近断层速度脉冲型地震动结构输入能与反应谱特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近断层地震动受到震级、断层距、震源机制和场地条件等因素的影响,表现出与一般的从远场地获得的地震动明显不同的性质,其中最显著的特点是由方向性效应和滑冲效应引起的速度脉冲型地面运动。本文对近断层地震动作用下SDOF结构的弹性反应谱、延性谱和近断层地震动输入能量特性进行了研究。
     文中介绍了中、日、美三国抗震规范分别对近断层问题的考虑。通过搜集具有速度脉冲波形近断层记录109条,按照我国规范中场地和地震分组类别进行分类,计算各分组的平均弹性反应谱。与规范设计反应谱的比较表明,近断层平均反应谱峰值大于规范给定的水平地震影响系数最大值;近断层各类场地的第三地震分组在中、长周期段反应谱也超出规范设计反应谱范围。
     为进一步研究近断层地区结构在塑性阶段的响应需求,文中建立SDOF结构弹塑性时程分析模型,代入109条具有速度脉冲的近断层地震动,考虑场地和地震分组因素的影响,计算了场地分组的平均延性需求谱,与吕西林、Wei-Jian Yi等提出的一般地震动等强度延性需求谱作对比,可以看出,近断层地震动显然具有更大的延性需求。
     通过构建瞬时输入能模型,分别计算SDOF结构在近断层地震动作用下保持弹性或进入塑性状态时的最大瞬时输入能,研究近断层速度脉冲型地震动的瞬时输入能特性和影响因素,试图从能量的角度解释速度脉冲与结构破坏的关系。结果表明,速度脉冲包含地震动的最大瞬时输入能,其值大小于与PGV/PGA比值成正比。
Influenced by earthquake magnitude, fault distance, seismic source mechanism and site, characteristics of near-fault ground motion are different from far-fault, one of them is distinctly velocity pulse subject to the forward rupture directivity effect and the fling step effect. In this paper, elastic response spectra, ductility demand spectra and input energy of SDOF system in near-fault fields were investigated.
     Structure design to near fault in Code of China, Japan and America is separately discussed. 109 obviously velocity pulse records of the near-fault ground motion were collected and divided into groups considering soil conditions and design characteristic periods and each group average elastic spectra was calculated. By comparing with design response spectrum in Chinese Code, it is showed that the peak value of near-fault average response spectra is greater than maximum of seismic influence coefficient given by the Code. In mid-long period, response spectrum of the third group in all fields of near fault beyond obviously design response spectrum of the Code.
     In order to study on plasticity response demand to structure in near-fault fields, SDOF elastic- plastic time history analysis model was established, by imputing 109 obviously velocity pulse records of the near-fault ground motion and considering soil conditions and design characteristic periods, average ductility demand spectrum of all groups were calculated and compared with constant-strength ductility demand spectrum given by Xilin Lu and Weijian Yi, it is convinced that there is greater ductility demand in near-fault ground motions.
     By establishing instantaneous input energy analysis model, elastic or plastic maximum instantaneous input energy of SDOF system was separately computed.Characteristics of instantaneous input energy and influence factors were investigated as to interpret the relationship between velocity pulse and structure failure. The results indicates maximum instantaneous input energy lives at pulses time story and is proportion to the ratios of PGV/PGA.
引文
[1]李爱群,高振世,工程结构抗震与防灾,南京,东南大学出版社,2003:4~70。
    [2]大崎顺彦著,吕敏申,谢礼立译,地震动的谱分析入门,北京,地震出版社,1980:6~14,240~244。
    [3]黄建文,近场地震作用下桥梁结构基于位移的抗震设计方法,[博士学位论文],北京,北京交通大学,2004。
    [4]李爽,谢礼立,近场问题的研究现状与发展方向,地震学报,2007,29(1):102~111。
    [5]李爽,近场脉冲型地震动对钢筋混凝土框架结构影响,[硕士学位论文],哈尔滨,哈尔滨工业大学,2005。
    [6]李新乐,近断层区桥梁结构的设计地震与抗震性能研究,[博士学位论文],北京,北京交通大学,2004。
    [7]G. Housner and D. Hudson. The Port Hueneme Earthquake of March 18, 1957. Bulletin of Seismological Society of America, 1958, 48(2):163~168.
    [8]B. Bolt. The San Fernando Valley, California Earthquake of February 9, 1971: Data on Seismic Hazards. Bulletin of Seismological Society of America, 1971, 61(2):501~510.
    [9]V. Bertero, S. Mahin and R. Herrera. A Seismic Design Implications of Near-Fault San Fenrando Earthquake Records. Earthquake Engineering and Structural Dynamics,1978,6(1): 31~42.
    [10]Chin-Hsiung Loh, Shiuan Wan and Wen-I Liao. Effects of Hysteretic Model on Seismic Demands: Consideration of Near-Fault Ground Motions. The Structure Design of Tall Buildings, 2002, 11(3):155~169.
    [11]王海云,谢礼立,近断层强地震动的特点,哈尔滨工业大学学报,2006,38(12):2070~2072。
    [12]P. Somerville and R. Graves. Characterization of Earthquake Strong Ground Motion. Pure and Applied Geophysics,2003,1811~1828.
    [13]N. Abrahamson and P. Somerville. Effects of the Hanging Wall and Foot Wall on Ground Motions Recorded during the Northridge Earthquake. Bulletin of Seismological Society of America,1996, 86(1B):93~99.
    [14]K. Shabestari and F. Yamazaki. Near-Fault Spatial Variation in Strong Ground Motion Due to Rupture Directivity and Hanging Wall Effects from the Chi-Chi Taiwan Earthquake. Earthquake Engineering and Structural Dynamics,2003, 32(14):2197~2219.
    [15]俞言祥,高孟谭,台湾集集地震近断层地震动的上盘效应,地震学报,2001,23(6):615~621。
    [16]P. Somerville, N. Smith, R. Graves, et al. Modification of empirical strong ground motion attenuation relations to include amplitude and duration effects of rupture directivity. Seismological Research Letters,1997,68(1):199~222.
    [17]J. Bray and A. Rodriguez-Marek. Characterization of Forward-Directivity Ground Motions in the Near-Fault Region. Soil Dynamics and Earthquake Engineering,2004,24(11):815~828.
    [18]李新乐,朱晞,近断层地震动等效速度脉冲研究,地震学报,2004,26(6):634~643。
    [19]P. Malhotra. Response of Building to Near-Field Pulse-Like Ground Motions. Earthquake Engineering and Structural Dynamics, 1999,28(11):1309~1326.
    [20]邬鑫,朱晞,近场地震动的脉冲效应及简化冲击回归公式的检验,北方交通大学学报,2003,27(1):36~39。
    [21]G. Wang, X. Zhou, P. Zhang, et al. Characteristics of Amplitude and Duration for Near Fault Strong Ground Motion From the 1999 Chi-Chi, Taiwan Earthquake. Soil Dynamics and Earthquake Engineering, 2002, 22(1):73~96.
    [22]李新乐,朱晞,抗震设计规范之近断层中小地震影响,工程抗震,2004(4):43~46。
    [23]倪永军,朱晞,近断层地震动的加速度峰值比和反应谱分析,北方交通大学学报,2004,28(4):1~5。
    [24]周锡元,徐平,王国权等,1999年台湾集集地震近断层竖向与水平反应谱比值的研究,地震地质,2006,28(3):327~335。
    [25]Y. Bozorgnia, M. Niazi and K. Campbell. Characteristics of Free-Field Vertical Ground Motion During the Northridge Earthquake. Earthquake Spectra,1995,11(4):515~525.
    [26]J. Hall, T. Heaton, M. Hailing, et al. Near-Source Ground Motion and its Effects on Flexible Buildings. Earthquake Spectra,1995,11(4):569~604.
    [27]田玉基,杨庆山,卢明奇,近断层脉冲型地震动的模拟方法,地震学报,2007,29(1):77~84。
    [28]Yu-ji TIAN, Qing-shan YANG, Ming-qi LU. Simulation Method of Near-Fault Pulse-type Ground Motion. ACTA Seismological Sinica,2007,20(1):80~87.
    [29]J. Anderson and V. Bertero. Uncertainties in Establishing Design Earthquakes. Journal of Structural Engineering,1987,113(8):1709~1724.
    [30]J. Hall. Seismic Response of Steel Frame Buildings to Near-Source Ground Motions. Earthquake Engineering and Structural Dynamics,1998,27(12):1445-1464.
    [31]B. Alavi. Behavior of Moment-Resisting Frame Structures Subjected to Near-Fault GroundMotions. Earthquake Engineering and Structural Dynamics,2004,33(6):687~706.
    [32]A. Chopra and C. Chintanapakdee. Comparing of SDF Systems to Near-Fault and Far-Fault Earthquake Motions in the Context of Spectral Regions. Earthquake Engineering and Structural Dynamics.2001,30(12):1769~1789.
    [33]Wen Liao, Chin-Hsiung Loh and Shiuan Wan. Earthquake Responses of RC Moment Frames Subjected to Near-Fault Ground Motions. The Structural Design of Tall Building.2001,10(3): 219~229.
    [34]翟长海,谢礼立,近场脉冲效应对强度折减系数的影响分析,土木工程学报,2006,39(7):15~18。
    [35]徐龙军,谢礼立,近断层地区抗震设计谱研究,东南大学学报(自然科学版),2005,35(I):105~108。
    [36]李爽,谢礼立,近场脉冲型地震动对钢筋混凝土框架结构影响,沈阳建筑大学学报(自然科学版),2006,22(3):406~410。
    [37]高学奎,朱晞,李辉,近场地震作用下深水桥墩的地震响应分析,工程抗震与加固改造,2006,28(3):83~87。
    [38]黄建文,朱晞,近场地震作用下钢筋混凝土桥墩基于位移的抗震设计,土木工程学报,2005,38(4):84~90。
    [39]江辉,朱晞,近断层强震速度脉冲效应及连续梁桥减震特性分析,中国安全科学学报,2003,13(12):57~62。
    [40]江辉,朱晞,近断层地震地面运动的能量与位移延性需求,工程抗震与加固改造,2005,27(4):58~63。
    [41]江辉,朱晞,近断层地震动考虑能量损伤效应的非弹性强度需求,中国安全科学学报,2005,15(5):8~16。
    [42]江辉,朱晞,近断层区的输入能量设计谱及其在基于能量抗震设计中的应用,地震工程与工程振动,2006,26():102~108。
    [43]李新乐,朱晞,近场地震速度效应及模拟模型的研究,中国安全科学学报,2003, 13(12):11~16。
    [44]李新乐,朱晞,近断层地震速度脉冲效应对桥墩地震反应的影响,北方交通大学学报,2004,28(1):11~16。
    [45]王京哲,朱晞,近场地震动脉冲下的反应谱加速度敏感区,中国铁道科学,2003,24(6):27~30。
    [46]邵广彪,冯启民,近断层地震动加速度峰值衰减规律的研究,地震工程与工程振动,2004,24(3):30~37。
    [47]冯启民,邵广彪,近断层地震动速度、位移峰值衰减规律的研究,地震工程与工程振动,2004,24(4):13~19。
    [48]易伟健,张冰,近场地震作用下框架结构的损伤机理,自然灾害学报,2007,16(2):112~117。
    [49]樊剑,刘铁,魏俊杰,近断层地震下摩擦型隔震结构与限位装置碰撞反应及防护研究,2007,40(5):10~16。
    [50]杨迪雄,李刚,程耿东,近断层地震动作用下基础隔震结构的一体化动力优化设计,2006,27(1):42~49。
    [51]陶夏新,王国新,近场强地震动模拟中对破裂的方向性效应和上盘效应的表达,地震学报,2003,25(2):191~198。
    [52]王海云,陶夏新,近场强地震动预测中浅源地震的Asperity模型特征,哈尔滨工业大学学报,2005,37(11):1533~1539。
    [53]卢明奇,田玉基,杨庆山,近断层地震作用下高层建筑结构地震响应分析,哈尔滨工业大学学报,2007,39(2):314~317。
    [54]谢官模,谷口健男,近源地震的特性及其对RC柱延性的影响,武汉理工大学学报,2001,23(1):51~54。
    [55]国家质量监督检验检疫总局,中华人民共和国建设部,建筑抗震设计规范(GB50011-2OO1),北京,中国建筑工业出版社,2001。
    [56]谢礼立,王海云,近场地震学中3个术语译名的商榷,地震工程与工程振动,2005,25(6):198~200。
    [57]韦韬,赵凤新,张郁山,近断层速度脉冲的地震动特性研究,地震学报,2006,28(6):629~637。
    [58]International Conference of Building Officials.1997 Uniform Building Code. California, USA. International Conference of Building Officials,1997,4.
    [59]孙利民,范立础,阪神地震后日本桥梁抗震设计规范的改订,同济大学学报,2001,29(1):60~64。
    [60]国家质量技术监督局,《中国地震动参数区划图》宣贯教材,中国标准出版社,2001,10。
    [61]Applied Technology Council(ATC), Tentative Provisions for the Development of Seismic Regulations for Buildings.ATC3-06,1978.
    [62]王亚勇,我国2000年工程抗震设计模式规范基本问题研究综述,建筑结构学报,2000(1):2~4。
    [63]L. Lee, S. Han and Y. Oh. Determination of Ductility Factor Considering Different Hysteretic Models. Earthquake Engineering and Structural Dynamics,1999,28:957-977.
    [64]R. Riddell. Inelastic Design Spectra accounting for Soil Conditions. Earthquake Engineering and Structural Dynamics,1995, 24:1491~1510.
    [65]A. Chopra and R. Goel. Inelastic Deformation Ratios for Design and Evaluation of Structures: Single-Degree-of-Freedom Bilinear Systems. Journal of Structural Engineering, 2004, 130(9): 1309~1319.
    [66]P.Fajfar.Capacity Spectrum Method Based on Inelastic Demand Spectra. Earthquake Engineering and Structural Dynamics,1999,28:979~993.
    [67]E. Miranda. Estimation of Inelastic Deformation Demands of SDOF Systems. Journal of Structural Engneering,2001,127(9):1005~1012.
    [68]A. Ten-Colunga. Displacement Ductility Demand Spectral for the Seismic Evaluation of Structures. Engineering Structures ,23:1319~1330.
    [69]易伟键,张海燕,弹塑性反应谱的比较及其应用,湖南大学学报(自然科学版),2005,32(2):42~45。
    [70]吕西林,周定松,考虑场地类别与设计分组的延性需求谱和弹塑性位移反应谱,地震工程与工程振动,2004,24(1):39~48。
    [71]T. Vidic, P. Fajfar and M. Fischinger. Consistent Inelastic Design Spectra: Strength and displace- ment. Earthquake Engineering and Structural Dynamics,1994,23:507~521.
    [72]Wei-Jian Yi, Hai-Yan Zhang and Sashi K. Kunnath. Probabilistic Constant-Strength Ductility Demand Spectra. Journal of Structural Engneering,2007,133:567~575.
    [73]C. Uang and V. Bertern. Evaluation of Seismic Energy in Structures. Earthquake Engineering and Structural Dynamics,1990,19:77-90.
    [74]H. Sucunglu and A. Nurtug. Prediction of Seismic Energy Dissipation in SDOF Systems. Earthquake Engineering and Structural Dynamics,1995,24:1215-1223.
    [75]胡冗冗,王亚勇,地震动瞬时能量与结构最大位移反应关系研究,建筑结构学报,2000(1):71~76。
    [76]胡冗冗,王亚勇,地震动瞬时输入能量谱探讨,工程抗震,2004(1):9~13。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700