由外而内,看透你的“眼”
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自然界生物体们所利用的纳米尺度结构被证明是一种较为理想的增黑结构。自然界中存在某些特殊的纳米点阵结构的例子,其微观结构特征对于我们的研究工作有重大意义。复眼结构就是其中非常著名的一种。蝶/蛾复眼显微结构的研究和仿生应用是生物、物理和材料等领域共同关注的研究热点。很多蝴蝶/蛾子利用近似正六边形的小眼面组织和小眼面上纳米圆形突起的点阵阵列来形成一种减反射的涂层,以减少他们自身的复眼反射。
     受其启发,本研究中我们采用了最高温度为550°C的真空烧结工艺复制了蝶/蛾复眼的纳米点阵结构,与碳材料本身物性相耦合,从而得到了具有高效减反结构的新型超黑碳材料,来进一步提高普通碳材料的光捕获效率,从而为提高材料的光学性能提供了一种新的设计思路和制备途径。
     我们通过荧光显微镜、KEYENCE三维显微镜、SEM、EDS、拉曼光谱分析、反射光谱分析等方法,分别对蝶/蛾原始复眼与碳化复制产物进行了系列表征工作,并测试了碳化样品的减反射性能。结果表明,复制体很好地保留了原始蝶/蛾复眼的两级微观结构的几何学特征,无论是原始复眼表面密布的近似正六边形的小眼面,还是每个六边形小眼表面的纳米圆形突起的点阵阵列;并且,和无结构焙烧的碳相比较,具有纳米点阵结构的碳材料对整体光的反射损失明显减少,在近紫外-可见-近红外光波段的吸收性能提高明显,能够更好地减少反射以及改善光子收集效率。碳化之后的复制体不仅很好地保留了原始复眼的几何学形态特征,还强化了碳材料的超黑性能。
     通过蝶/蛾复眼碳化制备高效减反性能材料,自然启示我们即便利用较为简单的材料,只要通过合理精巧的结构微设计,就可以有效改善材料的光学性能。
The nanometer-scale architectures that biological members using are proved to be an ideal ultra-black structure; there exist some special examples of nano-lattice structure in nature, the micro-structures of which are of great significance for our research work. Compound eye structure is one of the most famous. For instance, some butterflies/moths use hexagonal arrays of nonclose-packed (ncp) nipples as anti-reflection coatings (ARCs) to reduce reflectivity from their compound eyes.
     In this work , a vacuum sintering process is invited to fabricate anti-reflection nano structures from certain butterflies/moths compound eyes on technologically important carbon materials, in order to improve the performance of light harvesting for carbon materials.
     Then, the samples are characterized by Fluorescence microscope, Three-dimensional microscope of KEYENCE, field emission scanning electron microscope (FESEM), Raman spectra measurements and analysis software, UV-Vis spectroscopy and Near Infrared spectroscopy. The results show that a new nano lattice structure ultra-black material was obtained with better anti-reflection properties than ordinary ones. Through this effective bio-inspired templating technique, the replicas well retained the original microstructure and geometry features, which significantly improved the ultra-black level in the near ultraviolet and visible light, due to the enhancement of photon collection efficiency. The optical properties of the nano structure carbon materials showed an obvious enhanced light harvesting capability in the UV-Vis-NIR wavelength range.
     With this interesting process to fabricate the nano lattice structure of butterflies/moths compound eyes on technologically important carbon materials, we provide a new idea and design to improve ultra-black material properties. And Nature inspires us that, even with relatively simple materials, so long as we have the rational structure of micro-compact design, we can effectively improve the optical properties of our materials.
引文
[1] ROBITAILLE P M, On the validity of Kirchhoff’s law of thermal emission, IEEE Trans. Plasma Sci. 2003,31: 1263-1267
    [2] PLANCK M, The Theory of Heat Radiation, Dover Publication. Inc, New York, USA, 1912
    [3] KODAMA S, HORIUCHI M, KUNII T, KURODA T, Ultra-black nichel-phosphorus alloy optical absorber, IEEE Trans. Instrum. Meas. 1990, 39: 230-232
    [4] LANDY N I, SAJUYIGBE S, MOCK J J, SMITH D R, PADILLA W J, Perfect meta material absorber, Physical Review Letters, 2008, 4: 2074-2104
    [5] IBN-ELHAJ M, SCHADT M, Optical polymer thin films with isotropic and anisotropic nano-corrugated surface topologies, Nature, 2001, 410: 796-799
    [6] DIVOCHIY A, et al. Superconducting nanowire photon-number-resolving detector at telecommunication wavelengths, Nature Photonics, 2008, 2: 302-306
    [7] FOX N P, Trap detectors and their properties, Metrologia, 1991, 28: 197-202
    [8]薛一冰,孟光,张乐.两种太阳能空气集热器性能比较研究[J].山东大学学报:工学版, 2009, 39(6): 147-149,158 XUE Yi-bing; MENG Guang; ZHANG Le. A comparison study of two types of solar air collector performance, Journal of Shandong University: Engineer Science, 2009, 39(6): 147-149,158
    [9]李世涛,乔学亮,陈建国.纳米复合吸波材料的研究进展[J].宇航学报, 2006, 27(2): 317-422 LI Shi-tao, QIAO Xue-liang, CHEN Jian-guo. Nano Composite Electromagnetic Wave Absorbers, Journal of Astronautics, 2006, 27(2): 317-422
    [10]张克立,从长杰,郭光辉,等.纳米吸波材料的研究现状与展望[J].武汉大学学报(理学版), 2003, 49(6): 680-684 ZHANG Keli, CONG Changjie, GUO Guanghui, et al. Current Status and Prospect of Nano Absorbing Materials, Wuhan University Journal(Natural Science Edition), 2003, 49(6): 680-684
    [11]尹树百.薄膜光学-理论与实践[M],北京:科学出版社,1987,1-2
    [12]贾克辉.等离子体辅助沉积大口径减反射膜[D],长春:中国科学院研究生院,2003
    [13]姜燮昌.大面积反应溅射技术的最新进展及应用[J],真空,2002,3: 1-2
    [14]茅昕辉,陈国平,蔡炳初.反应磷控溅射的进展[J],真空,2001,4: 1-7
    [15]姜燮昌.真空镀膜技术的最新进展[J],真空,1999,5: 1-7
    [16] Kikuta, H., Toyota, H., Yu, W. Opt. ReV. 2003, 10 (2): 63-73
    [17] Ullmann, J., Mertin, M., Lauth, H. , et al, N. Proc. SPIE, 2000, 39(2): 514-527
    [18]阎鑫,胡小玲,岳红,等.雷达吸收剂材料的研究进展[J].材料导报,2001,15(1): 62-64
    [19]万梅香,李素珍.微波与红外兼容的新型隐身材料[J].宇航材料工艺,1991(4): 42-49
    [20]谢国华.红外隐身涂料与雷达吸收材料相容性研究[J].材料工程,1993(5): 5-7
    [21]曹辉.结构吸波材料及其应用前景[J].宇航材料工艺,1993,2(4): 34-37
    [22]焦桓,周万城.雷达吸收剂研究进展[J].材料导报,2000,14(3):11-12
    [23] GARCIA-VIDAL F J, PITARKE J M, PENDRY J B, Effective medium theory of the optical properties of aligned carbon nanotubes, Phys. ReV. Lett. 1997, 78: 4289
    [24] GEVAUX D, Reflection what reflection, Nature Photonics, 2007, 1: 186
    [25] BORN M, WOLF E, Principles of optics: Electromagnetic theory of propagation, interference and diffraction of light, 7th edition. Cambridge University Press, Cambridge, UK, 1999
    [26] XI J Q, et al. Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection, Nature Photonics, 2007, 1: 176
    [27] BROWN J C, BREWER P J, MILTON M J T, The physical and chemical properties of electroless nickel-phosphorus alloy and low reflectance nickel-phosphorus black surfaces, Journal of Materials Chemistry, 2002, 12: 2749-2754
    [28] LEE Y, RUBY D S, PETERS D W, McKENZIE B B, ZnO nanostructures as efficient antireflection layers in solar cells, 2008, Nano Letters 8: 1501-1505
    [29] Xi, J. Q., Schubert, M. F., Kim, J. K., et al. Smart, J. A. Nat. Photonics, 2007, 1: 176–179.
    [30] Zu- Po Yang, Lijie Ci, James A. Bur, et al. Experimental observationof an extremely dark material made by a low- density nanotube array [J]. Nano Lett. 2008, 8 (2):446-451
    [31] LI Y et al. Biomimetic surfaces for high performance optics, Advanced Materials, 2009, 21: 1-4
    [32] VUKUSIC P, SAMBLES J R, Photonic structures in biology, Nature, 2003, 424: 852-855
    [33] YOSHIDA A, MOTOYAMA M, KOSAKU A, MIYAMOTO K, Antireflective Nano-protuberance array in the transparent wing of a Hawkmoth Cephonodes hylas, Zool. Sci. 1997, 14: 737-741
    [34] LAND M F, NILSSON D E, Animal Eyes, Oxford: Oxford Univ. UK, 2001
    [35] CLAPHAM P B, HUTLEY M C, Reduction of lens reflection by the moth eye principle, Nature, 1973, 244: 281-282
    [36] W.Barthlott, C.Neinhuis,Purity of the sacred lotus,or escape from contamination in biological surfaces, Planta, 1997, 202: 1-8
    [37] L.Feng, Y.N.Zhang,J.M.Xi, Y.Zhu,N.Wang, F.Xia,L.Jiang, Petal Effect: A Super hydrophobic State with High Adhesive Force, Langmuir, 2008, 24: 4114-4119
    [38] C.Neinhuis, Barthlott, Characterization and Distribution of Water-repellent,Self-cleaning Plant Surfaces, Ann.Bot.1997, 79: 667-677
    [39] X.F.Gao,X.Yan,L.Xu,K.Zhang,J.Zhang,L.Jiang, The Dry-Style Antifogging Properties of Mosquito Compound Eyes and Artificial Analogues Prepared by Soft Lithography, Adv.Mater.2007, 19: 2213-2217
    [40] K.Atumn, YA.Liang, S.T.Hsieh, W.Zesch, W.P.Chan, T.W.Kenny,R.Feating,R.J. Full Adhesive force of a single gecko foot-hair, Nature, 2000, 405: 681-685
    [41] C.Guo,L.Feng,J.Zhai,G.Wang,Y.Song,L.Jiang,D.Zhu,Large Area Fabrication of a Nanostructure-Induced Hydrophobic Surface from a Hydrophilic Polymer, Chem PhysChem.2004, 5: 750-753
    [42] CLAPHAM P B, HUTLEY M C, Reduction of lens reflection by the moth eye principle, Nature, 1973, 244: 281-282
    [43]王荫长.昆虫生理学[M].北京:中国农业出版社, 2004
    [44] BERTHA F A. STUMM A W. Surface Structure of the Compound Eye of Various Drosophila Species and Eye Mutants of Drosophila melanogaster[J]. Theoretical and Applied Genetics, 1974, 44: 262-265 [ 45]侯天德,何福元,程昉.菜粉蝶与蛱蝶复眼和视叶的形态学结构研究[J].西北师范大学学报:自然科学版,2002, 38 (4): 66-69
    [46]冯怀亮,张学冬,等.蚂蚁触角感受器和复眼的扫描电镜观察[J].昆虫知识, 1992 ,29 (5): 292-295
    [47]陈伟之,杨思咸,等.鳞翅目昆虫复眼表面微观结构特点[J].电子显微学报, 1998 ,17 (4): 349-350
    [48]王荫长.昆虫生理生化学[M].北京:中国农业出版社, 1994
    [49] M.Srinivasarao Nano-Optics in the Biological World: Beetles ,Butterflies,Birds,and Moths Chem.Rev.1999, 99: 1935-1961
    [50] Gaylord T K,Baird W E ,Moharam M G. Appl Opt,1986, 25 (24): 4562-4567
    [51] Grann E B, Moharam M G. Appl Opt, 1996, 35 (5): 795-800
    [52] Brundrett D L, Glytsis E N, Gaylord T K. Appl Opt, 1994, 33 (13): 2695-2706
    [53] Motamedi M E, Southwell W H, Gunning WJ . Appl Opt, 1992, 31 (22): 4371-4376
    [54]张国平,叶嘉雄,李再光.光学学报, 1996, 16 (12): 1819-1823
    [55]张玉河,陈岩松.物理学报, 1995, 44 (1): 204-209
    [56]郑师海,李德华,陈岩松,等.物理学报,1996, 45 (8): 1292-1295
    [57]王植恒,傅克祥,文军,等.抗反射亚波长光栅的特性研究[J].激光技术, 1999, 23(1) : 34-37
    [58]闫海燕,魏国树,等.龟纹瓢虫成虫的复眼形态及其显微结构[J].昆虫知识, 2006 ,43(3) : 344-348
    [59]陈伟之,杨思咸,李素梅,等.蝶类复眼小眼面表面超微结构的比较研究,昆虫学报, 2002, 45 (1): 35-40
    [60] H.A.Macleod Thin-Film Optical Filters. Institute of Physics Bristol: Adam Hilger,1986
    [61] D.G Stavenga, S Foletti, G Palasantzas and K Arikawa, Light on the moth-eye corneal nipple array of butterflies, Proc. R. Soc. B, 2006, 273: 661-667
    [62] YU Z, GAO H, WU W, et al. Fabrication of large area sub-wavelength antireflection structures on Si using tri-layer resist nano-imprint lithography and liftoff, J.Vac. Sci. Technol. 2003, 21: 2874-2877
    [63] HUANG Y, et al. Improved broadband and quasi-omni directional anti-reflection properties with biomimetic silicon nanostructures, Nature Nanotechnology, 2007, 2: 770-774
    [64] SUN C, JIANG P, JIANG B, Broadband moth-eye antireflection coatings on silicon, Applied Physics Letters, 2008, 28: 11-12
    [65] DIEDENHOFEN S L, et al. Broad-band and omni directionalantireflection coatings based on semiconductor nano-rods, Advanced Materials, 2009, 21: 1-6
    [66] M. Srinivasarao, Chem. Rev. 1999, 19: 1935-1938
    [67] T. L. Sun, L. Feng, X. F. Gao, L. Jiang, Acc. Chem. Res. 2005, 38: 644.
    [68] P. Vukusic, J. R. Sambles, Nature, 2003, 424: 852-855.
    [69] D. G. Stavenga, S. Foletti, G. Palasantzas, K. Arikawa, Proc. R. Soc. B 2006, 273: 661
    [70] P. B. Clapham, M. C. Hutley, Nature, 1973, 244: 281
    [71] Wilson, S. J. & Hutley, M. C. The optical properties of moth eye antireflection surfaces. Opt. Acta, 1982,29: 993–1009
    [72] YOSHIDA A, MOTOYAMA M, KOSAKU A, MIYAMOTO K, Antireflective nano-protuberance array in the transparent wing of a Hawkmoth Cephonodes hylas, Zool. Sci. 1997, 14: 737-741
    [73] LAND M F, NILSSON D E, Animal Eyes, Oxford: Oxford Univ. UK, 2001
    [74] CLAPHAM P B, HUTLEY M C, Reduction of lens reflection by the moth eye principle, Nature, 1973, 244: 281-282
    [75] ROBERSON J, Electronic and atomic structure of amorphous carbon, Physical Review B, 1987, 35: 2946-2957
    [76] TAMOR M A, VASSELL W C, Raman fingerprinting of amorphous carbon films, Journal of Applied Physics, 1994, 76: 3823-3827
    [77] SCHWAN J, ULRICH S, BATORI V, EHRHARDT H, SILVA S R P, Raman spectroscopy on amorphous carbon films, Journal of Applied Physics, 1996, 80: 440-445

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700