanable M, Nogami M, Niinomi M. Calcium phosphate invert glass-ceramic coatings joined by self-development of compositionally gradient layers on a titanium alloy. Biomaterials, 2001,22:577~582.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700