高性能镁合金电磁改性技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
航空航天和汽车工业对轻质合金的需求不断增长,使得新材料和先进加工技术也得到了很大发展。由于镁合金在物理,机械和铸造方面具有优越的性能,例如:比强度和比刚度高,铸造性能优异,密度低,抗震性能好,热和电导率高等等,被认为是轻质结构件的理想材料。然而,镁合金也具有低硬度,有限的强度,高的化学反应能力以及极差的电腐蚀性能等缺点。以材料加工,磁流体动力学以及材料科学与工程为基础的电磁加工技术被认为是一种重要的前沿加工技术,已经被广泛应用于提高合金的性能,例如,利用磁场和感应电流之间的相互作用来对液体金属产生驱动、搅拌、净化、传输和形状控制等作用。
     本文分别将软接触电磁连铸,电磁搅拌和强磁场三种技术应用到镁合金制备过程中。其中,实现镁合金的电磁连铸是工作重点。并研究了各种电磁场对镁合金微观组织和性能的影响,得出了以下主要的结论:
     自行设计、建立了适合于镁合金的电磁连铸成型系统与保护系统。在对镁合金电磁连铸的实验缺陷分析后,确定出本实验条件下较为合适的工艺参数:电源频率2500Hz,功率10kW;浇注温度710~730℃;液面控制在感应线圈上沿±2mm处;对于Φ80mm镁合金铸锭,稳定拉速(V_2)为1.5mm/s,Φ120mm为V_2=1.08mm/s;冷却水量为0.6~1.0m~3/h。并在此参数下得到了质量较好的镁合金铸锭。软接触电磁连铸铸锭具有细小、均匀的显微组织;且原本在金属模铸锭、普通连铸锭中在晶界上大量析出的β相,在电磁连铸锭中析出减少,并呈现弥散分布的形式。这些组织上的改变,会改善镁合金的性能。软接触电磁连铸力学性能有很大提高。Φ80mm铸锭与金属模铸锭比较,常温抗拉强度和延伸率分别提高了约30%和27%;Φ120mm铸锭与普通连铸锭比较,抗拉强度和延伸率亦提高了约33%和42%。断口形貌显示软接触连铸锭具有更多的韧性断裂特征。同时,软接触连铸锭的宏观硬度比照普通连铸锭也有很大提升:边部提高了14%,心部提高了23%。在3.5%NaCl溶液中的动电位极化测试表明,软接触电磁连铸铸锭耐腐蚀性能有很大的提高。软接触电磁连铸镁合金(Φ80mm)的腐蚀电压为-1.41V,腐蚀电压附近的腐蚀电流密度为3.581μA/cm~2。相对于模铸锭,腐蚀电压上升,腐蚀电流下降,耐蚀性能提高。另外,腐蚀形貌也验证了这一结果。
     设计制造以永磁体为工作介质的电磁搅拌装置,建立了电磁搅拌作用模型。通过分析得出微体积元在永磁体搅拌过程中在径向和切向上均受到周期变化的作用力。该作用力的大小对改变凝固组织有重要的作用。永磁体搅拌细化了AZ61镁合金的组织,提高
The ever-increasing demands for lightweight alloys in the aerospace and automobile industries have led to the development of novel materials and advanced processing techniques. Magnesium alloys are qualified as ideal materials for lightweight constructions because they offer numerous merits in physical, mechanical and casting properties: high specific strength and stiffness, excellent castability, low density, high damping capacity, good thermal and electrical conductivity etc. However, there are some negative features including relatively low hardness, limited strength, high chemical reactivity and inferior galvanic corrosion resistance which has been described as "awful". Electromagnetic processing of materials (EPM), based on materials processing, magnetohydrodynamics (MHD) and materials science and technology, is an important processing technique recognized as a cutting edge technology. And it has been frequently applied to improve the properties and performance of alloys, such as making use of interaction between magnetic field and induced current to produce driving, stirring, purifying, transmitting or shape-control etc. effects on liquid metals.
    In this paper, soft-contact electromagnetic casting (EMC), electromagnetic stirring and high magnetic field have been performed in the processing of magnesium alloy, respectively. The main part of my dissertation is realization of soft-contact EMC of magnesium alloys, In addition, effects of electromagnetic fields on microstructures and properties of magnesium alloys have been studied. The main obtained results are as follows:
    An electromagnetic continuous casting system and a protection system applied for magnesium alloys were designed and set up in this study. After many fails and experimental analysis, proper technical parameters have been obtained. Such as power-supply system (2500Hz, 10 kW), pouring temperature of 710~730°C, steady casting speed at 1.5 mm/s for Φ80mm billets and 1.08 mm/s for Φ120mm billets, liquid level equal to upper margin of induction coil ±2mm and the flow rate of cooling water from 0.6 to 1.0 m~3/h are usually used. Under the conditions mentioned above, AZ61 magnesium alloy billets (ΦP80mm, Φ120mm) with good quality are obtained. Soft-contact EMC billets have more fine and uniform grain structure compared with the die cast and direct chill casting (DCC) ones. Moreover in the conditions of soft-contact EMC, precipitation of β-phase particles decreases and disperses, changing the old way in which β-phase particles precipitate chiefly surround a-Mg grain. These
引文
[1] 陈振华,严红革,陈吉华等.镁合金.北京:化学工业出版社,2004.
    [2] Polmear I J. Magnesium alloys and applications. Materials Science and Technology. 1994, 10(1): 1-16.
    [3] Kojima Y. Project of platform science and technology for advanced magnesium alloys. Materials Transactions. 2000, 42(7): 1154-1159.
    [4] Mordike B L, Ebert T. Magnesium properties-application-potential. Materials Science and Engineering A. 2001, 302A(1): 37-45.
    [5] Eliezer D, Aghion E, Froes F H. Magnesium Science, Technology and Applications. Advanced Performance Materials. 1998, 5(3): 201-212.
    [6] 铸造工程师手册编写组.铸造工程师手册.北京:机械工业出版社,2003.
    [7] Albright D L, Ruden T, Davis J. High ductility magnesium alloys in automotive applications. Light Metal Age. 1992(2): 28-32.
    [8] 张诗昌,段汉桥,蔡启舟等.主要合金元素对镁合金组织和性能的影响.铸造.2001,50(6):310-315.
    [9] 白钦,赵丕峰,赵文波.Ag对Mg-Al-Zn系镁合金显微组织和力学性能的影响.铸造.2003,52(2):98-100.
    [10] 乐启炽,崔建忠.Mg-Li合金的过去、现在与将来.宇航材料工艺.1997,27(2):1-6.
    [11] 马图哈K H.主编,丁道云 等译.非铁合金的结构与性能.北京:科学出版社,1999.
    [12] Lu Y, Wang Q, Zeng X et al. Effects of rare earths on the microstructure, properties and fracture behavior of Mg-Al alloys. Materials Science and Engineering A. 2000, 278A(1-2): 66-76.
    [13] 陆树荪,顾开道,郑来苏.有色铸造合金及熔炼.北京:国防工业出版社,1983.
    [14] 张世军,黎文献,余琨.铈对镁合金AZ31晶粒大小及铸态力学性能的影响.铸造.2002,51(12):767-771.
    [15] Wei L Y,Dunlop G L,Westengen H.Development of microstructure in cast Mg-Al-rare earth alloys. Materials Science and Technology.1996,12(9):741-750.
    [16] 黄正华,郭学锋,张忠明等.Si对ZA91D镁合金显微组织与力学性能的影响.材料工程.2004(6): 28-32.
    [17] 袁广银,刘满平,王渠东等.Mg-Al-Zn-Si合金的显微组织细化.金属学报.2002,38(10):1105-1108.
    [18] 乐启炽,张建新,崔建中等.AZ91D镁合金近液相线铸造半固态坯料的部分重熔.金属学报.2002,38(12):1266-1272.
    [19] 杨彬.镁合金研究及制备发展概况.铸造设备研究.2001(1):36-44.
    [20] Flemings M C. Behavior of metal alloy in the semi-solid state. Metall. Trans. B. 1991, 22B(6): 269-293.
    [21] 张发云,闫洪,揭小平 等.半固态镁合金触变成型技术.南昌大学学报.2004,26(2):14-18.
    [22] Sekihara K, Ohnishi S, Kamado S et al. Semi-solid forming of Strain-induced AZ91D magnesium alloy. Journal of Japan Institute of Light Metals. 1995, 45(10): 560-565.[23] Li D N, Luo J R, Wu S Set al. Study on the semi-solid rheocasting of magnesium alloy by mechanical stirring. Journal of Materials Processing Technology, 2002, 129(1-3): 431-434.
    [24] Segal V M. Materials processing by simple shear. Materials Science and engineering A. 1995, 197A(2): 157-164.
    [25] Valiev R Z. Structure and mechanical properties of ultrafine-grained metals. Materials Science and Engineering A. 1997, 234-236A(not defined): 59-66.
    [26] Cho S S, Chun B S, Won C W et al. Structure and properties of rapidly solidified Mg-Al alloys. Journal of Materials Science. 1999, 34(17): 4311-4320.
    [27] 许光明,包卫平,郑佳伟等.磁场作用下合金元素在AZ31镁合金中的分布.稀有金属.2004.28(1):97-100.
    [28] 许光明,包卫平,郑佳伟等.静磁场作用下镁合金AZ61凝固过程研究.稀有金属.2004,28(1):89-92.
    [29] Song G, Atrens A, Stjohn D et al. The electrochemical corrosion of pure magnesium in 1N NaCl. Corrosion Science. 1997, 39(5): 855-875.
    [30] Udhayan R, Bhatt D P. On the corrosion behaviour of magnesium and its alloys using electrochemical techniques. Journal of Power Sources. 1996, 63(1): 103-107.
    [31] Song G, Atrens A. Corrosion mechanisms of magnesium alloys. Advanced Engineering Materials. 1999, 1(1): 11-33.
    [32] Song G, Atrens A, Dargusch M. Influence of microstructure on the corrosion of diecast AZ91D. Corrosion Science. 1999, 41 (2): 249-273.
    [33] Makar G L, Kruger J. Corrosion studies of rapidly solidified magnesium alloys. Journal of Electrochemical Society. 1990, 137(2): 414-421.
    [34] 余刚,刘跃龙,李瑛等.Mg合金的防腐与防护.中国有色金属学报.2002,12(6):1087-1098.
    [35] Maker G L, Kruger J. Corrosion of magnesium. International Materials Reviews. 1993, 38(3): 138-153.
    [36] Lunder O, Lein J E, Aune T Kr et al. The role of Mg_(17)Al(12) phase in the corrosion of Mg alloy AZ91. Corrosion. 1989, 45(9): 741-748.
    [37] Song G, Atrens A, Wu X et al. Corrosion behavior of AZ21, AZ501, and AZ91 in sodium chloride. Corrosion Science. 1998, 40(10): 1769-1791.
    [38] Robert S B. Magnesium products design. New York: Marcel Dekker, INC., 1987.
    [39] 刘正,张奎,曾小勤.镁基轻质合金理论基础及其应用.北京:机械工业出版社,2002.
    [40] Hehmann F, Sommer F, Jones H et al. Corrosion inhibition in magnesium-aluminium-based alloys induced by rapid solidification processing. Journal of Materials Science. 1989, 24(7): 2369-2379.
    [41] Stippich F, Vera E, Wolf G K et al. Enhanced corrosion protection of magnesium oxide coatings on magnesium deposited by ion beam-assisted evaporation. Surface and Coatings Technology. 1998, 103-104(not defined): 29-35.
    [42] 刘子利,丁文江,袁广银 等.镁铝基耐热铸造镁合金的进展.机械工程材料.2001,25(11):1-4。
    [43] 张鹏,曾大本.异军突起的镁合金压铸.特种铸造及有色合金.2000(6):55-57.[44] 王文先,张金山,许并社.镁合金材料的应用及其加工成型技术.太原理工大学学报.2001,32(6):599-603.
    [45] 曾大本,李培杰.镁合金压铸业现状及发展趋势.铸造.2000,49(12):87l-874.
    [46] Flemings M C. Behavior of metal alloys in the semisolid state. Metallurgical Transactions A, 1991, 22A(5): 957-981.
    [47] Spencer D B, Mehrabian R, Flemings M C. Rheoiogical behavior of Sn-15pct Pb in the crystallization range. Metallurgical Transactions. 1972, 3(7): 1925-1932.
    [48] Mehrabian R, Flemings M C. Die casting of partially solidified alloys. AFS Transactions. 1972, 80(2): 173-182.
    [49] Flemings M C, Riek R G, Young K P. Rheocasting. Materials Science and Engineering. 1976, 25(1-2): 103-117.
    [50] 毛为民.半固态金属成形技术.北京:机械工业出版社,2004.
    [51] Bradley N L, Weiland R D, Schafer W J et al. Method and apparatus for the injection of metal alloys. US Patent (No. 5040589). 1989.
    [52] 阎峰云,郝远,李元东 等.镁合金半固态压铸成形及控制技术的现状.中国铸造装备与技术.2004(2):7-10.
    [53] 倪红军,王渠东,丁文江.镁合金半固态铸造成形技术(SSP)的研究与应用.铸造技术.2000,21(5):36-39.
    [54] Bralower P M. Thixomolding ready to tackle demanding magnesium applications. Die Casting Engineer, 1992, 36(4): 42-43.
    [55] Czerwinski F, Zielinska-Lipiec A, Pinet P Jet al. Correlating the microstructure and tensile properties of a thixomolded AZ91D magnesium alloy. Acta Materialia. 2001, 49(7): 1225-1235.
    [56] 李东南,罗吉荣,吴树森等.半固态镁合金的研究与应用.铸造技术.2003,24(6):479-481.
    [57] Lebeau S, Decher R. Microstructual design of thixomolded magnesium alloys. Proceeding of the 5th International Conference on Semi-solid Processing of Alloys and Composite. Colorado, USA, 1998: 387-395.
    [58] Sekihara K, Ohnishi S, Kamado Set al. Fluidity of AZ91D magneisum alloy chips stirred at semi-solid state and Mechanical properties after press-forming. Journal of Japan Institute of Light Metals. 1995, 45(9): 516-521.
    [59] Walukas D M, Vining R E, LeBeau S E et al. Effect of process variables in thixomolding. Proceeding of the 7th International Conference on Semi-solid Processing of Alloys and Composites, Tsukuba, Japan, 2002: 101-106.
    [60] 李海宏,陈体军,郝远.镁合金半固态压铸触变成型技术的研究与进展.热加工工艺.2005(10):59-61.
    [61] 吉泽升,吕新宇,王国军 等.镁合金半固态成形技术的研究进展.金属热处理.2003,28(5):8-11.
    [62] Asai S. Metall. Appl. Magnetohydrodynamics. Proceedings of an IUTAM Symposium. The Metal Society. 1982: 224-228.[63] Asai S. Recent development and prospect of electromagnetic processing of materials. Science and Technology of Advanced Materials. 2000, 1(4): 191-200.
    [64] Asai S. The trend of electromagnetic processing of materials. Iron and Steel. 1989, 75(1): 32-41.
    [65] Getselev Z N. Method of Continuous a Semicontinuous Casting of Metals and Plant for same. U.S. Pat: 3467166. 1969.
    [66] 曹志强,张兴国,金俊泽.电磁铸造技术及其发展.轻金属.1995(10):51-53.
    [67] Getselev Z N. Casting in an electromagnetic field. Journal of Metals. 1971, 23(10): 38-40.
    [68] Getselev Z N. Production of Continuously Cast Shapes Using Electromagnetic Forming. British Foundryman. 1973, 66(2): 56-57.
    [69] Pritchett Y R. Electromagnetic casting of aluminum alloy. Light Metal Age. 1981(10): 12-16.
    [70] Vives C. Electromagnetic refining of aluminum alloys by the CREM process: part I working principle and metallurgical results. Metallurgical Transactions B. 1989, 20B(10): 623-629.
    [71] Vives C. Electromagnetic refining of aluminum alloys by the CREM process: part Ⅱ Specific practical problems and their solutions. Metallurgical Transactions B. 1989, 20B(10): 631-643.
    [72] McGlade P. Magnesium D.C. casting. Sixth Australian Asian Pacific Conference on Aluminium Cast House Technology. The Minerals, Metals & Materials Society, 1999: 321-330.
    [73] Pravdic F, Leitlmeier D, Wogerer C et al. Vertical direct chill (VDC) casting of magnesium- optimized casting parameters and safety issues. Proceedings of the 6th international conference magnesium alloys and their applications, Geesthacht, Germany, 2003: 675-680.
    [74] MeGlade P T, Baker P W. Magnesium direct chill casting: A comparison with aluminium. Light Metals 2001: 855-861.
    [75] Jin J, Kobayashi K F, Shingu P H. The effect of fluid flow on the eutectic lamellar spacing. Metallurgical Transactions A. 1984, 15A(2): 307-312.
    [76] 曹志强,张丽萍,任忠鸣等.电磁搅拌对灰铸铁宏观偏析的影响.金属学报.1992,28(2):80-83.
    [77] 金俊泽,曹志强,郑贤淑等.电磁搅拌作用下形成分离共晶的研究.金属学报.1995,31(8):374-378.
    [78] Vives C. Elaboration of semisolid alloys by means of new electromagnetic rheocasting processes. Metall. Trans. B. 1992, 23B(3): 189-205.
    [79] Vives C. Elaboration of metal matrix composites from thixotropic alloy slurries using magnetohydrodynamic caster. Metall. Trans. B. 1993.24B(6): 493-510.
    [80] 王晓东,赵恂,李廷举等.磁力搅拌法的研究与开发.材料科学与工艺.2000,8(4):1-5.
    [81] 王晓东,李廷举,金俊泽.双磁力驱动器对液态金属流动的驱动与控制.稀有金属材料与工程.2002,31(3):187-191.
    [82] 王尔德,石刚,郭斌等.稀土永磁材料研究新进展.粉末冶金技术.2005,23(1):55-61.
    [83] 罗阳.中国NdFeB磁体产业近况.磁性材料及器件.2005,36(2):1-6.
    [84] 金俊泽,李廷举.材料电磁加工新进展.稀有金属材料与工程.2000,29(Supp.1):79-83.
    [85] Brandt B L, Hannahs S, Schneider-Muntau H J et al. The National High Magnetic Field Laboratory. Physica B. 2001,294-295(not defined): 505-511.[86] Crow J E, Parkin D M, Schneider-Muntau H J et al. The United States National High Magnetic Field Laboratory: Facilities, science and technology. Physica B. 1996, 216(3-4): 146-152.
    [87] Crow J E, Campbell L, Parkin D M et al. The NHMFL-early measurements and science opportunities. Physica B. 1995, 211(1-4): 30-37.
    [88] Kindo K. 100T magnet developed in Osaka. Physica B. 2001, 294-295(not defined): 585-590.
    [89] Kido G, Takehana K, Uji Set al. High-field studies at the Tsukuba magnet laboratories. Journal of Magnetism and Magnetic Materials. 1996, 157-158(not defined): 550-554.
    [90] Asai S. Recent Activities on Electromagnetic Processing of Materials in Nagoya University. International Scientific Colloquium: Modelling for Electromagnetic Processing, Hannover, 2003: 24-26.
    [91] 李廷举,金俊泽.材料电磁加工的现状与未来展望.材料导报.2000,14(12):12-19.
    [92] Ducruet C, Gillon P. Magnetic control of diffusion flames. The 3rd International Symposium on EPM. Nagoya, Japan, 2000: 567-.572.
    [93] Morikawa H, Sassa K, Asai S. Control of precipitating phase alignment and crystal orientation by imposition of a high magnetic field. Materials Transactions, JIM. 1998, 39(8): 814-818.
    [94] 王晖,任忠鸣,蒋国昌.均恒强磁场在材料科学中的应用.材料科学与工程.2001,19(2):119-123.
    [95] 许光明,包卫平,郑佳伟等.不同磁场作用下AZ61镁合金的凝固组织.铸造.2003,52(12): 1160-1162.
    [96] 包卫平,许光明,班春燕等.静磁场对镁合金凝固组织的影响.物理学报.2004,53(6):2024.2028.
    [97] Rober B B. International magnesium association 56th annual world conference. Light Metal Age, 1999(8): 64-69.
    [98] 袁晓光,刘正,许沂.电磁铸造对AZ91D合金组织及力学性能的影响.中国有色金属学报.2002,12(4):784-790.
    [99] 王渠东,丁文江.轿车用阻燃镁合金的研制.材料导报.2000,14(特刊):53-56.
    [100] 贾非.电磁连续铸造过程工艺优化及组织性能研究:(博士学位论文)。大连:大连理工大学,2002.
    [101] 任忠鸣,邓康,蒋国昌.软接触结晶器电磁连铸技术的发展.钢铁研究学报.2002,14(1):58-64.
    [102] 郝海.电磁铸造工艺及其温度场数值模拟:(博士学位论文).大连:大连理工大学,1999.
    [103] 曹志强,张兴国,金俊泽.电磁铸造铝扁锭的电参数计算与选择.中国有色金属学报.1995,5(3):78-81.
    [104] 那贤昭,张兴中,仇圣桃等.软接触电磁连铸技术分析.金属学报.2002,38(1):105-108.
    [105] 金俊泽,张兴国,曹志强等.铝合金电磁铸造工艺参数的研究.材料研究学报.1996,10(4):397-400.
    [106] 曹志强,张兴国,金俊泽.电磁铸造过程中电磁压力与感应热计算.材料科学与工艺.1996,4(1):60-64.
    [107] 房灿峰,贾非,金俊泽等.铝合金的软接触电磁连铸研究.铸造.2004,53(5):350-353.
    [108] 王宏明,李家旺,徐明喜等.钢的软接触电磁连铸技术的研究进展.特殊钢.2005,26(4):29-32.
    [109] 张林涛,邓安元,王强等.软接触电磁连铸技术的研究进展.铸造技术.2004,25(4):287-289.[110] 陈瑞润,丁宏升,毕维生等.电磁冷坩埚技术及其应用.稀有金属材料与工程.2005,34(4):510-514.
    [111] 张兴国,金俊泽,曹志强.电磁铸造中的磁场分布.大连理工大学学报.1996,36(2):179-183.
    [112] 曲若家.热顶—电磁成型系统模拟与实验研究:(硕士学位论文).大连:大连理工大学,2004.
    [113] 李廷举,金俊泽.改善铸坯表面质量的电磁连续铸造研究进展.大连理工大学学报.2000,40(1):80-82.
    [114] 于光伟,贾光霖,王恩刚等.方坯软接触电磁连铸实验研究.钢铁.2002,37(5):19-21.
    [115] 严炎祥,姚敏.用SF_6混合气体保护镁合金熔液.特种铸造及有色合金.1996(4):41-43.
    [116] 付彭怀,王渠东,蒋海燕等.镁合金熔炼技术研究发展.铸造技术.2005,26(6):489-492.
    [117] Grandfield J F. Experimental methods for direct chill casting of aluminum and magnesium. Aluminum Transactions. 2000(3): 41-51.
    [118] Fang Canfeng, Zhang Xingguo, Ji Shouhua et al. Microstructures and mechanical properties of electromagnetic casting AZ61 magnesium alloys. The 2nd Asian Workshop on Electromagnetic Processing of Materials. Shenyang, China, 2005:141-146.
    [119] Bettles C J, Gibson M A. Microstructural design for enhanced elevated temperature properties in sand ca.stable magnesium alloys. Proceedings of the 6th international conference magnesium alloys and their applications. Geesthacht, Germany, 2003:1-11.
    [120] Dahle A K, Lee Y C, Nave M D et al. Development of the as-cast microstructure in magnesium aluminium alloys. Journal of Light Metals. 2001, 1(1): 61-72.
    [121] 哈宽富.金属力学性质的微观理论.北京:科学出版社,1983.
    [122] Kcjima Y. Platform science and technology for advanced magnesium alloy. Materials Science Forum. 2000, 350-351(1): 3-12.
    [123] Kleiner S, Beffort O, Wahlen A et al. Microstmcture and mechanical properties of squeeze cast and semi-solid cast Mg-Al alloys. Journal of Light Metals. 2002, 2(4): 277-280.
    [124] Barbagallo S, Cerri E. Evaluation of the KIC fracture parameters in a sand cast AZ91 magnesium alloy. Engineering Failure Analysis. 2004, 11(1): 127-140.
    [125] Cho Y W, Chung S H, Shim J D et al. Fluid flow and heat transfer in molten metal stirred by a circular inductor. Intemational Journal of Heat and Mass Transfer. 1999, 42(7): 1317~1326.
    [126] Vanags J, Viesturs U, Fort I. Mixing intensity studies in a pilot plant stirred bioreactor with an electromagnetic drive. Biochemical Engineering Journal. 1999, 3(1): 25~33.
    [127] Spitzer K H, Dubke M, Schwerdtfeger K. Rotaional electromagnetic stirring in continuous casting of round strands. Metall. Trans. B. 1986, 17B(2): 119~131.
    [128] 张兴国,何文庆,曲若家 等.铝合金扁锭热顶电磁铸造技术.中国有色金属学报.2004,14(7):1084-1088.
    [129] Li T J, Zhao Y H, Wen B et al. Experimental and computational study of nozzle electromagnetic stirring and its effects on solidification structure. Ironmaking and steelmaking. 2002, 29(5): 337-340.
    [130] 韩至成.电磁冶金学.北京:冶金工业出版社,2001.[131] 王学东,张伟强,时海芳.电磁搅拌技术的国内外发展现状.辽宁工程技术大学学报(自然科学版).2001,20(1):82-84.
    [132] Brown D, Ma B, Chen Z. Developments in the processing and properties of NdFeb-type permanent magnets. Journal of Magnetism and Magnetic Materials. 2002, 248(3): 432~440.
    [133] Coey J M D. Permanent magnet applications. Journal of Magnetism and Magnetic Materials. 2002, 248(3): 441-456.
    [134] Fang Canfeng, Zhang Xingguo, Ji Shouhua et al. Microstructure and Corrosion Property of AZ61 Magnesium Alloy by Electromagnetic Stirring. Trans. Nonferrous Met. Soc. China. 2005, 15(3): 536-541.
    [135] 夏平畴.永磁机构.北京:北京工业大学出版社,2000.
    [136] Asai S, Nishio N, Muchi I. Theoretical analysis and model experiments on electromagnetically driven flow in continuous casting. Transactions ISIJ. 1982, 22(2): 126-133.
    [137] 宫克强.特种铸造.北京:机械工业出版社.1982。
    [138] Watanabe K, Motokawa M. Materials Science in Static High Magnetic Fields. Berlin: Springer, 2001.
    [139] 王强,王恩刚,赫冀成.静磁场在材料生产过程中的应用研究评述.材料科学与工程学报.2003,21(4):590-595.
    [140] Asal S. Challenging of EPM in economic mass production, nano-technology and environment protection. Proceeding of the 4th International Symposium on Electromagnetic Processing of Materials. Lyon, France, 2003: 1-8.
    [141] Rango P D, Lee M, Lejay P et al. Texturing of magnetic materials at high temperature by solidification in a magnetic field. Nature. 1991, 349(28): 770-772.
    [142] Yasuda H, Tokieda K, Ohnaka I. Effect of magnetic field on periodic structure formation in Pb-Bi and Sn-Cd peritectic alloys. Materials Transactions, JIM. 2000, 41(8): 1005-1012.
    [143] Farrell D E, Chandrasekhar B S. Superconducting properties of aligned crystalline grains of Y_1Ba_2Cu_3O_(7-δ). Physical Review B. 1987, 36(7): 4025-4027.
    [144] 彭涛,辜承林.强磁场发展动态与趋势.物理.2004,33(8):570-573.
    [145] Yasuda H, Ohnaka I, Shimamura K et al. Processing for aligned structure by a magnetic field. Proceeding of the 3rd International Symposium on Electromagnetic Processing of Materials. Nagoya, Japan, 2000: 647-652.
    [146] 宛德福,罗世华.磁性物理.北京:电子工业出版社,1987.
    [147] 吴存有.强磁场作用力对材料组织和性能的影响:(硕士学位论文).大连:大连理工大学,2003.
    [148] 王强,王春江,王恩刚等.强磁场对不同磁化率非磁性金属凝固组织的影响.金属学报.2005,41(2):128-132.
    [149] Wang Q, Wang E, He J et al. Effects of strong magnetic field on solidified structures of metals with different susceptibilities. Proceeding of the 4th International Symposium on Electromagnetic Processing of Materials. Lyon, France, 2003: 464-468.
    [150] 晋芳伟,任忠鸣,王晖等.强磁场对Al-18Si合金凝固组织的影响及其机理研究.材料工程.2005(4):30-32.[151] 王艳,边秀房,许昌业等.直流磁场作用下Al-18Si合金的凝固行为.金属学报.2000,36(2):159-161.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700