头盔式近眼显示技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
头盔显示技术是近眼显示技术中的一种。它是一种安装在头盔上,给头盔使用者提供可视图像的微型显示装置,可以用于虚拟显示。本文研究了一种可使头盔使用者在观察外界情况的同时,也能获得头盔显示器中的可视图像信息,并且当使用者观察不同距离物体,进行视度调节时,可视图像始终在人眼中保持清晰的新型的头盔式近眼显示技术。
     首先,在视网膜投影显示光学系统的基础上进行研究,采用ZEMAX软件模拟设计优化了一套新的光学系统,该光学系统减少了透镜的数量,简化了系统的结构,增大了原光学系统中透镜的厚度、曲率半径和间隔,使光学零件易于加工且精度高,并且可以提高装配精度。本光学系统主要由激光扩束准直系统和滤波投影系统组成。系统采用光波波长为532nm的激光光源,扩束倍数为4倍,优化后的扩束准直系统在1.5mrad视场范围内波像差小于λ/4,光学传递函数在60lp/mm时达到0.9以上,艾里斑大小为4.367um-。滤波投影系统的镜目距为40mm,传递函数在60lp/mm时达到0.6以上。
     其次,对该视网膜投影系统的机械结构进行了设计。该系统为单目结构,整个光学系统放置于人眼的上方。该机械结构包括垂直调节、瞳距调节以及旋转调节等机构,实现了显示器的灵活移动。瞳距调节机构,包括37mm粗调和4mm微调,根据人手微调的灵敏度可确定粗调精度可达0.5~1 um、微调精度可达0.4~0.7um;垂直调节机构的调节范围是48 mm,调节精度可达0.5~1um;旋转机构可实现旋转角度都为11°的三维调节。
     最后,装配调试了视网膜投影系统的滤波投影系统,并用传递函数测量仪进行了传递函数的测试,测试结果为传递函数在60lp/mm时达到0.5以上
     本课题所设计的光学系统达到了设计要求,可以满足不同使用者的要求,瞳距调节机构可使显示器水平移动,满足不同人的瞳距要求,垂直调节机构可使显示器处于人眼前上下位置,旋转机构可实现三维方向转动。滤波投影系统的评价结果表明本系统基本可以实现其显示功能。
Helmet display technology is a near-eye display technology. By being installed on a helmet-mounted, the helmet user can get the clear visual images. And also, it can be used in the virtual display. In this paper, we studied a new type of near-eye display technology. Which allows the users observe the outside world situation, and the user can get visual image information in the helmet-mounted display at the same time. When the user observed the different distance objects, visual images can always kept clearly in the eyes.
     In this thesis, we used a ZEMAX software to re-design a new set of optical systems on the basis of the existing retinal projection display optical system. The number of the lens, structure of the system, lens's thickness, curvature radius and interval of the original optical system are changed, thus this optical system becomes simplify, therefore, optical parts can be easier processed and improved accuracy. The optical system mainly consists of the collimated laser beam expander optical system and the filter projection optical system. This system uses a wavelength of 532 nm laser as a light source, which is expanded by 4 times. We carried out the evaluation of image quality of optical system. The 1.5mrad visual field range within the wave-front aberration is less thanλ/4.The transfer function of spread collimation system is more than 0.9 at the OTF of 60lp/mm. AIRY DIAM size is 4.367 um. The last mirror to the eye distance of the filter projection optical system is 40mm. The OTF is above 0.6 at the OTF of 60lp/mm.
     In the subject, we designed the mechanical structure of the retinal projection system. The system is monocular structure. The entire optical system is placed in the top of the human eye. In order to move the display flexibly, the mechanical structure is dominated by the vertical adjusting mechanism, pupil distance adjusting mechanism, the rotating mechanism. Pupil distance adjustment mechanism can achieve the 37 mm course and 4 mm fine-tuning. According to the sensitivity of manual fine-tuning, the accuracy of the coarse is 0.5 to 1, fine-tuning from 0.4 to 0.7. The range of vertical adjustment is 48mm, then the vertical adjustment accuracy is 0.5 to 1; The rotating mechanism can achieve three-dimensional rotation, the rotation angle is 11°.
     In this article. The filter projection optical system of the retinal projection system is to be assembled and debuged. The OTF measurement tested the installed system. The result is 0.5 at the OTF of 60lp/mm.
     The optical system of this project design meets the design requirements. The structure can meet the requirements of different users. Pupil distance adjusting mechanism allows the monitor to move horizontally. The vertical adjustment mechanism allows the display to move up and down in front of the eyes. The rotating mechanism can be three-dimensional direction of rotation. The evaluation results of the filter projection optical system show that the system can basically display.
引文
[1]张晓兵,安新伟,刘璐等.头盔显示器的发展与应用[J].电子器件2000.23(1):51-59.
    [2]孙滨生.头盔显示器的发展[R].北京:航空信息中心,航空信息研究报告,HY96002,1996.
    [3]王永年,祝梁生,孙隆和.头盔显示与瞄准系统[M],北京:国防工业出版社,1994.
    [4]蒋庆全.国外VR技术发展综述[J].飞航导弹,2002(1):27-34.
    [5]张晓兵.新技术的结晶:头盔显示器.电子产品世界.2000.
    [6]陆南燕.头盔显示器的关键技术及有关设计问题综述[J].红外与激光工2002,,31(3):237-243.
    [7]周海宪.头盔显示技术的发展[J].红外技术.2002,24(6):1-7.
    [8]杨震.视网膜投影显示技术研究[D].西安:西安工业大学,2011.
    [9]Frank DeWitt IV, Baldwin Ng.Integrated light modulation architecture for multi-beam Ret-inal Scanning Display systems [J].Helmet- and Head-Mounted Displays VII,SPIE 2002, 4711:249-259.
    [10]Marc von Waldkirch, Paul Lukowicz.Defocusing simulations on a retinal scanning display for quasi accommodation-free viewing [J].OPTICS EXPRESS,Optical Society of America.1 December 2003, 11(24):65-73.
    [11]林琳.折/衍混合投影式头盔显示光学系统设计研究[D].天津:天津大学,2006.
    [12]高伟清,周仕娥,吕国强.双目光学透视式头盔显示器的实验研究[J].光电工程.2010.37(5):139-143.
    [13]刘洪楷.头盔式激光显示器[J].研究通讯,2000,17(8):28-31.
    [14]托马斯·A·弗内斯三世,查尔斯·D·梅尔维尔,迈克尔·蒂得韦尔.带有光纤点光源的虚视网膜显示器.中国CN1183848A.[P/OL].1998-06-03[2012-02-01].http://211.157.104.87:80 80/sipo/zljs/hyjs-jieguo.jsp.
    [15]Mitsuyoshi Watanabe.Retinal Image Display Device.United States.US20030156253A1. Pub.No.:US2003.
    [16]Shoji Yamada. Apparatus and method for virtual retinal display capable of controlling pres-entation of images to viewer in response to viewer's motion.United States. US20060197832A1.Pub.No.:US2006.
    [17]Osamu Sakaue,Inazawa-shi.Retinal Scanning Display and Signal Processing Apparatus. United States.US20070013688A1.Pub.No.:US2007.
    [18]Mitsuyoshi Watanabe.Retinal scanning display with exit pupil expanded by optics offset f-rom intermediate image plane. United States.US20070171370A1.Pub.No.:US2007.
    [19]BAE Systems plc.Lockheed Selects BAE Systems to Supply F-35 Helmet Display Soluti- on[EB/OL].[2011-10-12] .http://www.defencetalk.com/lockheed-selects-bae-systems-to-su-pply-f-35-helmet-display-solution-37623/.
    [20]BAE Systems plc.BAE Systems to Deliver Head Mounted Displays to US Army[EB/OL]. [2012-01-19].http://www.defencetalk.corn/bae-systems-to-deliver-head-mounted-displa ys-to-us-army-39844/.
    [21]王涌天,刘越,郝群.一种头盔显示器的新型光学系统.中国.CN1664649A.2005.
    [22]吴海清,孙强,王健.一种眼镜式头盔显示器光学系统.中国.CN101424788A.2009.
    [23]吴华夏,杨新军,余晓芬.一种折衍混合光学系统及使用该系统的头盔显示器.中国.CN101256285A.2008.
    [24]张以谟.应用光学[M].电子工业出版社,第三版,2008,8.
    [25]周燕,金伟其.人眼视觉的传递特性及模型[J].光学技术,2002,28(1):57-62.
    [26]黄小乔.人眼对比度敏感函数在图像感知中应用研究[D].云南:云南师范大学,2007.
    [27]姚荣辉.时间域光学系统频率特性变化的设想与应用[D].西安:西安电子科技大学.2005.
    [28]郜勇.机载头盔瞄准显示器光学系统的研究[D].南京航空航天大学.2003.
    [29]刘钧,高明.光学设计[M].西安电子科技大学出版社,第一版.2006.
    [30]Ong Hiap,Woodard Ollie,Cheong Ngwe.et al.A normally black,high contrast,wide symme-trical viewing angle AMLCD for military Head Mounted Displays(HMDs) and other vie-wer applications[J].Proc.SPIE.2006.6-24.
    [31]王之江.光学设计理论基础[M].科学出版社,第一版,1965.
    [32]萧泽新.工程光学设计[M].电子工业出版社,2003,6.
    [33]陈家壁.激光原理及应用[M].电子工业出版社,第一版,,2006,,7.
    [34]郝沛明,王鹏,等.高倍率及大孔径扩束器的光学系统设计[J].中国激光,2003,30(6):494-496.
    [35]赵顺龙,王肇圻.一款投影式头盔在眼睛转动时的视空间性能评价[J].宁夏大学学报,2008,29(2):134-137.
    [36]梁铨廷.物理光学[M].机械工业出版社,2008.
    [37]胡明勇,迟如利,孙东松.1.064μm测风激光雷达扩束系统的设计[J].量子电子学报,2006,23(4):467-470.
    [38]张永利,周晶晶,耿卫东等.新型近眼显示系统的分析与设计[J].光电子技术,2004,24(2):125-128.
    [39]代永平,耿卫东,孙钟林.硅基液晶显示器(LCoS)核心—显示系统芯片的设计分析[J].光电子技术,2001,21(1):79-88.
    [40]欧毅,宋玉龙,刘明等LCoS反射层的实验研究[J].液晶与显示,2005,20(6):554-557.
    [41]田苗.航空火控系统中平显视差测量仪的设计与研制[D].西安工业大学,2009.
    [42]孔祥蕾,郝沛明.变焦扩束系统的光学设计[J].应用光学.2001.22(5):7-11.
    [43]任丽.微光成像仪的设计[D].天津,天津大学,,2005.
    [44]尚华,刘钧.高明等.激光扩束器物镜微调机构设计[J].应用光学.2007,28(3):292-296.
    [45]李广,汪建业,张燕.800万像素手机镜头的设计[J].应用光学,,2011,32(3):420-425.
    [46]崔胜利.红外成像光学系统设计[D].重庆大学,2008.
    [47]史黎丽.航天遥感相机光学系统设计研究[D].哈尔滨工业大学,2007.
    [48]侯晓萍.高连续变倍比体视显微镜—变倍物镜的光学设计[D].南京理工大学,2006.
    [49]舒朝廉,杭凌侠,郭忠达.现代光学制造技术[M].2008.
    [50]蔡立.光学零件加工技术[M].2006.
    [51]GB/T 13323—2009.中华人民共和国国家标准[S]
    [52]刘俞铭编著.光学仪器设计生产装配,检校校验及光学冷加工新工艺,新技术,质量检验标准规范实务全书[M].北京:北方工业出版社,2006.
    [53]邢宇.激光瞄具瞄准轴与发射轴平行性检测系统研[D].长春:长春理工大学,2010.
    [54]王小庆,高云国,谭启檐.头盔式单目微光夜视仪中光学系统的设计[J].激光扩束器物镜微调机构设计.2010.34(5):31-33.
    [55]阳志强.超短焦距投影镜头研制[D].西安:西安工业大学.2008.
    [56]吴华夏,董戴,苗新利.一种士兵头盔显示器的连接器装置.中国.ZL200720154221X[P/OL].2008-04-02[2012-02-01].http://211.157.104.87:8080/sipo/zljs/hyjs-jieguo.jsp.
    [57]GB/T 2428-1998.中国成年人头型系列[S].
    [58]朱瑶.光学系统的星点检验方法[J].《红外》月刊.2004.9:31-37.
    [59]杨斌.刀口仪数字化技术的研究[D].南京理工大学.2011.
    [60]程梁.微型光谱仪系统的研究及其应用[D].浙江大学.2011.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700