基于碳纳米管的非线性高分子功能材料的设计和制备
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
非线性光学的重要应用之一是光限幅。光限幅材料和器件主要用于保护人眼,光学元件和光学传感器不受强激光脉冲的损害。优越的光限幅器不仅可以很大程度削弱具有潜在危害的强激光束,同时对周围低强度的光线具有较高的透过率。基于碳纳米管的功能材料在可见光到近红外区域具有优越的广谱光限幅响应。但是碳纳米管本身溶解性差和不易加工的缺点阻碍了碳纳米管的应用。高分子功能化的碳纳米管材料不仅具有较好的溶解性且在实际光限幅应用中更易加工成薄膜及相应器件,因此,对碳纳米管进行共价高分子修饰是一项很有学术意义和实践价值的课题。
     本文通过不同的方法制备了几种高度可溶的新颖高分子/碳纳米管杂化材料,对杂化材料的基本结构及非线性光学(含光限幅)性能进行了初步研究。第一章综述了碳纳米管悬浮液,可溶碳纳米管,小分子掺杂碳纳米管和高分子/碳纳米管杂化材料的光限幅性质。其中,碳纳米管悬浮液的光限幅机理主要是热诱导产生的溶剂气泡和碳纳米管升华引发的非线性散射,而可溶碳纳米管的光限幅机理则更为复杂
     第二章中利用共轭高分子PCBF-NH2制备了共价功能化MWNT-PCBF杂化材料。通过杂化材料MANT-PCBF的N1s XPS谱图,在402eV出现的新峰归属于与羰基C原子相连的N原子(如,NH-C=O),说明高分子通过共价键成功的接枝在MANTs表面。PCBF-NH2在532nm处只显示很弱的光限幅响应,而MWNT-PCBF杂化材料的Z-扫描结果表明共价修饰后MWNTs在532和1064 nm处都具有更宽的低透过率和散射现象。
     第三章以表面带有负电荷的SWNTs为阴离子聚合引发剂实现了PVK在SWNTs上的原位生长,所制备的PVK修饰SWNT杂化材料表现出高度可溶性。在相同的线性透过率下,和原始SWNT相比SWNT-PVK悬浮液具有更好的光限幅行为,是制备光限幅器的理想材料。微等离子体和微气泡诱导的非线性散射被认为是SWNT-PVK杂化材料主要的光限幅机理。
     第四章中利用Suzuki反应合成了侧链带有醛基的共轭高分子PFC-CHO,之后通过简单的1,3-偶极环加成反应将高分子接枝在MWNTs表面得到可溶的MWNT-PFC杂化材料。和原始MWNTs的拉曼光谱图相比,接枝高分子后MWNT-PFC杂化材料的I_D/I_G值比增大,说明有大量的sp~2杂化态碳转化为sp~3杂化态,高分子成功的接枝在MANTs表面。
     第五章通过硝化反应制备PVK-NO_2,还原后得到带有氨基的高分子PVK-NH_2。高分子PVK-NH_2通过酰胺化反应修饰MWNTs,得到溶解性好的MWNT-PVK杂化材料。高分子接枝在MWNTs上之后,MWNT-PVK的红外光谱图中1706cm~(-1)处的峰归属于酰胺键的伸缩振动峰,说明高分子成功的接枝在MANTs表面。
Optical limiting is an important application of nonlinear optics, useful for the protection of human eyes, optical elements, and optical sensors from intense laser pulses. An optical limiter is such a device that strongly attenuates high intensity light and potentially damaging light such as focused laser beams,whilst allowing for the high transmission of ambient light. CNTs-based functional materials exhibit a broadband optical limiting response covering the visible to infrared region. But for CNTs, the lack of solubility and their difficult manipulation in any solvent have, imposed great limitations on their use. Many efforts have currently been invested into design and prepare soluble CNTs functionalized with polymers, which improve solubility and allow for the fabrication of films, coatings, or suspensions required for the use of nanotubes in a real optical limiting application.
     In the first Chapter, the optical limiting properties of carbon nanotube suspensions, solubilized carbon nanotubes, small molecules doped carbon nanotubes and polymer/carbon nanotube composites have been reviewed. The optical limiting responses of carbon nanotube suspensions are shown to be dominated by nonlinear scattering as a result of thermally induced solvent-bubble formation and sublimation of the nanotubes, while the solubilized carbon nanotubes optically limit is more complex.
     In the second Chapter, a novel MWNTs covalently functionalized with conjugated polymer PCBF-NH2, was synthesized. In the N1s XPS spectrum of MWNT-PCBF, an appearance of new peak at 402 eV corresponding to N bound to the carbonyl C (i.e., NH-C=O), which provides essential and useful information for the covalent attachment of the polymer onto the surface of MWNTs. Unlike PCBF-NH2, which only displayed a weak optical limiting response at 532 nm, Z-scan for MWNT-PCBF exhibited a much broader reduction in transmission and a scattering accompanying on the focus of the lens at both 532 nm and 1064 nm, indicating a prominent broadband optical limiting response. The thermally induced nonlinear scattering is responsible for the optical limiting.
     In the third Chapter, a new poly(N-vinylcarbazole)-covalently grafted single-wall carbon nanotubes(SWNT-PVK) hybrid material was synthesized by an in situ anionic polymerization reaction of N-vinylcarbazole and the negatively charged SWNTs. Incorporation of the PVK moieties onto the SWNTs surface considerably improves the solubility and processability of SWNTs. At the same level of linear transmission, the SWNT-PVK dispersions show better optical limiting performance than the pristine SWNT dispersions, which manifest this material a suitable candidate for viable optical limiting devices. Micro-plasmas and/or micro-bubbles induced nonlinear scattering is considered as the main mechanism for optical limiting.
     In the forth Chapter, a new conjugated polymer PFC-CHO with pendent aldehyde groups in the polymer sidechains was synthesized by the Suzuki coupling reaction. Then, the polymer was successfully added to the MWNT surface via a simple 1,3-dipolar cycloaddition reaction to give a soluble MWNT-PFC hybrid material. In contrast to the Raman spectrum of MWNTs, the D-to G-band intensity ratio (ID/IG) for MWNT-PFC increased, which provides useful information for the attachment of the polymer onto the surface of MWNTs.
     In the last Chapter, we used polymer PVK to prepare PVK-NH2,which was reacted with MWNTs with surface-bonded acryl chloride moieties to give a soluble MWNT-PVK hybrid material. The stretching mode of an amido bond at 1706 cm(vNH-C=O) was detected in the IR spectrum of MWNT-PVK, which provides useful information for the attachment of the polymer onto the surface of MWNTs.
引文
Niu L J, Chen Y et al. Conjugated Polymer Covalently Modified Multiwalled Carbon Nanotubes for Optical Limiting. J. Polym. Sci. A:Polym. Chem.,2010,49(1):101-109.
    [1]Maiman T H. Stimulated Optical Radiation in Ruby. Nature,1960,187,493-494.
    [2]For more information, please visit USAF Institute for National Security Studies (INSS) home page at www.usafa.af.mil/inss.
    [3]Abc News reported on Dec.30,2004. Seehttp://abcnews.go.com.
    [4]Spangler C W. Recent development in the design of organic materials for optical power limiting. J. Mater. Chem.,1999,9(9):2013-2020.
    [5]Brusatin G, Signorini R. Linear and nonlinear optical properties of fullerenes in solid state materials. J.Mater.Chem.,2002,12(7):1964-1677.
    [6]Sun Y P, Riggs J E. Organic and inorganic optical limiting materials. From fullerenes to nanoparticles. Int.Rev.Phys.Chem.,1999,18(1):43-90.
    [7]Nalwa H S, Shirk J S. Phthalocyanines:Properties and Applications, edited by C. C. Leznoff and A. B. P. Lever, VCH Publishers, Inc., NewYork (1996),Vol.4,p.83.
    [8]De La Torre G, Vazquez P, Agullo-Lopez F, Torres T. Phthalocyanines and related compounds:organic targets for nonlinear optical applications. J. Mater. Chem.,1998,8(8): 1671-1683.
    [9]De La Torre G, Vazquez P, Agullo-Lopez F, Torres T. Role of Structural Factors in the Nonlinear Optical Properties of Phthalocyanines and Related Compounds. Chem.Rev., 2004,104 (9):3723-3750.
    [10]Chen Y, Hanack M, Araki Y, Ito O. Axially modified gallium phthalocyanines and naphthalocyanines for optical limiting. Chem.Soc.Rev.,2005,34(6):517-529.
    [11]O'Flaherty S, Hold S V, Cook M J, Torres T, Chen Y, Hanack M, Blau W J. Molecular Engineering of Peripherally And Axially Modified Phthalocyanines for Optical Limiting and Nonlinear Optics. Adv.Mater,2003,15(1):19-32.
    [12]Calvete M, Yang G Y, Hanack M. Porphyrins and phthalocyanines as materials for optical limiting. Synth. Met.,2004,141(3):231-243.
    [13]Prasad P N. Nanophotonics,Wiley, New Yorkl,2004.
    [14]Wang J, Chen Y, Blau W J. Carbon nanotubes and nanotube composites for nonlinear optical devices. J Mater Chem 2009,19,7425-7443.
    [15]Iijima S. Helical microtubules of graphitic carbon. Nature,1991,354,56-58.
    [16]Huh Y, Lee J Y, Cheon J, Hong Y K, Koo J Y, Lee T J, lee C J. Controlled growth of carbon nanotubes over cobalt nanoparticles by thermal chemical vapor deposition. J. Mater. Chem.,2003,13(9):2297-2300.
    [17]Lyu S C, Liu B C, Lee T J, Liu Z Y, Yang C W, Park C Y, Lee C J. Synthesis of high-quality single-walled carbon nanotubes by catalytic decomposition of C2H2. Chem. Commun.,2003, (6):734-735
    [18]Chen G Z, Thiel W, Hirsch A. Reactivity of the Convex and Concave Surfaces of Single-Walled Carbon Nanotubes (SWCNTs) towards Addition Reactions:Dependence on the Carbon-Atom Pyramidalization. Chem. Phys. Chem.,2003,4(1):93-97
    [19]Park S, Srivastava D, Cho K. Generalized Chemical Reactivity of Curved Surfaces: Carbon Nanotubes. Nano Lett.,2003,3(9):1273-1277
    [20]Petit P, Loiseau A. Carbon nanotubes:from science to applications. Compt. Rend. Phys.,2003,4(9):967-974
    [21]Rinzler A G, Liu J, Dai H, Nikolaev P, Huffman C B, Rodriguez-Macias F J, Boul P J, Lu A H, Heymann D, Colbert D T, Lee R S, Fischer J E, Rao A M, Eklund P C, Smalley R E. Large-scale purification of single-wall carbon nanotubes:process, product, and characterization. Appl. Phys. A:Mater. Sci. Proc.,1998,67(1):29-37
    [22]Murphy R, Coleman J N, Cadek M, McCarthy B, Bent M, Drury A, Barklie R C, Blau W J. High-Yield, Nondestructive Purification and Quantification Method for Multiwalled Carbon Nanotubes. J. Phys. Chem. B.,2003,106(12):3087-3091
    [23]Banerjee S, Kahn M G C, Wong S S. Rational Chemical Strategies for Carbon Nanotube Functionalization. Chem. Eur.J.,2003,9(9):1898-1908
    [24]Sherigara B S, Kutner W, D'Souza F. Electrocatalytic Properties and Sensor Applications of Fullerenes and Carbon Nanotubes. Electroanalysis,2003,15(9):753-772
    [25]Hoenlein W, Kreupl F, Duesberg G S, Graham A P, Liebau M, Siedel R, Unger E. Carbon nanotubes for microelectronics:status and future prospects. Mater. Sci. Eng. C, 2003,23(6-8):663-669
    [26]Birkett P R. Fullerenes. Annu. Rep. Prog. Chem., Sect. A,2004,100,461-488
    [27]Scardaci V, Rozhina A G, Hennrichb F, Milne W I, Ferrari A C. Carbon nanotube-polymer composites for photonic devices. Physica E,2007,37,115-118
    [28]Xie X L, Mai Y W, Zhou X P. Dispersion and alignment of carbon nanotubes in polymer matrix:A review. Mater. Sci. Eng. R,2005,49(4):89-112
    [29]Harris P J F. Carbon nanotube composites. Int. Mater. Rev.,2004,49(1):31-43
    [30]Meyyappan M, Ed. Carbon Nanotubes:Science Applications, CRC Press LLC, Florida, USA,2005.
    [31]Sun X, Yu R Q, Xu G Q, Hor T S A, Ji W. Broadband optical limiting with multiwalled carbon nanotubes. Appl. Phys. Lett.,1998,73(25):3632-3634
    [32]Nashold K M, Brown R A, Honey R C, D Walter P. Proc. SPIE-Int. Soc. Opt. Eng., 1989,1105,78.
    [33]Mansour K, Soileau M J, Van Stryl E W. Nonlinear optical properties of carbon-black suspensions(ink). J. Opt. Soc. Am. B,1992,9(7):1100-1109.
    [34]Mansour K, Van Stryl E W, Soileau M J. Optical nonlinearities in carbon black particles. Proc. SPIE,1990,1307,350-362.
    [35]Nashold K M, Walter D P. Investigations of optical limiting mechanisms in carbon particle suspensions and fullerene solutions. J. Opt. Soc. Am. B,1995,12(7):1228-1237.
    [36]Tiwari S K, Joshi M P, Laghate M, Mehendale S C. Role of host liquid in optical limiting in ink suspensions. Opt. Laser Techn.,2002,34(6):487-491.
    [37]Dur O, Grolier-Mazza V, Frey R. Picosecond-resolution study of nonlinear scattering in carbon black suspensions in water and ethanol. Opt. Lett.,1998,23(18):1471-1473.
    [38]Chen P, Wu X, Sun X, Lin J, Ji W, Tan K L. Electronic Structure and Optical Limiting Behavior of Carbon Nanotubes. Phys. Rev. Lett.,1999,82(12):2548-2551.
    [39]Vivien L, Anglaret E, Riehl D, Bacou F, Journet C, Goze C, Rieux M, Brunet M, Lafonta F, Bernier P, Hache F. Single-wall carbon nanotubes for optical limiting. Chem. Phys. Lett.,1999,307(5):317-318.
    [40]Vivien L, Anglaret E, Riehl D, Hache F, Bacou F, Rieux M, Lafonta F, Journet C, Goze C, Brunet M, Bernier P. Optical limiting properties of singlewall carbon nanotubes. Opt. Commun.,2000,174(1-4):271-275.
    [41]Sun X, Xiong Y N, Chen P, Lin J Y, Ji W, Lim J H, Yang S S, Hagan D J, Van Stryland E W. Investigation of an Optical Limiting Mechanism in Multiwalled Carbon Nanotubes.,Appl. Opt.,2000,39(12):1998-2001.
    [42]Vivien L, Riehl D, Lancon P, Hache F, Anglaret E. Pulse duration and wavelength effects on the optical limiting behavior of carbon nanotube suspensions. Opt. Lett.,2001, 26(4):223-225.
    [43]ViVien L, Lancon P, Riehl D, Hache F, Anglaret E. Carbon nanotubes for optical limiting. Carbon,2002,40(10):1789-1797.
    [44]Vivien L, Riehl D, Hache F, Anglaret E. Nonlinear scattering origin in carbon nanotube suspensions. J. Nonlinear Opt. Phys. Mater.,2000,9(3):297-307.
    [45]Vivien L, Riehl D, Delouis J F, Delaire J, Hache A F, Anglaret E. Picosecond and nanosecond polychromatic pump-probe studies of bubble growth in carbon-nanotube suspensions. J. Opt. Soc. Am. B,2002,19(2):208-214.
    [46]Vivien L, Moreau J, Riehl D, Alloncle P A, Autric M, Hache F, Anglaret E. Shadowgraphic imaging of carbon nanotube suspensions in water and in chloroform. J. Opt. Soc. Am. B,2002,19(11):2665-2672.
    [47]Lefrant S, Angaret E, Vivien L, Riehl D, Vide-Sci. Techn. Appl.,2001,56,288.
    [48]Mishra S R, Rawat H S, Mehendale S C, Rustagi K C, Sood A K, Byopadhyay R, Govindaraj A, Rao C N R. Optical limiting in single-walled carbon nanotube suspensions. Chem. Phys. Lett.,2000,317(3-5):510-514.
    [49]Liu L Q, Zhang S, Qin Y J, Guo Z X, Ye C, Zhu D B. Solvent effects of optical limiting properties of carbon nanotubes. Synth. Met.,2003,135-136,853-854.
    [50]Pratap A, Shan A L, Singh A R, Pal S, Tyagi R K, Dawar A L, Chaturvedi P, Lamba S, Harsh M B. Linear and non-linear optical transmission from multi-walled carbon nanotubes. J. Mater. Sci.,2005,40(16):4185-4188.
    [51]Yu H J, Kim S W. Temperature Effects in an Optical Limiter Using Carbon Nanotube Suspensions. J. Korean Phys. Soc.,2005,47(4):610-614.
    [52]Jin Z, Huang L, Goh S H, Xu G, Ji W. Size-dependent optical limiting behavior of multi-walled carbon nanotubes. Chem. Phys. Lett.,2002,352(5-6):328-333.
    [53]Izard N, Billaud P, Riehl D, Anglaret E. Influence of structure on the optical limiting properties of nanotubes. Opt. Lett.,2005,30(12):1509-1511.
    [54]Wang J, Blau W J. Solvent Effect on Optical Limiting Properties of Single-Walled Carbon Nanotube Dispersions. J.Phys.Chem.C,2008,112(7):2298-2303.
    [55]Riggs J E, Walker D B, Carroll D L, Sun Y P. Optical Limiting Properties of Suspended and Solubilized Carbon Nanotubes. J. Phys. Chem. B,2000,104(30):7071-7076.
    [56]Liu L, Zhang S, Hu T, Guo Z X, Ye C, Dai L, Zhu D. Solubilized multi-walled carbon nanotubes with broadband optical limiting effect. Chem. Phys. Lett.,2002,359(3-4): 191-195.
    [57]Menna E, Scorrano G, Maggini M, Cavallaro M, Della N F, Battagliarin M, Bozio R, Fantinel F, Meneghetti M. Shortened single-walled nanotubes functionalized with poly(ethylene glycol):preparation and properties. Arkivoc,2003,12,64-73.
    [58]Li C, Liu C, Li F, Gong Q. Optical limiting performance of two soluble multi-walled carbon nanotube. Chem. Phys. Lett.,2003,380(1-2):201-205.
    [59]Yi W H, Feng W, Xu Y L, Wu H C. Synthesis and Third-Order Optical Nonlinearities of Conjugated Polymer-Bonded Carbon Nanotubes. Jpn. J. Appl. Phys. Part 1,2005,44, 3022-3027.
    [60]Feng W, Yi W, Wu H, Ozaki M, Yoshino K. Enhancement of third-order optical nonlinearities by conjugated polymer-bonded carbon nanotubes. J. Appl. Phys.,2005, 98(3):034301.
    [61]Blase X, Charlier J C, De Vita A, Car R, Redlich P, Terrones M, Hsu W K, Terrones H, Carroll D L, Ajayan P M. Boron-Mediated Growth of Long Helicity-Selected Carbon Nanotubes. Phys. Rev. Lett.,1999,83(24):5078-5081.
    [62]Xu J, Xiao M, Czerw R, Carroll D L. Optical limiting and enhanced optical nonlinearity in boron-doped carbon nanotubes. Chem.Phys. Lett.,2004,389 (4-6):247-250.
    [63]Chin K C, Gohel A, Elim H I, Ji W, etal. Optical limiting properties of amorphous SixNy and SiC coated carbon nanotubes. Chem.Phys.Lett.,2004,383(1-2):72-75.
    [64]Elim H I, Chen W, Ji W, Zhong Z, Lin J, Meng G C, Chin K C, Gohel A, Wee A T S, Chen G X, Hong M H. Optical limiting studies of new carbon nanocomposites and amorphous or amorphous SiC coated multi-walled carbon nanotubes. J. Nonlinear Opt. Phys. Mater.,2004,13(2):275-289.
    [65]Zhan H, Chen W, Wang M, Zhang C, Zou C. Optical limiting effects of multi-walled carbon nanotubes suspension and silica xerogel composite. Chem. Phys. Lett.,2003, 382(3-4):313-317.
    [66]Izard N, Menard C, Riehl D, Doris E, Mioskowski C, Anglaret E. Combination of carbon nanotubes and two-photon absorbers for broadband optical limiting. Chem. Phys. Lett., 2004,391(1-3):124-128.
    [67]Webster S, Reyes-Reyes M, Pedron X, Lopez-Soval R, Terrones M, Carroll D L. Direct Nanoimprinting of Si Single Crystals Using SiC Molds for Ordered Anodic Tunnel Etching. Adv. Mater.,2005,17(10):1239-1295.
    [68]He N, Chen Y, Bai J R, Wang J, Blau W J, Zhu J H. Preparation and Optical Limiting Properties of Multiwalled Carbon Nanotubes withπ-Conjugated Metal-Free Phthalocyanine Moieties.J. Phys. Chem. C,2009,113(30):13029-13035.
    [69]Feng M, Sun R Q, Zhan H B, Chen Y. Decoration of carbon nanotubes with CdS nanoparticles by polythiophene interlinking for optical limiting enhancement. Carbon, 2010,48,1177-1185.
    [70]Shaffer M S P, Windle A H. Fabrication and Characterization of Carbon Nanotube /Poly(vinyl alcohol) Composites. Adv. Mater.,1999,11(11):937-941.
    [71]Qian D, Dickey E C, Rews R, Rantell T. Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites. Appl. Phys. Lett.,2000,76(20):2868-2870.
    [72]Andrews R, Jacques D, Qian D, Rantell T. Multiwall Carbon Nanotubes:Synthesis and Application. Acc. Chem. Res.,2002,35(12):1008-1017.
    [73]Hill D E, Lin Y, Rao A M, Allard L F, Sun Y P. Functionalization of Carbon Nanotubes with Polystyrene. Macromolecules,2002,35(25):9466-9471.
    [74]Zhan G D, Kuntz J D, Wan J L, Mukherjee A K. Single-wall carbon nanotubes as attractive toughening agents in alumina-based nanocomposites. Nature Mater.,2003,2, 38-42.
    [75]Vincent P, Brioude A, Journet C, Rabaste S, Purcell S T, Le Brusq J, Plenet J C. Inclusion of carbon nanotubes in a TiO2 sol-gel matrix. J. Non-Cryst. Sol.,2002,311(2): 130-137.
    [76]Kuzumaki T, Miyazawa K, Ichinose H, Ito K. Processing of carbon nanotube reinforced aluminum composite.J.Mater. Res.,1998,13(9):2445-2449.
    [77]Chen W X, Tu J P, Wang L Y, Gan H Y, Xu Z D, Zhang X B. Tribological application of carbon nanotubes in a metal-based composite coating and composites. Carbon,2003, 41(2):215-222.
    [78]Haggenmueller R, Gommans H H, Rinzler A G, Fischer J E, Winey K I. Aligned single-wall carbon nanotubes in composites by melt processing methods. Chem. Phys. Lett.,2000,330(3-4):219-225.
    [79]Sennett M, Welsh E, Wright J B, Li W Z, Wen J G, Ren Z F. Dispersion and alignment of carbon nanotubes in polycarbonate. Appl. Phys. A,2003,76(1):111-113.
    [80]Allaoui A, Bai S, Cheng H M, Bai J B. Mechanical and electrical properties of a MWNT/epoxy composite. Compos. Sci. Technol.,2002,62(15):1993-1998.
    [81]Puglia D, Valentini L, Kenny J M. Analysis of the cure reaction of carbon nanotubes/epoxy resin composites through thermal analysis and Raman spectroscopy. J. Appl. Polym. Sci.,2003,88(2):452-458.
    [82]Cochet M, Maser W K, Benito A M, Callejas M A, Martinex M T, Benoit J M, Schreiber J, Chauvet O. Synthesis of a new polyaniline/nanotube composite:"in-situ" polymerisation and charge transfer through site-selective interaction. Chem. Commun., 2001,(16):1450-1451.
    [83]Hughes M, Chen G Z, Shaffer M S P, Fray D J, Windle A H. Electrochemical Capacitance of a Nanoporous Composite of Carbon Nanotubes and Polypyrrole. Chem. Mater.,2002,14(4):1610-1613.
    [84]Valentini L, Biagiotti J, Kenny J M, Santucci S. Morphological characterization of single-walled carbon nanotubes-PP composites. Compos. Sci. Technol,2003,63(8): 1149-1153.
    [85]Sanler J, Werner P, Shaffer M S P, Demchuk V, Altstadt V, Windle A H. Carbon-nanofibre-reinforced poly(ether ether ketone) composites. Compos. A:Appl. Sci. Manuf., 2002,33(8):1033-1039.
    [86]Lozano K, Barrera E V. Nanofiber-reinforced thermoplastic composites. Ⅰ: Thermoanalytical and mechanical analyses. J. Appl. Polym. Sci.,2001,79(1):125-133
    [87]Coleman J N, Dalton A B, Curran S, Rubio A, Davey A P, Drury A, McCarthy B, Lahr B, Ajayan P M, Roth S, Barklie R C, Blau W J. Phase Separation of Carbon Nanotubes and Turbostratic Graphite Using a Functional Organic Polymer. Adv. Mater.,2000,12(3): 213-216.
    [88]Coleman J N, Curran S, Dalton A B, Davey A P, Carthy B M, Blau W J, Barklie R C. Physical Doping of a Conjugated Polymer with Carbon Nano-tubes. Synth. Met.,1999, 102(1-3),1174-1175.
    [89]Murphy R, Coleman J N, Cadek M, McCarthy B, Bent M, Drury A, Barklie R C, Blau W J. A Microscopic and Spectroscopic Study of Interactions between Carbon Nanotubes and a Conjugated Polymer. J. Phys. Chem. B,2002,106(10):2210-2216.
    [90]O'Flaherty S M. Mechanical Reinforcement Effects of Carbon Nanotube Polymer Composites. Ph.D Thesis, University of Dublin, Ireland,2003.
    [91]Woo H S, Czerw R, Webster S, Carroll D L, Ballato J, Strevens A E, O'Brien D, Blau W J. Hole blocking in carbon nanotube-polymer composite organic light-emitting diodes based on poly (m-phenylene vinylene-co-2,5-dioctoxy-p-phenylene vinylene). Apply. Phys. Lett.,2000,77(9):1393-1395.
    [92]Fournet P, Coleman J N, Lahr B, Drury A, Blau W J, O'Brien D F, Hoerhold H H. Enhanced brightness in organic light-emitting diodes using a carbon nanotube composite as an electron-transport layer. J. Appl. Phys.,2001,90(2):969-975.
    [93]Tang B Z, Xu H. Preparation, Alignment, and Optical Properties of Soluble Poly (phenylacetylene)-Wrapped Carbon Nanotubes. Macromolecules,1999,32 (8): 2569-2576.
    [94]Jin Z X, Sun X, Xu G Q, Goh S H, Ji W. Nonlinear optical properties of some polymer/ multi-walled carbon nanotube composites. Chem. Phys. Lett.,2000,318(6):505-510.
    [95]Chen Y C, Raravikar N R, Schadler L S, Ajayan P M, Zhao Y P, Lu T M, Wang G C, Zhang X C. Ultrafast optical switching properties of single-wall carbon nanotube polymer composites at 1.55μm. Appl. Phys. Lett.,2002,81(6):975-977.
    [96]Goh H W, Goh S H, Xu G Q, Lee K Y, Yang G Y, Lee Y W, Zhang W D. Optical Limiting Properties of Double-C60-End-Capped Poly(ethylene oxide), Double-C60-End-Capped Poly(ethylene oxide)/Poly(ethylene oxide) Blend, and Double-C60-End-Capped Poly(ethylene oxide)/Multiwalled Carbon Nanotube Composite. J. Phys. Chem. B,2003, 107(25):6056-6062.
    [97]Wu H X, Qiu X Q, Cao W M, Lin Y H, Cai R F, Qian S X. Polymer-wrapped multiwalled carbonnanotubes synthesized via microwave-assisted in situ emulsion polymerization and optical limiting properties. Carbon,2007,45,2866-2872.
    [98]O'Flaherty S M, Murphy R, Hold S V, Cadek M, Coleman J N, Blau W J. Material Investigation and Optical Limiting Properties of Carbon Nanotube and Nanoparticle Dispersions. J. Phys. Chem. B,2003,107(4):958-964.
    [99]Venkataramaniah K, Mitra S. Microwave-assisted solid-state grafting of multi-walled carbonnanotubes on polyurethane for the synthesis of a composite with optical limiting properties. J.Mater.Chem.,2009,19(36):6568-6572.
    [100]Zhang B, Wang J, Chen Y, Fruchtl D, Yu B, Zhuang X, He N, Blau W J. Multiwalled Carbon Nanotubes Covalently Functionalized with Poly(N-Vinylcarbazole) via RAFT Polymerization:Synthesis and Nonlinear Optical Properties. J. Polym. Sci. A:Polym. Chem.,2010,48(14):3161-3168.
    [101]Tasis D, Tagmatarchis N, Bianco A, Prato M. Chemistry of Carbon Nanotubes. Chem. Rev.,2006,106(3):1106-1136.
    [102]Bahr J L, Tour J M. Covalent chemistry of single-wall carbon nanotubes. J. Mater. Chem.,2002,12(7):1952-1958.
    [103]Zhang B, Chen Y, Wang J, Blau W J, Zhuang X D, He N. Multi-walled carbon nanotubes covalently functionalized with polyhedral oligomeric silsesquioxanes for optical limiting. Carbon,2010,48(6):1738-1742.
    [104]Sano M, Kamino A, Okamura J, Shinkai S. Self-Organization of PEO-graft-Single-Walled Carbon Nanotubes in Solutions and Langmuir-Blodgett Films. Langmuir,2001, 17(17):5125-5128.
    [105]Chen Y, Lin Y, Liu Y, Doyl J, He N, Zhuang X D, Bai J R, Blau W J. Carbon Nanotube-Based Functional Materials for Optical Limting. J. Nanosci. Nanotechn.,2007,7(4/5): 1268-1283.
    [106]Porres L, Holland A, Palsson L O, Monkman A P, Kemp C, Beeby A. Absolute Measurements of Photoluminescence Quantum Yields of Solutions Using an Integrating Sphere. J. Fluoresc.,2006,16(2):267-272.
    [107]Wu H X, Tong R, Qiu X Q, Yang H F, Lin Y H, Cai R F, Qian S X. Functionalization of multiwalled carbon nanotubes with polystyrene under atom transfer radical polymerization conditions. Carbon,2007,45(1):152-159.
    [108]Chen Y, Huang Z E, Cai R F. The synthesis and characterization of C60 chemically modified poly(N-vinylcarbazole).J. Polym. Sci. B:Polym. Phys.,1996,34(4):631-640.
    [109]Ballesteros B, De La Torre G, Ehli X, Rahman G M A, F. Agullo-Rueda, D. M. Guld, T. Torres. Single-Wall Carbon Nanotubes Bearing Covalently Linked Phthalocyanines-Photoinduced Electron Transfer. J. Am. Chem. Soc.,2007,129(16):5061-5068.
    [110]Gao C, Jin Y Z, Kong H, Whitby R L D, Acquah S F A, Chen G Y, Qian H, Hartschuh A, Silva S R P, Henley S, Fearon P, Kroto H W, Walton D R M. Polyurea-Functionalized Multiwalled Carbon Nanotubes:Synthesis, Morphology, and Raman Spectroscopy. J. Phys. Chem. B,2005,109(24):11925-11932.
    [111]Guo Z, Du F, Ren D, Chen Y, Zheng J, Liu Z, Tian J. Covalently porphyrin- functionalized single-walled carbon nanotubes:a novel photoactive and optical limiting donor-acceptor nanohybrid. J. Mater.Chem.,2006,16(29):3021-3030.
    [112]Hamon M A, Chen J, Hu H, Chen Y, Itkis M E, Rao A M, Eklund P C, Haddon R C. Dissolution of Single-Walled Carbon Nanotubes. Adv. Mater.,1999,11(10):834-840.
    [113]Chen Y, Huang Z, Cai R, Yu B. Polymeric Modification and Functionalization of [60] fullerene. Eur. Polym. J.,1998,34,137-151.
    [114]Chen Y, Yang D, Yan X, Huang Z, Cai R, Zhao Y, Chen S. Preparation and structural characterization of a star-shaped C60HxBTPVKx copolymer. Eur. Polym. J.,1998, 34(12):1755-1762.
    [115]Wu W, Zhang S, Li Y, Li J, Liu L, Qin Y, Guo Z X, Dai L, Ye C, Zhu D. PVK-Modified Single-Walled Carbon Nanotubes with Effective Photo-induced Electron Transfer. Macromolecules,2003,36(17):6286-6288.
    [116]Viswanathan G, Chakrapani N, Yang H, Wei B, Chung H, Cho K, Ryu C Y, Ajayan P M. Single-Step in Situ Synthesis of Polymer-Grafted Single-Wall Nanotube Composites. J. Am. Chem. Soc.,2003,125(31):9258-9259.
    [117]Wang J, Blau W. Nonlinear optical and optical limiting properties of individual single-walled carbon nanotubes. J. Appl. Phys. B:Laser and Optic.,2008,91(3-4): 521-524.
    [118]He N, Chen Y, Bai J R, Wang J, Blau W J, Zhu J. Preparation and Optical Limiting Properties of Multiwalled Carbon Nanotubes with π-Conjugated Metal-Free Phthalocyanine Moieties. J. Phys. Chem. C,2009,113(30):13029-13035.
    [119]Chen Y, Huang W, Huang Z, Cai R, Yu H, Chen S, Yan X. Synthesis and characterization of a soluble and starlike C60(CH3)x(PAN)x copolymer. Eur. Polym. J., 1997,33(6):823-828.
    [120]Chen Y, Zhao Y, Cai R, Huang Z, Xiao L. Anionic copolymerization of [60] fullerene with styrene initiated by sodium naphthalene. J. Polym. Sci. B:Polym. Phys.,1998, 36(14):2653-2663.
    [121]Chen Y, Huang Z, Cai R, Kong S, Chen S, Shao Q, Yan X, Zhao F, Fu D. Synthesis and characterization of soluble C60-chemically modified poly(p-bromostyrene). J. Polym. Sci. A:Polym. Chem.,1996,34(16):3297-3302.
    [122]Chen Y, Cai R, Huang Z, Kong S. A novel and versatile method for the synthesis of soluble fullerenated polymers. Polym. Bull.,1995,35(6):705-710.
    [123]Shen J, Chen Y, Cai R, Huang Z. Covalent incorporation of [70]fullerene into poly (p-methylstyrene) by anionic copolymerization. Polymer,2000,41 (26):9291-9298.
    [124]Feng M, Chen Y, He N, Lin Y, Zhuang X D, Gao L, Hu Z, Zhan H B. Ultrasound-Assisted Bulk Synthesis of CdS-PVK Nanocomposites via RAFT Polymerization. J. Polym. Sci. A:Polym. Chem.,2008,46(14):5702-5707.
    [125]Zhang B, Chen Y, Zhuang X D, Liu G, Yu B, Lin Y. Poly(N-vinylcarbazole) chemically modified graphene oxide. J. Polym. Sci. A:Polym. Chem.,2010,48(12):2642-2649.
    [126]Wang J, Blau W J. Solvent Effect on Optical Limiting Properties of Single-Walled Carbon Nanotube Dispersions. J. Phys. Chem. C,2008,112(7):2298-2303.
    [127]Wang J, Blau W J. Inorganic and hybrid nanostructures for optical limiting. J. Opt. A-Pure Appl. Opt.,2009,11(2):024001/1-024001/16.
    [128]Wang J, Fruchtl D, Blau W J. The importance of solvent properties for optical limiting of carbon nanotube dispersions. Opt. Commun.,2010,283(3,1):464-468.
    [129]Sahooa N G, Ranab S, Chob J W, Li L, Chana S H. Polymer nanocomposites based on functionalized carbon nanotubes. Progress in Polymer Science.,2010,35(7),837-867.
    [130]Tasis D, Tagmatarchis N, Bianco A, Prato M. Chemistry of CarbonNanotubes. Chem.Rev.,2006,106(3):1105-1136.
    [131]Xu G D, Zhu B, Han Y, Bo Z H. Covalent functionalization of multi-walled carbonnanotube surfaces by conjugated polyfluorenes. Polymer,2007,48(26):7510-7515.
    [132]Roncali J. Linear p-conjugated systems derivatized with C60-fullerene as molecular heterojunctions for organic photovoltaics. Chem.Soc.Rev.,2005,34(6):483-495.
    [133]Kordatos K, DaRos T, Bosi S, Bergamin M, etal.. Novel Versatile Fullerene Synthons. J. Org. Chem.,2001,66(14):4915-4920.
    [134]Prato M, Maggini M. Fulleropyrrolidines:A Family of Full-Fledged Fullerene Derivatives. Accounts of Chemical Research.1998,31(9):519-526.
    [135]Bourlinos, R. Zboril, C. Trapalis. Synthesis,Characterization and Aspects of Superhy-drophobic Functionalized Carbon Nanotubes. Chem.Mater.,2008,20(9):2884-2886.
    [136]Georgakilas V, Kordatos K, Prato M, Guldi D M, Holzinger M, Hirsch A. Organic Functionalization of Carbon Nanorubes. J.Am.Chem.Soc.,2002,124(5):760-761.
    [137]Tagmatarchis N, Prato M. Functionalization of carbon nanotubes via 1,3-dipolar cycloadditions. J.Mater.Chem.,2004,14(4):437-439.
    [138]Li P P, Niu L J, Chen Y*, Wang J, Liu Y, Zhang J J, Blau W J. Poly(N-vinylcarbazole) Functionalized Single-Walled Car-bon Nanotubes:In Situ Synthesis and Optical Limiting Response. Nanotechnology, DOI:10.1088/0957-4484/22/1/015204.
    [139]Tubuko K. Poly-N-vinyl-3-nitro carbazole photoconductive material. U.S.Patent,1969, 3,595,648.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700