基于萘四酰亚胺和苝酰亚胺衍生物的新型光化学探针和螺旋超分子自组装
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于分子识别的光化学探针和自组装是超分子化学研究领域的两个重要发展分支。光化学探针具备灵敏度高和选择性好等优点,同时提供了方便、快捷和廉价的分析检测金属离子等物种的手段,因此在环境化学、分析化学和生物医学等领域深受重视。目前,大部分荧光化学探针在生物应用中主要障碍是其较短的发射波长,易受自发荧光或背景荧光干扰,并对活体组织或生物体存在光毒性,而当发射波长延伸到近红外区,将显著削弱这些因素的不利影响。因此,开发近红外长波长的新型荧光染料和荧光探针,对于生物体内或体外检测具有很高的应用价值。
     与发展相当成熟的键合型探针相比,基于不可逆化学反应的反应型探针具有检测对象专一、吸收光谱和颜色多变(肉眼易于识别)的特点,因此近年来此类探针受到越来越多的关注。此外,超分子自组装是微观领域“积小为大”合成途径的关键。小分子通过氢键、π-π堆积等非共价作用可以自发组织形成形态优美的更大尺寸的纳米结构。特别是手性小分子构筑单元的精确设计,这对实现超分子螺旋形貌必不可少。
     本论文首先创新性地合成了一系列萘四酰亚胺类长波长荧光染料,随后设计合成了基于这类新型萘四酰亚胺和花酰亚胺类染料的近红外荧光探针和反应型汞离子探针,并进一步研究了以花酰亚胺为构筑单元的手性可控自组装行为。
     第一章择要介绍了光化学探针的基本原理,并对近红外荧光探针、反应型汞离子探针和具有螺旋结构的超分子自组装的重要进展进行综述;提出本论文的研究内容。
     第二章通过杂环胺类对二溴萘四酰亚胺(DBI)的亲核反应,设计合成了8个未见报道的基于萘四酰亚胺母体(NDIs)的新型单取代或双取代荧光染料,其结构均得到了很好的表征。系统性光谱研究表明,胺类的推电子作用差异可以很好地调控这些化合物的吸收和荧光,使之成为一类性能良好的可见或近红外荧光染料(最大吸收:509~580nm;最大发射:565~638 nm;荧光量子效率:0.21~0.54;斯托克斯位移:36~77 nm),这对长波长荧光染料的扩充和应用很有意义。
     第三章设计、合成了两个母体结构新颖的近红外荧光增强型锌离子探针PND和PNT。其设计思想是以哌啶取代的萘四酰亚胺作为近红外荧光团,研究发现由于配体DPEA和TPEA的结构差异,导致离子探针PND和PNT的荧光机制发生明显的差异,即PND主要遵循光诱导电子转移(PET)机制,而PNT则是分子内光电荷转移(ICT)为主导机制。PND与锌离子以三配位形式结合,吸收与荧光光谱位移基本不变,但荧光增强约4倍,属于典型的PET特征。相比之下,PNT与锌离子以更稳定的五配位形式结合,吸收与荧光均明显蓝移,具有明显的ICT现象。由于配位模式差异,PND对锌离子的选择性优于PNT,而PNT敏感性则优于PND。分别实现了PND和PNT对KB活细胞内锌离子的荧光成像,表明两个探针都具有很好的膜渗透性和低毒性。这是首例基于萘四酰亚胺荧光染料的近红外光化学探针,对发展母体结构新颖的近红外探针具有重要意义。
     第四章巧妙地利用萘四酰亚胺母体推拉电子变化易于调控其光谱的特点,创新地设计、合成了三个母体结构新颖、含不同硫脲反应基团的比色型汞离子化学探针(PN1、PN2和PN3),发现其中含有给电子苯基硫脲反应基团的PNl对汞离子识别过程最快。PN1和PN3与Hg2+作用后,颜色均从蓝色变为酒红色(其最大吸收波长分别产生25和44nm的蓝移),完全适合肉眼比色识别,其对汞离子的比色检测限达5μM。此外,采用PN3制作了快速定性检测试纸,可检测出水中浓度低至10μM的汞离子。这对发展母体结构新颖的反应型探针及其在环境监测等方面的应用有着重要的意义。
     第五章发现一种醋酸汞促1,3-二取代硫脲的N-乙酰化反应。机理研究表明,反应先后经历脱硫形成碳二亚胺中间体及其N-乙酰化重排的过程。据此巧妙地设计了以花酰亚胺为荧光团,苯基硫脲衍生物为反应基团的荧光增强型汞离子探针P3。在醋酸根辅助下,P3仅对Hg2+表现出荧光增强,有效克服了Ag+和Cu2+等亲硫原子的干扰,这对发展反应新颖、具有良好选择性和敏感性的反应型探针很有意义。
     第六章已报道的花酰亚胺氢键自组装多基于N-H...O作用,因此设计、合成了8个花酰亚胺母体含有不同取代基,亚胺部分引入手性羧酸(酯)基团的花酰亚胺类化合物,独辟蹊径地研究了基于O-H...O作用的花酰亚胺氢键自组装过程。螺旋形花酰亚胺超分子结构则多基于分子间堆积作用构建,巧妙地将对甲酚引入花酰亚胺母体以克服分子间π-π堆积作用,使之通过分子间羧酸氢键作用实现了新颖的超分子螺旋形结构,并进一步通过核磁氢和CD谱得到验证。通过改变温度、浓度和溶剂极性等参数能够可逆或者破坏性地调控超分子螺旋的自组装过程。螺旋方向可以通过花酰亚胺中的氨基酸残基调控,也就是说,L-或D-型光学异构可以分别诱导构筑单元形成P-(右手)或M-(左手)方向的螺旋。有趣的是,AFM图片显示其还能在HOPG的表面聚集形成空心圆球形态。
Based on the molecular recognition principles, optial chemosensors and self-assembly have become two important branches of supramolecular chemistry. Optial chemosensors are highly valuable in a variety of fields such as environmental chemistry, analytic chemistry and bio-medicinal science because they can provide accurate, on-line, and low-cost detection of toxic heavy metal ions with high selectivity and sensitivity. Unfortunately, the main application problems with most biolocal fluorescent sensors are short emission wavelength strongly disturbed by the auto-and/or background-fluorescence and harmful to the living tissues and biomass. Since the remarkable near-infrared (NIR) emission can eliminate the influence of above-mentioned disadvantages, the exploiture of NIR biological dyes and NIR fluorescent chemosensors has been of great value for both in vitro and in vivo biological applications.
     Compared to the relatively well-developed coordination-based chemosensors, irreversible-chemical-reaction-based chemodosimeters have recently emerged as a research area of significant importance due to its highly analyte-specific property and providing signaling changes in both the absorption wavelength and color, which can be detected by the naked eye. Furthermore, supramolecular self-assembly is one of the key techniques for the "bottom-up" approach in nanotechnology, by which small molecules from well-defined larger nanostructures via multiple non-covalent intermolecular forces, including hydrogen-bonding,π-πstaking and so on. In particular, the precise control of chiral building blocks is essential to supramolecular helical performance.
     The aim of this thesis is to develop new fluorescent chemosensors and chemodosimeters based on novel naphthalene diimide (NDI) and perylene bisimides (PBI) dyes. Additionally, perylene-bisimide-based self-assemblies are also discussed.
     In Chapter 1, the major sensing principles of optical chemosensors are introduced, and the progress in NIR fluorescent chemosensors, chemodosimeters for Hg2+, and supramolecular helical self-assemblies is reviewed.
     In Chapter 2, eight highly colored and photoluminescent mono-or di-core-substituted naphthalene diimide (NDIs) have been rationally designed and synthesized from 2,6-dibromonaphthalene diimide (DBI) by means of a stepwise nucleophilic substitution of two bromine atoms by heterocyclic secondary amines, which have been characterized by a wide range of spectroscopic methods. Electronic absorption and fluorescence studies revealed that the amine substituents with different electron-donating abilities leads to the NDIs with tuneable absorption and emission properties, falling in the preferable region to NIR (λabsmax: 509~580 nm;λemmax:565~638 nm;ΦF:0.21~0.54; Stokes shift:36~77nm).
     In Chapter 3, two novel NIR fluorescent "turn-on" chemosensors (PND and PNT) for Zn2+ based on NDI fluorophore have been designed, synthesized and optimized as well. Our strategy was to choose NDI as a novel NIR fluorophore, and DPEA or TPEA as the receptor, respectively, so as to improve the selectivity to Zn2+. In the case of PND, The nearly 4-fold fluorescence enhancement and the negligible shift in absorption and emission spectra of PND with Zn2+ titration are dominated with a typical photoinduced electron-transfer (PET) process, resulting in the formation of a three-coordinate Zn2+-PND complex. In contrast, the distinct blueshift in both absorbance and fluorescence is indicative of a combination of PET and ICT processes, giving a more stable five-coordinate Zn2+-PNT complex. Due to the differential binding mode caused by the ligand effect, PND shows excellent selectivity to Zn2+ over other metal ions but lower sensitivity when compared with PNT. Also both PND and PNT were successfully used to image intracellular Zn2+ ions in the living KB cells, indicating high cell-permeability and low toxicity. To our best knowledge, this is the first report of NIR cation chemosensors based on NDI as fluorophore, which may be helpful to tailor NDI as reporter groups to be specific for the other NIR cation chemosensors.
     In Chapter 4, three novel NDI derivatives (PN1, PN2 and PN3) with different isothiocyanate substituents as dosimeter units via the specific Hg2+ -induced desulfurization have been synthesized for developing colorimetric chemodosimeters to Hg+. The distinct response is dependent on the electron-donating effect of isothiocyanate substituents, that is, the stronger in the electron-donating capability of isothiocyanate substituents, the faster in the Hg2+ -promoted cyclization. Both PN1 and PN3 with Hg2+ exhibit color changes from blue to wine-red (with blue shifts of 25 and 44nm in absorption, respectively), fully meeting "naked-eye" colorimetric changes with a detection limit of 5μM. In addition, PN3 also successfully developed as Hg2+ test kits with a discernible concentration of 10μM.
     Chapter 5 describes an unprecedented Hg(OAc)2-induced N-acetylation of 1,3-disubstituted thioureas, involving the intermediate of carbodiimide. Accroding to the mechanism of Hg(OAc)2-induced N-acetylation of 1,3-disubstituted thioureas, a novel chemosensor P3 based on perylenebisimide (PBI) as signaling moiety and thiourea as reactive moiety has been designed and synthesized as a turn-on fluorescent chemodosimeter towards highly sensitivity and selectivity for Hg2+ among common metal ions, in an acetate aqueous medium.
     Little attention has been paid to the O-H...O hydrogen bonding interactions in the PBI system although the conventional hydrogen bonding in carboxylic acids is particularly strong in solutions, on surface and in crystal with high sensitivity to various environmental factors. In Chapter 6, our motivation is focused on borrowing the help of O-H...O hydrogen bonding interactions to realize the control in chiral self-assembly. For this purpose, we construct the target chiral a-amino acid system based on PBI system with the following considerations:i) to obtain PBIs bearing the self-assembly unit of carboxylic groups, chiral a-amino acid is an obviously good choice to the building block with an easy imidation to incorporate carboxylic groups and retain the original chiral center of amino acid; ii) incorporating the substitute of 4-methylphenoxy to their bay-region at PBI to prevent the competitive H- or J-aggregation during the interaction process of hydrogen bonding; iii) attempting to realize helical arrangement via the chiral center control with two exact enantiomers of L- and D-phenylalanine. The combination of optical, 1H NMR and CD spectra allows the observation of chirality-controlled helical superstructure in a self-assembled perylene bisimide system via intermolecular hydrogen-bonding. Interestingly, the chiral carboxylic acid-functionalized PBI systems are found to be spontaneously self-assembled into supramolecular helices, which are strongly dependent upon several factors, such as solvent polarity, concentration and temperature. Moreover, the supramolecular helical chirality can be well controlled by the chiral amino acid residues in PBI system, that is, the assembled clockwise (Plus, P) or anticlockwise (Minus,M) helices can be induced by L-or D-isomers, respectively, which also further assemble into hollow nanospheres in the solid state (AFM study).
引文
[1]Lehn J. M., Supramolecular Chemistry-Scope and Perspectives Molecules, Super-molecules, and Molecular Devices. Angew. Chem., Int. Ed.,1988,27(1):89-112
    [2]Wu S.-K., Some Photo-Chemical and Photo-Physical Problems in Fluorescent Chemical Sensor Study. Prog. Chem.,2004,16(02):174-183
    [3]Kim J. S., Quang D. T., Calixarene-Derived Fluorescent Probes. Chem. Rev.,2007,107: 3780-3799
    [4]Quang D. T., Kim J. S., Fluoro- and Chromogenic Chemodosimeters for Heavy Metal Ion Detection in Solution and Biospecimens. Chem. Rev.,2010,110(10):6280-6301
    [5]Kovar J. L., Simpson M. A., Schutz-Geschwender A., Olive D. M., A systematic Approach to the Development of Fluorescent Contrast Agents for Optical Imaging of Mouse Cancer Models. Anal. Biochem.,2007,367(1):1-12
    [6]Peng X. J., Song F. L., Lu E. H., Wang Y. N., Zhou W., Fan J. L., Heptamethine Cyanine Dyes with a Large Stokes Shift and Strong Fluorescence:A Paradigm for Excited-State Intramolecular Charge Transfer. J. Am. Chem. Soc.,2005,127:4170-4171
    [7]Kojima H., Development of Near-infrared Fluorescent Probes for In vivo Imaging. Yakugaku Zasshi.,2008,128(11):1653-1663
    [8]Kiyose K., Kojima H., Urano Y., Nagano T., Development of a Ratiometric Fluorescent Zinc Ion Probe in Near-Infrared Region, Based on Tricarbocyanine Chromophore. J. Am. Chem. Soc.,2006,128:6548-6549
    [9]Tang B., Huang H., Xu K., Tong L., Yang G., Liu X., An L., Highly Sensitive and Selective Near-Infrared Fluorescent Probe for Zinc and Its Application to Macrophage Cells. Chem. Commun.,2006,42:3609-3611
    [10]Tang B., Cui L. J., Xu K. H., Tong L. L., Yang G. W., An L. G., A Sensitive and Selective Near-Infrared Fluorescent Probe for Mercuric Ions and Its Biological Imaging Applications. ChemBioChem.,2008,9(7):1159-1164
    [11]Zhu M., Yuan M., Liu X., Xu J., Lv J., Huang C., Liu H., Li Y., Wang S., Zhu D., Visible Near-Infrared Chemosensor for Mercury Ion. Org. Lett.,2008,10:1481-1484
    [12]Cheng T., Xu Y., Zhang S., Zhu W., Qian X., Duan L., A Highly Sensitive and Selective OFF-ON Fluorescent Sensor for Cadmium in Aqueous Solution and Living Cell. J. Am. Chem. Soc.,2008,130(48):16160-16161
    [13]Yang Y., Cheng T., Zhu W., Xu Y., Qian X., Highly Selective and Sensitive Near-Infrared Fluorescent Sensors for Cadmium in Aqueous Solution. Org. Lett.,2011, 13(2):264-267
    [14]Coskun A., Yilmaz M. D., Akkaya E. U., Bis(2-pyridyl)-Substituted Boratriaza-indacene as an NIR-Emitting Chemosensor for Hg(II). Org. Lett.,2007,9(4):607-609
    [15]Atilgan S., Ozdemir T., Akkaya E. U., A Sensitive and Selective Ratiometric Near IR Fluorescent Probe for Zinc Ions Based on the Distyryl-BODIPY Fluorophore. Org. Lett., 2008,10(18):4065-4067
    [16]Atilgan S., Kutuk I., Ozdemir T., A Near IR Di-Styryl BODIPY-Based Ratiometric Fluorescent Chemosensor for Hg(II). Tetrahedron Lett.,2010,51:892-894
    [17]Peng X., Du J., Fan J., Wang J., Wu Y., Zhao J., Sun S., Xu T., A Selective Fluorescent Sensor for Imaging Cd in Living Cells. J. Am. Chem. Soc.,2007,129(6):1500-1501
    [18]Qin W., Baruah M., Sliwa M., der Auweraer M. V., Borggraeve W. M., Beljonne D., Averbeke B. V., Boens N., Ratiometric, Fluorescent BODIPY Dye with Aza Crown Ether Functionality:Synthesis, Solvatochromism, and Metal Ion Complex Formation. J. Phys. Chem. A.,2008,112:6104-6114
    [19]Yin S., Leen V., Snick S. V., Boens N., Dehaen W., A Highly Sensitive, Selective, Colorimetric and Near-Infrared Fluorescent Turn-On Chemosensor for Cu2+ Based on BODIPY. Chem. Commun.,2010,46:6329-6331
    [20]Zhang X., Lovejoy K. S., Jasanoff A., Lippard S. J., Water-soluble Porphyrins As a Dual-Function Molecular Imaging Platform for MRI and Fluorescence Zinc Sensing. PNAS,2007,104(26):10780-10785
    [21]Hung C.-H., Chang G.-F., Kumar A., Lin G.-F., Luo L.-Y., Ching W.-M., Diau W.-G., m-Benziporphodimethene:a New Porphyrin Analogue Fluorescence Zinc(II) Sensor. Chem. Commun.,2008,44:978-980
    [22]Ding Y., Xie Y., Li X., Hill J. P., Zhang W., Zhu W., Selective and Sensitive "Turn-On" Fluorescent Zn2+ Sensors Based on Di- and Tripyrrins with Readily Modulated Emission Wavelengths. Chem. Commun.,2011, DOI:10.1039/C1CC11493J
    [23]a) Zhu X.-J., Fu S.-T., Wong W.-K., Guo J.-P., Wong W.-Y., A Near-Infrared Fluore-scent Chemodosimeter for Mercuric Ion Based on an Expanded Porphyrin. Angew. Chem.; Int. Ed.,2006,45(19):3150-3154; b) Zhu X., Fu S., Wong W.-K., Wong W.-Y., A Near-Infrared Fluorescent Chemodosimeter for Silver(Ⅰ) Ion Based on an Expanded Porphyrin. Tetrahedron Lett.2008,49(11):1843-1846
    [24]Oguz U., Akkaya E. U., A Squaraine-Based Sodium Selective Fluorescent Chemosensor. Tetrahedron Lett.1998,39(32):5857-5860
    [25]Akkaya E. U., Turkyilmaz S., A Squaraine-Based Near IR Fluorescent Chemosensor for Calcium. Tetrahedron Lett.1997,38(25):4513-4516
    [26]Dilek G., Akkaya E. U., Novel Squaraine Signalling Zn(Ⅱ) Ions:Three-State Fluorescence Response to a Single Input. Tetrahedron Lett.,2000,41(19):3721-3724
    [27]Wang W., Fu A., You J., Gao G., Lan J., Chen L., Squaraine-Based Colorimetric and Fluorescent Sensors for Cu2+ -Specific Detection and Fluorescence Imaging in Living Cells. Tetrahedron,2010,66(21):3695-3701
    [28]Luo C., Zhou Q., Zhang B., Wang X., A New Squaraine and Hg2+ -Based Chemosensor with Tunable Measuring Range for Thiol-Containing Amino Acids. New J. Chem.,2011, 35:45-48
    [29]Chen C., Wang R., Guo L., Fu N., Dong H., Yuan Y., A Squaraine-Based Colorimetric and "Turn on" Fluorescent Sensor for Selective Detection of Hg2+ in an Aqueous Medium. Org. Lett.,2011,13(5):1162-1165
    [30]Goswami S., Sen D., Das N. K., A New Highly Selective, Ratiometric and Colorimetric Fluorescence Sensor for Cu2+ with a Remarkable Red Shift in Absorption and Emission Spectra Based on Internal Charge Transfer. Org. Lett.,2010,12(4):856-859
    [31]Wang H., Wang D., Wang Q., Li X., Schalley C. A. Nickel(II) and Iron(III) Selective Off-On-Type Fluorescence Probes Based on Perylene Tetracarboxylic Diimide. Org. Biomol. Chem.,2010,8:1017-1026
    [32]Yang Y.-K., Yook K.-J., Tae J., A Rhodamine-Based Fluorescent and Colorimetric Chemodosimeter for the Rapid Detection of Hg2+ Ions in Aqueous Media. J. Am. Chem. Soc.,2005,127(48):16760-16761
    [33]Shang G. Q., Gao X., Chen M. X., Zheng H., Xu J.-G. A Novel Hg2+ Selective Ratiometric Fluorescent Chemodosimeter Based on an Intramolecular FRET Mechanism. J. Fluoresc.,2008,18(6):1187-1192
    [34]Zhang X., Xiao Y., Qian X., A Ratiometric Fluorescent Probe Based on FRET for Imaging Hg2+ Ions in Living Cells. Angew. Chem.; Int. Ed.,2008,47:8025-8029
    [35]Yang X.-F., Li Y., Bai Q., A Highly Selective and Sensitive Fluorescein-Based Chemodosimeter for Hg2+ Ions in Aqueous Media. Anal. Chim. Acta.,2007,584:95-100
    [36]Chen X., Nam S-.K., Jou M. J., Kim Y., Kim S. J., Park S., Yoon J., Hg2+ Selective Fluorescent and Colorimetric Sensor: Its Crystal Structure and Application to Bioimaging. Org. Lett.,2008,10(22):5235-5238
    [37]Shi W., Ma H., Rhodamine B Thiolactone:a Simple Chemosensor for Hg2+ in Aqueous Media. Chem. Commun.,2008,44:1856-1858
    [38]Du J., Fan J., Peng X., Sun P., Wang J., Li H., Sun S., A New Fluorescent Chemodosimeter for Hg2+: Selectivity, Sensitivity, and Resistance to Cys and GSH. Org. Lett.,2010,12(3):476-479
    [39]Liu B., Tian H., A Selective Fluorescent Ratiometric Chemodosimeter for Mercury Ion. Chem. Commun.,2005,41:3156-3158
    [40]Lu Z.-J., Wang P.-N., Zhang Y., Chen J. Y., Zhen S., Leng B., Tian H. Tracking of Mercury Ions in Living Cells with a Fluorescent Chemodosimeter Under Single- or Two-Photon Excitation. Anal. Chim. Acta.,2007,597(2):306-312
    [41]Leng B., Zou L., Jiang J., Tian H., Colorimetric Detection of Mercuric Ion(Hg2+) in Aqueous Media Using Chemodosimeter-Functionalized Gold Nanoparticles. Sens. Actuators, B.,2009,140(1):162-169
    [42]Guo Z., Zhu W., Zhu M., Wu X., Tian H., Near-Infrared Cell-Permeable Hg2+-Selective Ratiometric Fluorescent Chemodosimeters and Fast Indicator Paper for MeHg+ -Based on Tricarbocyanines. Chem. Eur. J.,2010,16(48):14424-14432
    [43]Wu J.-S., Hwang I.-C., Kim K. S., Kim J. S., Rhodamine-Based Hg2+ -Selective Chemodosimeter in Aqueous Solution: Fluorescent OFF-ON. Org. Lett.,2007,9(5): 907-910
    [44]Lee M. H., Cho B.-K., Yoon J., Kim J. S., Selectively Chemodosimetric Detection of Hg(Ⅱ) in Aqueous Media. Org. Lett.,2007,9(22):4515-4518
    [45]Lee M. H., Lee S. W., Kim S. H., Kang C., Kim J. S., Nanomolar Hg(Ⅱ) Detection Using Nile Blue Chemodosimeter in Biological Media. Org. Lett.,2009,11(10):2101-2104
    [46]Li H., Yan H., Ratiometric Fluorescent Mercuric Sensor Based on Thiourea-Thiadiazole-Pyridine Linked Organic Nanoparticles. J. Phys. Chem. C.,2009,113(18):7526-7530
    [47]Cheng C.-C., Chen Z.-S., Wu C.-Y., Lin C.-C., Yang C.-R., Yen Y.-P. Azo Dyes Featuring a Pyrene Unit: New Selective Chromo- and Fluoro-genic Chemodosimeters for Hg(II). Sens. Actuators, B.,2009,142:280-287
    [48]Song K. C., Kim J. S., Park S. M., Chung K.-C., Ahn S., Chang S.-K. Fluorogenic Hg2+ -Selective Chemodosimeter Derived from 8-Hydroxyquinoline. Org. Lett.,2006,8 (16):3413-3416
    [49]Choi M. G., Kim Y. H., Namgoong J. E., Chang S.-K. Hg2+-Selective chromogenic and Fluorogenic Chemodosimeter Based on Thiocoumarins. Chem. Commun.,2009,45: 3560-3562
    [50]Namgoong J. E., Jeon H. L., Kim Y. H., Choi M. G., Chang S.-K. Hg2+ -Selective Fluorogenic Chemodosimeter Based on Naphthoflavone. Tetrahedron Lett.,2010,51: 167-169
    [51]Sinks L. E., Rybtchinski B., Iimura M., Jones B. A., Goshe A. J., Zuo X., Tiede D. M., Li X., Wasielewski M. R., Self-Assembly of Photofunctional Cylindrical Nanostructures Based on Perylene-3,4:9,10-bis(dicarboximide). Chem. Mater.,2005,17(25):6295-6303
    [52]Hoeben F. J. M., Zhang J., Lee C. C., Pouderoijen M. J., Wolffs M., Wurthner F., Schenning A. P. H. J., Meijer E. W., Feyter S. D., Visualization of Various Supramolecular Assemblies of Oligo(para-phenylenevinylene)-Melamine and Perylene Bisimide. Chem. Eur. J.,2008,14(28):8579-8589
    [53]De Cat I., Roger C., Lee C. C., Hoeben F. J. M., Pouderoijen M. J., Schenning A. P. H. J., Wurthner F., De Feyter S., Identification of Oligo(p-Phenylene Vinylene)-Naphthalene Diimide Heterocomplexes by Scanning Tunneling Microscopy and Spectroscopy at the Liquid-Solid Interface. Chem. Commun.,2008,44:5496-5498
    [54]Wurthner F., Chen Z., Hoeben F. J. M., Osswald P., You C.-C., Jonkheijm P., von Herrihuyzen J., Schenning A. P. H. J., van der Schoot P. P. A. M., Meijer E. W., Beckers E. H. A., Meskers S. C. J., Janssen R. A. J., Supramolecular p-n Heterojunctions by Co-Self-Organization of Oligo(p-phenylene vinylene) and Perylene Bisimide Dyes.J. Am. Chem. Soc.,2004,126: 10611-10618
    [55]Chen Z., Baumeister U., Tschierske C., Wurthner F., Effect of Core Twisting on Self-Assembly and Optical Properties of Perylene Bisimide Dyes in Solution and Columnar Liquid Crystalline Phases. Chem. Eur. J.,2007,13:450-465
    [56]Zhao H.-M., Pfister J., Settels V., Renz M., Kaupp M., Dehm V. C., Wurthner F., Fink R. F., Engels B., Understanding Ground- and Excited-State Properties of Perylene Tetracarboxylic Acid Bisimide Crystals by Means of Quantum Chemical Computations. J. Am. Chem. Soc.,2009,131:15660-15668
    [57]Dehm V., Chen Z., Baumeister U., Prins P., Siebbeles L. D. A., Wurthner F., Helical Growth of Semiconducting Columnar Dye Assemblies Based on Chiral Perylene Bisimides. Org. Lett.,2007,9:1085-1088
    [58]Xue C. M., Chen M. Z., Jin S., Synthesis and Characterization of the First Soluble Nonracemic Chiral Main-Chain Perylene Tetracarboxylic Diimide Polymers. Polymer, 2008,49(24):5314-5321
    [59]George S. J., Tomovic Z., Smulders M. M. J., de Greef T. F. A., Leclere P. E. L. G., Meijer E. W., Schenning A. P. H. J., Supramolecular Chirality Helicity Induction and Amplification in an Oligo(p-phenylenevinylene) Assembly through Hydrogen-Bonded Chiral Acids. Angew. Chem.; Int. Ed.2007,46(43):8206-8211
    [60]Pantos G. D., Pengo P., Sanders J. K. M., Hydrogen-bonded Helical Organic Nanotubes. Angew. Chem.; Int. Ed.,2007,46:194-197
    [61]Pantos G. D., Wietor J.-L., Sanders J. K. M., Filling Helical Nanotubes with C6o-Angew. Chem.; Int. Ed.,2007,46:2238-2240
    [62]Cai W., Wang G.-T., Du P., Wang R.-X., Jiang X.-K., Li Z.-T. Foldamer Organogels:A Circular Dichroism Study of Glucose-Mediated Dynamic Helicity Induction and Amplification. J. Am. Chem. Soc.,2008,130:13450-13459
    [63]Cai W., Wang G.-T., Xu Y.-X., Jiang X.-K., Li Z.-T., Vesicles and Organogels from Foldamers:A Solvent-Modulated Self-Assembling Process. J. Am. Chem. Soc.,2008, 130:6936-6937
    [64]Yagai S., Hamamura S., Wang H., Stepanenko V., Seki T., Unoike K., Kikkawa Y., Karatsu T., Kitamura A., Wurthner F., Unconventional Hydrogen-Bond-Directed Hierarchical Co-Assembly between Perylene Bisimide and Azobenzene-Functionalized Melamine. Org. Biomol. Chem.,2009,7:3926-3929
    [65]Seki T., Asano A., Seki S., Kikkawa Y., Murayama H., Karatsu T., Kitamura A., Yagai S., Rational Construction of Perylene Bisimide Columnar Superstructures with a Biased Helical Sense. Chem. Eur. J.,2011,17(13):3598-3608
    [66]Yagai S., Gushiken M., Karatsu T., Kitamura A., Kikkawa Y., Rationally Controlled Helical Organization of a Multiple-Hydrogen-Bonding Oligothiophene:Guest-Induced Transition of Helical-to-Twisted Ribbons. Chem. Commun.,2011,47:454-456
    [1]Chen Z., Zheng Y., Yan H., Facchetti A., Naphthalenedicarboximide- vs Perylenedicarboximide-Based Copolymers. Synthesis and Semiconducting Properties in Bottom-Gate N-Channel Organic Transistors. J. Am. Chem. Soc.,2009,131(1):8-9
    [2]Roger I., Lee C., Hoeben F., Pouderoijen M., SchenningA., Wurthner F., De Feyter S., Identification of Oligo(p-phenylene vinylene)-Naphthalene Diimide Heterocomplexes by Scanning Tunneling Microscopy and Spectroscopy at the Liquid-solid Interface. Chem. Commun.,2008,44:5496-5498
    [3]Gunaratnam M., Swank S., Haider S., Galesa K., Reszka A., Beltran M., Cuenca F., Fletcher J., Neidle S., Targeting Human Gastrointestinal Stromal Tumor Cells with a Quadruplex-Binding Small Molecule. J. Med. Chem.,2009,52(12):3774-3783
    [4]Chopin S., Chaignon F., Blart E., Odobel F., Syntheses and Properties of Core-Substituted Naphthalene Bisimides with Aryl Ethynyl or Cyano Groups. J. Mater. Chem., 2007,17:4139-4146
    [5]Yue W., Zhen Y., Li Y., Jiang W., Lv A., Wang Z., One-Pot Synthesis of Well-Defined Oligo-Butadiynylene-Naphthalene Diimides. Org. Lett.,2010,12(15):3460-3463
    [6]Guo X., Watson M. D., Conjugated Polymers from Naphthalene Bisimide. Org. Lett., 2008,10(23):5333-5336
    [7]Sakai N., Mareda J., Vauthey E., Matile S., Core-substituted Naphthalenediimides. Chem. Commun.,2010,46(24):4225-4237
    [8]Vollmann H., Becker H., Corell M., Streeck H., Beitrage zur Kenntnis des Pyrens und Seiner Derivate. Liebigs Ann.,1937,531:1-159
    [9]Wurthner F., Ahmed S., Thalacker C., Debaerdemaeker T., Core Substituted Naphthalene Bisimides:New Fluorophors with Tunable Emission Wavelength for FRET Studies. Chem. Eur. J.,2002,8:4742-4750
    [10]Thalacker C., Roger C., Wurthner F., Synthesis and Optical and Redox Properties of Core-Substituted Naphthalene Diimide Dyes. J. Org. Chem.,2006,71:8098-8105
    [11]Bell T., Yap S., Jani C., Bhosale S., Hofkens J., DeSchryver F., Langford S., Ghiggino K., Synthesis and Photophysics of Core-Substituted Naphthalene Diimides:Fluorophores for Single Molecule Applications. Chem. Asian J.,2009,4(10):1542-1550
    [12]Zhao C., Zhang Y., Li R., Li X., Jiang J., Di(alkoxy)- and Di(alkylthio)-Substituted Pe.rylene-3,4;9,10-tetracarboxy Diimides with Tunable Electrochemical and Photophysical Properties. J. Org. Chem.,2007,72:2402-2410
    [13]Wang H., Kaiser T., Uemura S., Wurthner F., Perylene Bisimide J-aggregates with Absorption Maxima in the NIR. Chem. Commun.,2008,44,1181-1183
    [14]Yukruk F., Akkaya E., Modulation of Internal Charge Transfer (ICT) in a Bay Region Hydroxylated Perylenediimide (PDI) Chromophore:A Chromogenic Chemosensor for pH. Tetrahedron Lett.,2005,46(35):5931-5933
    [15]Alvino A., Franceschin M., Cefaro C., Borioni S., Ortaggi G., Bianco A., Synthesis and spectroscopic properties of highly water-soluble perylene derivatives. Tetrahedron,2007, 63(33):7858-7865
    [16]Franceschin M., Alvino A., Ortaggi G., Bianco A., New Hydrosoluble Perylene and Coronene Derivatives Tetrahedron Lett.,2004,45(49):9015-9020
    [17]Zhao Y., Wasielewski M., Perylene Bis(dicarboximide) Chromophores that Function as both Electron Donors and Acceptors. Tetrahedron Lett.,1999,40(39):7047-7050
    [18]Yukruk F., A. Lale Dogan A., Canpinar H., Guc D., Akkaya E., Water-Soluble Green Perylenediimide(PDI) Dyes as Potential Sensitizers for Photodynamic Therapy. Org. Lett.,2005,7(14):2885-2887
    [19]Gottardi W., Brominations with Dibromoisocyanuric Acid (DBI) under Ionic Conditions: I. Monobromination. Monatsh. Chem.,1968,99(2):815-822
    [20]Chaignon F., Falkenstrom M., Karlsson S., Blart E., Odobel F., Hammarstrom L., Very Large Acceleration of the Photoinduced Electron Transfer in a Ru(bpy)3-naphthalene Bisimide Dyad Bridged on the Naphthyl Core. Chem. Commun.,2007,43:64-66
    [21]de Silva A., Gunaratne H., Habib-Jiwan j., McCoy C., Rice T., Soumillion J., New Fluorescent Model Compounds for the Study of Photoinduced Electron Transfer: The Influence of a Molecular Electric Field in the Excited State. Angew. Chem.; Int. Ed., 1995,34:1728-1731
    [22]Hurenkamp J. H., Browne W. R., Augulis R., Pugzlys A., van Loosdrecht P. H. M., van Esch J. H., Feringa B. L., Intramolecular Energy Transfer in a Tetra-Coumarin Perylene System:Influence of Solvent and Bridging Unit on Electronic Properties. Org. Biomol. Chem.,2007,5:3354-3362
    [23]Wurthner F., Stepanenko V., Chen Z., Saha-Moller C., Kocher N., Stalke D., Preparation and Characterization of Regioisomerically Pure 1,7-Disubstituted Perylene Bisimide Dyes. J. Org. Chem.,2004,69(23):7933-7939
    [24]Gwynn P., Ellis I., Benzopyrones Part X:Bromination of Chromones and Coumarins with Dibromoisocyanuric Acid. Nitrations of Chromones. J. Chem. Soc., Perkin Trans.1 1973,1:2781
    [25]Wurthner F., Wortmann R., Matschiner R., Lukaszuk K., Meerholz K., DeNardin Y. Bittner R., Brauchle C., Sens R., Merocyanine Dyes in the Cyanine Limit: a New Class of Chromophores for Photorefractive Materials. Angew. Chem.; Int. Ed.,1997,36: 2865-2768
    [1]Cotton F. A., Wilkinson G., Advanced Inorganic Chemistry,5th ed., Wiley,1988
    [2]Schroeder H., The Trace Elements and Man: Some Positive and Negative Aspects. Shambhala Publications.,1974
    [3]Kikuchi K., Komatsu K., Nagano T., Zinc Sensing for Cellular Application. Curr. Opin. Chem. Biol.,2004,8(2):182-191
    [4]Jiang P., Guo Z., Fluorescent Detection of Zinc in Biological Systems:Recent Development on the Design of Chemosensors and Biosensors. Coord. Chem. Rev.,2004, 248(1-2):205-229
    [5]Xu Z., Yoon J., Spring D. R., Fluorescent Chemosensors for Zn2+. Chem. Soc. Rev. 2010,39:1996-2006
    [6]Wang H.-H., Gan Q., Jiang H., A Water-Soluble, Small Molecular Fluorescent Sensor with Femtomolar Sensitivity for Zinc Ion. Org. Lett.,2007,9(24):4995-4998
    [7]Zhang Y., Guo X., Si W., Jia L., Qian X., Ratiometric and Water-Soluble Fluorescent Zinc Sensor of Carboxamidoquinoline with an Alkoxyethylamino Chain as Receptor. Org. Lett.,2008,10(3):473-476
    [8]Dennis A. E., Smith R. C., "Turn-On" Fluorescent Sensor for the Selective Detection of Zinc Ion by a Sterically-Encumbered Bipyridyl-Based Receptor. Chem. Commun.,2007, 3:4641-4643
    [9]Goze C., Ulrich G., Charbonniere L., Cesario M., Ziessel R., Cation Sensors Based on Terpyridine-Functionalized Boradiazaindacene. Chem. Eur. J.,2003,9(16):3748-3755
    [10]Xue L., Liu C., Jiang H., A Ratiometric Fluorescent Sensor with a Large Stokes Shift for Imaging Zinc Ions in Living Cells. Chem. Commun.,2009,45:1061-1063
    [11]Gwizdala C., Kennedy D. P., Burdette S. C., ZinCast-1:a Photochemically Active Chelator for Zn2+. Chem. Commun.,2009,45:6967-6969
    [12]Wong B. A., Friedle S., Lippard S. J., Solution and Fluorescence Properties of Symmetric Dipicolylamine-Containing Dichlorofluorescein-Based Zn2+ Sensors. J. Am. Chem. Soc.,2009,131(20):7142-7152
    [13]Esqueda A. C., Lpez J. A., Andreu-de-Riquer G., Alvarado-Monzn J. C., Ratnakar J., Lubag A. J. M., Sherry A. D., Len-Rodrguez L. M. D., A New Gadolinium-Based MRI Zinc Sensor. J. Am. Chem. Soc.,2009,131(32):11387-11391
    [14]Gee K. R., Zhou Z.-L., Qian W.-J., Kennedy R., Detection and Imaging of Zinc Secretion from Pancreatic β-Cells Using a New Fluorescent Zinc Indicator. J. Am. Chem. Soc.,2002,124(5):776-778
    [15]Ngwendsona J. N., Banerjee A., A Zn(Ⅱ) Ion Selective Fluorescence Sensor that is not Affected by Cd(II). Tetrahedron Lett.,2007,48(41):7316-7319
    [16]Major J. L., Boiteau R. M., Meade T. J., Mechanisms of ZnⅡ-Activated Magnetic Resonance Imaging Agents. Inorg. Chem.,2008,47(22):10788-10795
    [17]Prodi L., Bolletta F., Montalti M., Zaccheroni N., Searching for New Luminescent Sensors:Synthesis and Photophysical Properties of a Tripodal Ligand Incorporating the Dansyl Chromophore and of Its Metal Complexes. J. Eur. Inorg. Chem.,1999,3: 455-460
    [18]Alarcon J., Albelda M. T., Belda R., Clares M. P., Delgado-Pinar E., Frias J. C., Garcia-Espana E., Gonzalez J., Soriano C., Synthesis and Coordination Properties of an Azamacrocyclic Zn(II) Chemosensor Containing Pendent Methylnaphthyl Groups. Dalton Trans.,2008,6530-6538
    [19]Tamanini E., Katewa A., Sedger L. M., Todd M. H., Watkinson M., A Synthetically Simple, Click-Generated Cyclam-Based Zinc(II) Sensor. Inorg. Chem.,2009,48(1): 319-324
    [20]Nolan E. M., Lippard S. J., Small-Molecule Fluorescent Sensors for Investigating Zinc Metalloneurochemistry. Acc. Chem. Res.,2009,42(1):193-203
    [21]Burdette S., Walkup G., Spingler B., Tsien R., Lippard S., Fluorescent Sensors for Zn2+ Based on a Fluorescein Platform:Synthesis, Properties and Intracellular Distribution. J. Am. Chem. Soc.,2001,123(32):7831-7841
    [22]STREM Chemicals, Inc. Catalog,2010~2012, No.23, p174
    [23]Zapata I. F., Caballero A., Espinosa A., Tarraga A., Molina P., A Simple but Effective Ferrocene Derivative as a Redox, Colorimetric, and Fluorescent Receptor for Highly Selective Recognition of Zn2+. Org. Lett.,2007,9(12):2385-2388
    [24]Xue L., Liu C., Jiang H., Highly Sensitive and Selective Fluorescent Sensor for Distinguishing Cadmium from Zinc Ions in Aqueous Media. Org. Lett.,2009,11(7): 1655-1658
    [25]Weng Y., Chen Z., Wang F., Xue L., Jiang H., High Sensitive Determination of Zinc with Novel Water-soluble Small Molecular Fluorescent Sensor. Anal. Chim. Acta.,2009, 647(2):215-218
    [26]Lim N. C., Bruckner C., DPA-Substituted Coumarins as Chemosensors for Zinc(II): Modulation of the Chemosensory Characteristics by Variation of the Position of the Chelate on the Coumarin. Chem. Commun.,2004,40:1094-1095
    [27]Qian F., Zhang C., Zhang Y., He W., Gao X., Hu P., Guo Z., Visible Light Excitable Zn2+ Fluorescent Sensor Derived from an Intramolecular Charge Transfer Fluorophore and Its in Vitro and in Vivo Application. J. Am. Chem. Soc.,2009,131(4):1460-1468
    [28]Jiang W., Fu Q., Fan H., Wang W., An NBD Fluorophore-based Sensitive and Selective Fluorescent Probe for Zinc Ion. Chem. Commun.,2008,44:259-261
    [29]Wang J., Xiao Y., Zhang Z., Qian X., Yang Y., Xu Q., A pH-Resistant Zn(II) Sensor Derived from 4-Aminonaphthalimide:Design, Synthesis and Intracellular Applications. J. Mater. Chem.,2005,15:2836-2839
    [30]Xu Z., Baek K.-H., Kim H., Cui J., Qian X., Spring D., Shin I., Yoon J., Zn2+-Triggered Amide Tautomerization Produces a Highly Zn2+-Selective, Cell-Permeable, and Ratiometric Fluorescent Sensor. J. Am. Chem. Soc.,2010,132(2):601-610
    [31]Hanaoka K., Muramatsu Y., Urano Y., Terai T., Nagano T., Design and Synthesis of a Highly Sensitive Off-On Fluorescent Chemosensor for Zinc Ions Utilizing Internal Charge Transfer. Chem. Eur. J.,2009,16(2):568-572
    [32]Carol P., Sreejith S., Ajayaghosh A., Ratiometric and Near-Infrared Molecular Probes for the Detection and Imaging of Zinc Ions. Chem. Asian J.,2007,2(3):338-348
    [33]Kiyose K., Kojima H., Nagano T., Functional Near-Infrared Fluorescent Probes. Chem. Asian J.,2008,3:506-515
    [34]Tang B., Huang H., Xu K., Tong L., Yang G., Liu X., An L., Highly Sensitive and Selective Near-Infrared Fluorescent Probe for Zinc and Its Application to Macrophage Cells. Chem. Commun.,2006,42:3609-3611
    [35]Kiyose K., Kojima H., Urano Y., Nagano T., Development of a Ratiometric Fluorescent Zinc Ion Probe in Near-Infrared Region, Based on Tricarbocyanine Chromophore. J. Am. Chem. Soc.,2006,128:6548-6549
    [36]Mei Y., Bentley P. A., A Ratiometric Fluorescent Sensor for Zn2+ Based on Internal Charge Transfer(ICT). Bioorg. Med. Chem. Lett.,2006,16:3131-3134
    [37]Zhang X., Lovejoy K. S., Jasanoff A., Lippard S. J., Water-Soluble Porphyrins as a Dual-Function Molecular Imaging Platform for MRI and Fluorescence Zinc Sensing. Proc. Natl. Acad. Sci. U.S.A.,2007,104:10780-10785
    [38]Hung C.-H., Chang G.-F., Kumar A., Lin G.-F., Luo L.-Y., Ching W.-M., Diau W.-G., m-Benziporphodimethene:a New Porphyrin Analogue Fluorescence Zinc(II) Sensor. Chem. Commun.,2008,44:978-980
    [39]Atilgan S., Ozdemir T., Akkaya E. U., A Sensitive and Selective Ratiometric Near IR Fluorescent Probe for Zinc Ions Based on the Distyryl Bodipy-Fluorophore. Org. Lett., 2008,10(18):4065-4067
    [40]Lee H., Xu Z., Kim S., Swamy K., Kim Y., Kim S.-J., Yoon J., Pyrophosphate-Selective Fluorescent Chemosensor at Physiological pH:Formation of a Unique Excimer upon Addition of Pyrophosphate., J. Am. Chem. Soc.,2007,129(13):3828-3829
    [41]Arslan P., Di Virgilio F, Meltrame M., Tsien, R. Y., Pozzan, T., Cytosolic Calcium Homeostasis in Ehrlich and Yoshida Carcinomas: a New, Membrane-Permeant Chelator of Heavy Metals Reveals that these Ascites Tumor Cell Lines Have Normal Cytosolic Free Calcium. J. Biol. Chem.,1985,260:2719-2727
    [42]Zalewski P. D., Forbes I. J., Seamark R. F., Borlinghaus R., Betts W. H., Lincoln S. F., Ward A. D., Flux of Intracellular Labile Zinc During Apoptosis (Gene-Directed Cell Death) Revealed by a Specific Chemical Probe, Zinquin. Chem. Biol.,1994,1(3): 153-161
    [43]Incarvito C., Lam M., Rhatigan B., Rheingold A. L., Qin C. J., Gavrilova A. L., Bosnich B., Bimetallic reactivity. Preparations, Properties and Structures of Complexes Formed by Unsymmetrical Binucleating Ligands Bearing 4-and 6-Coordinate Sites Supported by Alkoxide Bridges. J. Chem. Soc., Dalton Trans.,2001,3478-3488
    [44]Hureau C., Groni S., Guillot R., Blondin G., Duboc C., Anxolabhre E., Syntheses, X-ray Structures, Solid State High-Field Electron Paramagnetic Resonance, and Density-Functional Theory Investigations on Chloro and Aqua Mn Mononuclear Complexes with Amino-Pyridine Pentadentate Ligands. Inorg. Chem.,2008,47:9238-9247
    [45]Wubbels G. G., Halverson A. M., Oxman J. D., de Bruyn V. H., Regioselectivity of Photochemical and Thermal Smiles Rearrangements and Related Reactions of β-(Nitrophenoxy)methylamines. J. Org. Chem.,1985,50(23):4499-4504
    [46]Xu Z., Kim G., Han S., Jou M., Lee C., Shin I., Yoon J., An NBD-based Colorimetric and Fluorescent Chemosensor for Zn2+ and Its Use for Detection of Intracellular Zinc ions. Tetrahedron,2009,65,2307-2312
    [47]Hurenkamp J. H., Browne W. R., Augulis R., Pugzlys A., van Loosdrecht P. H. M., van Esch J. H., Feringa B. L., Intramolecular Energy Transfer in a Tetra-Coumarin Perylene System:Influence of Solvent and Bridging Unit on Electronic Properties. Org. Biomol. Chem.,2007,5:3354-3362
    [48]Gaussian 03, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, Gaussian, Inc., Wallingford CT,2004
    [49]Roger C., Ahmed S., Wurthner F., Synthesis and Optical Properties of Fluorescent Core-Trisubstituted Naphthalene Diimide Dyes. Synthesis,2007,1872-1876
    [50]Thalacker C., Miura A., De Feyter S., De Schryver F. C., Wurthner F., Hydrogen Bond Directed Self-assembly of Core-substituted Naphthalene Bisimides with Melamines in Solution and at the Graphite Interface. Org. Biomol. Chem.,2005,3:414-422
    [51]Wurthner F., Ahmed S., Thalacker C., Debaerdemaeker T., Core-Substituted Naphthalene Bisimides:New Fluorophors with Tunable Emission Wavelength for FRET Studies. Chem. Eur. J.,2002,8(20):4742-4750
    [52]Gu Z., Zambrano R., McDermott A., Hydrogen Bonding of Carboxyl Groups in Solid-State Amino Acids and Peptides:Comparison of Carbon Chemical Shielding, Infrared Frequencies, and Structures. J. Am. Chem. Soc.,1994,116(14):6368-6372
    [53]Taki M., Desaki M., Ojida A., Iyoshi S., Hirayama T., Hamachi I., Yamamoto. Y., Fluorescence Imaging of Intracellular Cadmium Using a Dual-Excitation Ratiometric Chemosensor. J. Am. Chem. Soc.,2008,130(38):12564-12565
    [54]Chen X., Jou M. J., Yoon J., An "Off-On" Type UTP/UDP Selective Fluorescent Probe and Its Application to Monitor Glycosylation Process. Org. Lett.,2009,11(10): 2181-2184
    [55]Fan J., Wu Y., Peng X., A Naphthalimide Fluorescent Sensor for Zn2+ Based on Photo-induced Electron Transfer. Chem. Lett.,2004,33(10):1392-1393
    [56]Moro A. J., Cywinski P. J., Korsten S., Mohr G. J., An ATP Fluorescent Chemosensor Based on A Zn(II)-Complexed Dipicolylamine Receptor Coupled with a Naphthalimide Chromophore. Chem. Commun.,2010,46:1085-1087
    [57]Ballesteros E., Moreno D., Gomez T., Rodriguez T., Rojo J., Garcia-Valverde M., Torroba T., A New Selective Chromogenic and Turn-On Fluorogenic Probe for Copper(II) in Water-Acetonitrile 1:1 Solution. Org. Lett.2009,11(6):1269-1272
    [58]Peng X., Du J., Fan J., Wang J., Wu Y., Zhao J., Sun S., Xu T., A Selective Fluorescent Sensor for Imaging Cd2+ in Living Cells. J. Am. Chem. Soc.2007,129(6):1500-1501
    [59]Jiang W. Development of Novel Fluorescent Sensors for the Detection of Functional and Bio-interesting Small Molecules and Metal ions. PhD Thesis, New Mexico Univ.,2009
    [60]Maruyama S., Kikuchi K., Hirano T., Urano Y., Nagano T., A Novel, Cell-Permeable, Fluorescent Probe for Ratiometric Imaging of Zinc Ion. J. Am. Chem. Soc.,2002, 124(36):10650-10651
    [61]Williams N. J., Gan W.. Reibenspies J. H., Hancock R. D., Possible Steric Control of the Relative Strength of Chelation Enhanced Fluorescence for Zinc(II) Compared to Cadmium(II):Metal Ion Complexing Properties of Tris(2-quinolylmethyl)amine, a Crystallographic, UV-Visible, and Fluorometric Study. Inorg. Chem.,2009,48(4): 1407-1415
    [1]Tchounwou P. B., Ayensu W. K., Ninashvili N., Sutton D., Review:Environmental Exposure to Mercury and Its Toxicopathologic Implications for Public Health. Environ. Toxicol.,2003,18(3):149-175
    [2]Boening D. W., Ecological Effects, Transport, and Fate of Mercury:A General Review. Chemosphere.,2000,40:1335-1351
    [3]Nolan E. M., Lippard S. J., Tools and Tactics for the Optical Detection of Mercuric Ion. Chem. Rev.,2008,108:3443-3480
    [4]Zhu M., Yuan M., Liu X., Xu J., Lv J., Huang C., Liu H., Li Y., Wang S., Zhu D., Visible Near-Infrared Chemosensor for Mercury Ion. Org. Lett.,2008,10(7):1481-1484
    [5]Chen T., Zhu W., Xu Y., Zhang S., Zhang X., Qian X., A Thioether-Rich Crown-Based Highly Selective Fluorescent Sensor for Hg2+ and Ag+ in Aqueous Solution. Dalton Trans.,2010,39:1316-1320
    [6]Yuan M., Li Y., Li J., Li C., Liu X., Lv J., Xu J., Liu H., Wang S., Zhu D., A Colorimetric and Fluorometric Dual-Modal Assay for Mercury Ion by a Molecule. Org. Lett.,2007,9(12):2313-2316
    [7]He G., Zhao Y., He C., Liu Y., Duan C., Turn-On" Fluorescent Sensor for Hg2+ via Displacement Approach. Inorg. Chem.,2008,47(12):5169-5176
    [8]Zhou Y., Zhu C.-Y., Gao X.-S., You X.-Y., Yao C., Hg2+ -Selective Ratiometric and "Off-On" Chemosensor Based on the Azadiene-Pyrene Derivative. Org. Lett.,2010, 12(11):2566-2569
    [9]Wang J., Qian X., Two Regioisomeric and Exclusively Selective Hg(II) Sensor Molecules Composed of a Naphthalimide Fluorophore and an o-Phenylenediamine Derived Triamide Receptor. Chem. Commun.,2006,42:109-111
    [10]Wang J., Qian X., A Series of Polyamide Receptor Based PET Fluorescent Sensor Molecules:Positively Cooperative Hg2+ Ion Binding with High Sensitivity. Org. Lett., 2006,8(17):3721-3724
    [11]Zhang J. F., Kim J. S., Small-Molecule Fluorescent Chemosensors for Hg2+ Ion. Anal. Sci.,2009,25:1271-1281
    [12]Quang D. T., Kim J. S., Fluoro-and Chromogenic Chemodosimeters for Heavy Metal Ion Detection in Solution and Biospecimens. Chem. Rev.,2010,110(10):6280-6301
    [13]Guo Z., Zhu W., Zhu M., Wu X., Tian H., Near-Infrared Cell-Permeable Hg2+ -Selective Ratiometric Fluorescent Chemodosimeters and Fast Indicator Paper for MeHg+ Based on Tricarbocyanines. Chem. Eur. J.,2010,16(48):14424-14432
    [14]Hernandez W., Spodine E., Beyer L., Schroder U., Richter R., Ferreira J., Pavani M., Synthesis, Characterization and Antitumor Activity of Copper(II) Complexes, [CuL2] [HL1.3 = N,N-Diethyl-N'-(R-Benzoyl)Thiourea (R=H, o-Cl and p-NO2)]. Bioinorg. Chem. Appl.,2005,3(3-4):299-316.
    [15]Hennig L., Ayala-Leon K., Angulo-Cornejo J., Richter R., Beyer. L., Fluorine Hydrogen Short Contacts and Hydrogen Bonds in Substituted Benzamides. J. Fluor. Chem.,2009,130:453-460
    [16]Lee M. H., Lee S. W., Kim S. H., Kang C., Kim J. S., Nanomolar Hg(II) Detection Using Nile Blue Chemodosimeter in Biological Media. Org. Lett.,2009,11(10): 2101-2104
    [17]Lee M. H., Cho B.-K., Yoon J., Kim J. S., Selectively Chemodosimetric Detection of Hg(II) in Aqueous Media. Org. Lett.,2007,9(22):4515-4518
    [18]Shiraishi Y., Sumiya S., Hirai T., A Coumarin-Thiourea Conjugate as a Fluorescent Probe for Hg(II) in Aqueous Media with a Broad pH Range 2-12. Org. Biomol. Chem., 2010,8:1310-1314
    [19]Wu J.-S., Hwang I.-C., Kim K. S., Kim J. S., Rhodamine-Based Hg2+ -Selective Chemodosimeter in Aqueous Solution: Fluorescent OFF-ON. Org. Lett.,2007,9(5): 907-910
    [20]Sheng R., Wang P., Gao Y., Wu Y., Liu W., Ma J., Li H., Wu S., Colorimetric Test Kit for Cu2+ Detection. Org. Lett.,2008,10(21):5015-5018
    [1]Liu B., Tian H., A Selective Fluorescent Ratiometric Chemodosimeter for Mercury Ion. Chem. Commun.,2005,41:3156-3158
    [2]Wu J.-S., Hwang I.-C., Kim K. S., Kim J. S., Rhodamine-Based Hg2+ -Selective Chemodosimeter in Aqueous Solution: Fluorescent OFF-ON. Org. Lett.,2007,9(5): 907-910
    [3]Cheng C.-C., Chen Z.-S., Wu C.-Y., Lin C.-C., Yang C.-R., Yen Y.-P. Azo Dyes Featuring a Pyrene Unit: New Selective Chromo- and Fluoro- genic Chemodosimeters for Hg(Ⅱ). Sens. Actuators, B.,2009,142:280-287
    [4]Malashikhin S. A., Baldridge K. K., Finney N. S., Efficient Discovery of Fluorescent Chemosensors Based on a Biarylpyridine Scaffold. Org. Lett.,2010,12(5):940-943
    [5]Chen X., Jou M. J., Yoon J., An "Off-On" Type UTP/UDP Selective Fluorescent Probe and Its Application to Monitor Glycosylation Process. Org. Lett.,2009,11(10): 2181-2184
    [6]Yukruk F., Dogan A. L., Canpinar H., Guc D., Akkaya E. U., Water-Soluble Green Perylenediimide(PDI) Dyes as Potential Sensitizers for Photodynamic Therapy. Org. Lett.,2005,7(14):2885-2887
    [7]Wan g H., Wang D., Wang Q., Li X., Schalley C. A., Nickel(Ⅱ) and Iron(Ⅲ) Selective Off-On-Type Fluorescence Probes Based on Perylene Tetracarboxylic Diimide. Org. Biomol. Chem.,2010,8:1017-1026
    [8]Szelke H., Schubel S., Harenberg J., Kramer R., A Fluorescent Probe for the Quantification of Heparin in Clinical Samples with Minimal Matrix Interference. Chem. Commun.,2010,46:1667-1669
    [9]Feng L., Chen Z., Screening Mercury(Ⅱ) With Selective Fluorescent Chemosensor. Sens. Actuators, B.,2007,122:600-604
    [10]Yan L., Yang L., Lan J., You J., A New Perylene Diimide-Based Colorimetric and Fluorescent Sensor for Selective Detection of Cu2+ Cation. Sens. Actuators, B.,2009,52: 518-522
    [11]Pan J., Synthesis and Properties of Dendron-functionalized Macromolecules Based on Perylene Diimides Chromophore. PhD thesis, East China University of Science & Technology (CHN),2005
    [12]Zlatuskova P., Stibor Ⅰ., Tkadlecova M., Lhotak P., Novel Anion Receptors Based on Thiacalix[4]arene Derivatives. Tetrahedron,2004,60:11383-11390
    [13]Thomas H., Britton S., Robinson R. A., Universal Buffer Solutions. J. Chem. Soc.,1931: 1456-1462
    [14]Gawronski J., Kwit M., Skowronek P., Thiourea and Isothiocyanate-Two Useful Chromophores for Stereochemical Studies. A Comparison of Experiment and Computation. Org. Biomol. Chem.,2009,7:1562-1572
    [15]Bernacki A. L., Zhu L., Hennings D. D., A Selective and Convenient Method for the Synthesis of 2-Phenylaminothiazolines. Org. Lett.,2010,12(23):5526-5529
    [16]Cheng C.-C., Che n Z.-S., Wu C.-Y., Lin C.-C., Yang C.-R., Yen Y.-P., Azo Dyes Featuring a Pyrene Unit:New Selective Chromogenic and Fluorogenic Chemodosi-meters for Hg(II). Sens. Actuators, B.,2009,142:280-287.
    [17]Misra A., Shahid M., Srivastava P., Dwivedi P., Fluorescent Chemosensor: Recognition of Metal Ions in Aqueous Medium by Fluorescence Quenching. J Incl. Phenom. Macrocycl. Chem.,2011,69:119-129
    [18]Li X.-Q., Zhang X., Ghosh S., Wurthner F., Highly Fluorescent Lyotropic Mesophases and Organogels Based on J-Aggregates of Core-Twisted Perylene Bisimide Dyes. Chem. Eur. J.,2008,14(27):8074-8078
    [19]Rodriguez-Lucena D., Benito J. M., Alvarez E., Jaime C., Perez-Miron J., Mellet C. O., Fernandez J. M. G., Synthesis, Structure, and Inclusion Capabilities of Trehalose-Based Cyclodextrin Analogues (Cyclotrehalans). J. Org. Chem.,2008,73(8):2967-2979
    [20]Van Leusen A. M., Jeuring H. J., Wildeman J., Van Nispen S. P. J. M., Synthesis of N-(Tosylmethyl)Carbodiimides and Their Application in The Synthesis of 2-Amino-1,3-Oxazoles from Aldehydes. J. Org. Chem.,1981,46(10):2069-2072
    [21]Eckert-Maksic M., Glasovac Z., Troselj P., Kutt A., Rodima T., Koppel I., Koppel I. A., Basicity of Guanidines with Heteroalkyl Side Chains in Acetonitrile. Eur. J. Org. Chem., 2008,30:5176-5184
    [22]Rodrguez-Lucena D., Mellet C. O., Jaime C., Burusco K. K., Fernndez J. M. G., Benito J. M., Size-Tunable Trehalose-Based Nanocavities:Synthesis, Structure, and Inclusion Properties of Large-Ring Cyclotrehalans. J. Org. Chem.,2009,74(8):2997-3008
    [23]Mu X.-J., Zou J.-P., Qian Q.-F., Zhang W., Regioselective Synthesis of N-Acetylureas by Manganese(III) Acetate Reaction of 1,3-Disubstituted Thioureas. Tetrahedron Lett., 2006,47(14):2323-2325
    [24]Khorana H. G., The Chemistry of Carbodiimides. Chem. Rev.,1953,53(2):145-166
    [25]Pretsch E., Buehlmann P., Badertscher M., Structure Determination of Organic Compounds.4th ed, Springer,2009
    [26]Gottlieb H. E., Kotlyar V., Nudelman A., NMR Chemical Shifts of Common Laboratory Solvents as Trace Impurities. J. Org. Chem.,1997,62:7512-7515
    [1]Pantos G. D., Pengo P., Sanders J. K. M., Hydrogen-bonded Helical Organic Nanotubes. Angew. Chem.; Int. Ed.,2007,46:194-197
    [2]Qiu Y., Chen P., Liu M., Evolution of Various Porphyrin Nanostructures via an Oil/Aqueous Medium: Controlled Self-Assembly, Further Organization, and Supramolecular Chirality. J. Am. Chem. Soc.,2010,132:9644-9652
    [3]Kim H. J., Kim T., Lee M., Responsive Nanostructures from Aqueous Assembly of Rigid-flexible Block Molecules. Acc. Chem. Res.,2010,44:72-82
    [4]Wang W., Shaller A. D., Li A. D. Q., Twisted Perylene Stereodimers Reveal Chiral Molecular Assembly Codes. J. Am. Chem. Soc.,2008,130:8271-8279
    [5]Tsuda A., Alam M.A., Harada T., Yamaguchi T., Ishii N., Aida T., Spectroscopic Visualization of Vortex Flows Using Dye-Containing Nanofibers. Angew. Chem.; Int. Ed.,2007,46:8198-8202
    [6]George S. J., Tomovic Z., Smulders M. J., de Greef T. F. A., Leclre P. E. L. G., Meijer E. W., Schenning A. P. H. J., Helicity Induction and Amplification in an Oligo(p-phenylenevinylene) Assembly through Hydrogen-Bonded Chiral Acids. Angew. Chem.; Int. Ed.,2007,46:8206-8211
    [7]Lohr A., Wurthner F., Time-dependent Amplification of Helical Bias in Self-assembled Dye Nanorods Directed by the Sergeants-and-soldiers Principle. Chem. Commun.,2008, 44:2227-2229
    [8]童林荟,申宝剑,超分子化学研究中的物理方法.科学出版社,2001:52-58
    [9]Shibano Y., Umeyama T., Matano Y., Imahori H., Electron-Donating Perylene Tetracarboxylic Acids for Dye-Sensitized Solar Cells. Org. Lett.,2007,9(10): 1971-1974
    [10]Lindner S. M., Httner S., Chiche A., Thelakkat M., Krausch G., Charge Separation at Self-Assembled Nanostructured Bulk Interface in Block Copolymers. Angew. Chem.; Int. Ed.,2006,45:3364-3368
    [11]Wu W., Liu Y., Zhu D.,π-Conjugated Molecules with Fused Rings for Organic Field-Effect Transistors:Design, Synthesis and Applications. Chem. Soc. Rev.,2010,39: 1489-1502
    [12]Wasielewski M. R., Self-Assembly Strategies for Integrating Light Harvesting and Charge Separation in Artificial Photosynthetic Systems. Acc. Chem. Res.,2009,42(12): 1910-1921
    [13]Wurthner F., Bay-Substituted Perylene Bisimides:Twisted Fluorophores for Supramolecular Chemistry. Pure Appl. Chem.,2006,78,2341-2350
    [14]You C., Wurthner F., Self-Assembly of Ferrocene-Functionalized Perylene Bisimide Bridging Ligands with Pt(II) Corner to Electrochemically Active Molecular Squares. J. Am. Chem. Soc.,2003,125:9716-9725
    [15]Addicott C., Oesterling I., Yamamoto T., Mullen K., Stang P. J., Synthesis of a Bis(pyridyl)-Substituted Perylene Diimide Ligand and Incorporation into a Supramolecular Rhomboid and Rectangle via Coordination Driven Self-Assembly. J. Org. Chem.,2005,70(3):797-801
    [16]Indelli M. T., Chiorboli C., Scandola F., Iengo E., Osswald P., Wiirthner F., Photoinduced Processes in Self-Assembled Porphyrin/Perylene Bisimide Metallo-Supramolecular Boxes. J. Phys. Chem. B.,2010,114(45):14495-14504
    [17]Zhang X., Chen Z., Wurthner F., Morphology Control of Fluorescent Nanoaggregates by Co-Self-Assembly of Wedge-and Dumbbell-Shaped Amphiphilic Perylene Bisimides. J. Am. Chem. Soc.,2007,129:4886-4887
    [18]Xu S., Sun J., Ke D., Song G., Zhang W., Zhan C., An Unexpected Solvent Effect on the Self-assembly of a 1,7-Bispyridinoyl Perylene Diimide Amphiphile. J. Colloid Interf. Sci.,2010,349(1):142-147
    [19]Balakrishnan K., Datar A., Naddo T., Huang J., Oitker R., Yen M., Zhao J., Zang L Effect of Side-Chain Substituents on Self-Assembly of Perylene Diimide Molecules: Morphology Control. J. Am. Chem. Soc.,2006,128(22):7390-7398
    [20]Wiirthner F., Z Chen., Hoeben F. J. M., Osswald P., You C.-C., Jonkheijm P., von Herrihuyzen J., Schenning A. P. H. J., van der Schoot P. P. A. M., Meijer E. W., Beckers E. H. A., Meskers S. C. J., Janssen J. R. A., Supramolecular p-n Heterojunctions by Co-Self-Organization of Oligo (p-Phenylene Vinylene) and Perylene Bisimide Dyes. J. Am. Chem. Soc.2004,126:10611-10618
    [21]Sinks L. E., Rybtchinski B., Iimura M., Jones B. A., Goshe A. J., Zuo X., Tiede D. M., Li X., Wasielewski M. R., Self-Assembly of Photofunctional Cylindrical Nanostructures Based on Perylene-3,4:9,10-bis(dicarboximide). Chem. Mater.,2005,17(25):6295-6303
    [22]Dehm V., Chen Z., Baumeister U., Prins P., Siebbeles L. D. A., Wiirthner F., Helical Growth of Semiconducting Columnar Dye Assemblies Based on Chiral Perylene Bisimides. Org. Lett.,2007,9:1085-1088
    [23]Xue C. M., Chen M. Z., Jin S., Synthesis and Characterization of the First Soluble Nonracemic Chiral Main-chain Perylene Tetracarboxylic Diimide Polymers. Polymer, 2008,49(24):5314-5321
    [24]Yagai S., Hamamura S., Wang H., Stepanenko V., Seki T., Unoike K., Kikkawa Y. Karatsu T., Kitamura A., Wiirthner F., Unconventional Hydrogen-Bond-Directed Hierarchical Co-Assembly between Perylene Bisimide and Azobenzene-Functionalized Melamine. Org. Biomol. Chem.,2009,7:3926-3929
    [25]Schmidt C. D., Bottcher C., Hirsch A., Chiral Water-Soluble Perylenediimides. Eur. J. Org. Chem.,2009,31:5337-5349
    [26]Wiirthner F., Perylene Bisimide Dyes as Versatile Building Blocks for Functional Supramolecular Architectures. Chem. Commun.,2004,40:1564-1579
    [27]Wurthner F., Hanke B., Lysetska M., Lambright G., Harms G. S., Gelation of a Highly Fluorescent Urea-Functionalized Perylene Bisimide Dye. Org. Lett.,2005,7:967-970
    [28]Yagai S., Seki T., Karatsu T., Kitamura A., Wurthner F., Transformation from H- to J-Aggregated Perylene Bisimide Dyes by Complexation with Cyanurates. Angew. Chem.; Int. Ed.,2008,47:3367-3371
    [29]Phillips A. G., Perdigao L. M. A., Beton P. H., Champness N. R., Tailoring Pores for Guest Entrapment in a Unimolecular Surface Self-assembled Hydrogen Bonded Network. Chem. Commun.,2010,46:2775-2777
    [30]Barooah N., Sarma R. J., Baruah J. B., Solid-State Hydrogen Bonded Assembly of N,N'-Bis(Glycinyl)-pyromellitic Diimide with Aromatic Guests. Cryst. Eng. Commum., 2006,8:608-615
    [31]Yagai S., Supramolecular Complexes of Functional Chromophores Based on Multiple Hydrogen-Bonding Interactions. J. Photochem. Photobiol. C:Photochem. Rev.,2006,7: 164-182
    [32]Zugenmaier P., Duff J., Bluhm T. L., Crystal and Molecular Structures of Six Differently with Halogen Substituted Bis(benzylimido)perylene. Cryst. Res. Technol.,2000,35: 1095-1115
    [33]Osswald P., Leusser D., Stalke D., Wurthner F., Perylene Bisimide Based Macrocycles: Effective Probes for the Assessment of Conformational Effects on Optical Properties. Angew. Chem.; Int. Ed.,2005,44:250-253
    [34]Chen Z., Debije M. G., Debaerdemaeker T., Osswald P., Wurthner F., Tetrachloro-Substituted Perylene Bisimide Dyes as Promising n-Type Organic Semiconductors: Studies on Structural, Electrochemical and Charge Transport Properties. ChemPhysChem,2004,5:137-140
    [35]Remy L., Hurre H., Richard F., Amino Acid Racemization in Heated and Alkali-treated Proteins. J. Agric. Food Chem.,1983,31(2):432-437
    [36]Meyers A. I., Williams D. R., Erickson G. W., White S., Druelinger M., Enantioselective Alkylation of Ketones via Chiral, Nonracemic Lithioenamines. An asymmetric synthesis of a-alkyl and a,a'-Dialkyl Cyclic Ketones. J. Am. Chem. Soc.,1981,103(11): 3081-3087
    [37]Pan J., Synthesis and Properties of Dendron-functionalized Macromolecules Based on Perylene Diimides Chromophore. PhD thesis, East China University of Science & Technology (CHN),2005.
    [38]Ren J., Zhao X.-L., Wang Q.-C., Ku C.-F., Qu D.-H., Chang C.-P., Tian H., New Fluoride Fluorescent Chemosensors Based on Perylene Derivatives Linked by Urea. Dyes Pigments.,2005,64(3):193-200
    [39]Hurenkamp J. H., Browne W. R., Augulis R., Pugzlys A., van Loosdrecht P. H. M., van Esch J. H., Feringa B. L., Intramolecular Energy Transfer in a Tetra-Coumarin Perylene System:Influence of Solvent and Bridging Unit on Electronic Properties. Org. Biomol. Chem.,2007,5:3354-3362
    [40]Spitz C., Dahne S., Ouart A., Abraham H.-W., Proof of Chirality of J-aggregates Spontaneously and Enantioselectively Generated from Achiral Dyes. J. Phys. Chem. B., 2000,104(36):8664-8669
    [41]Pengo P., Pantos G. D., Otto S., Sanders J. K. M., Efficient and Mild Microwave-Assisted Stepwise Functionalization of Naphthalenediimide with a-Amino Acids. J. Org. Chem.,2006,71(18):7063-7066
    [42]Chen Z., Baumeister U., Tschierske C., Wurthner F., Effect of Core Twisting on Self-Assembly and Optical Properties of Perylene Bisimide Dyes in Solution and Columnar Liquid Crystalline Phases. Chem. Eur. J.,2007,13:450-465
    [43]Sadrai M., Hadel L., Sauers R. R., Husain S., Krogh-Jespersen K., Westbrook J. D., Bird G. R., Lasing Action in a Family of Perylene Derivatives:Singlet Absorption and Emission Spectra, Triplet Absorption and Oxygen Quenching Constants, and Molecular Mechanics and Semiempirical Molecular Orbital Calculations. J. Phys. Chem.,1992, 96(20):7988-7996
    [44]Neuteboom E. E., Meskers S. C. J., Meijer E. W., Janssen R. A. J., Photoluminescence of Self-organized Perylene Bisimide Polymers. Macromol. Chem. Phys.,2004,205: 217-222
    [45]Li A. D. Q., Wang W., Wang L.-Q., Folding versus Self-Assembling. Chem. Eur. J., 2003,9:4594-4601.
    [46]Li X-Q., Zhang X., Ghosh S., Wurthner F., Highly Fluorescent Lyotropic Mesophases and Organogels Based on J-Aggregates of Core-Twisted Perylene Bisimide Dyes. Chem. Eur. J.,2008,14:8074-8078
    [47]Kaiser T. E., Stepanenko V., Wurthner F., Fluorescent J-Aggregates of Core Substituted Perylene Bisimide: Studies on Structure-Property Relationship, Nucleation-Elongation Mechanism, and Sergeants-and-Soldiers Principle. J. Am. Chem. Soc.,2009,131: 6719-6732
    [48]Wurthner F., Chen Z., Dehm V., Stepanenko V., One-dimensional Luminescent Nanoaggregates of Perylene Bisimides. Chem. Commun.,2006,42:1188-1190
    [49]Wang W., Han J. J., Wang L.-Q., Li L.-S., Shaw W. J., Li A. D. Q., Dynamic π-π Stacked Molecular Assemblies Emit from Green to Red Colors. Nano Lett.,2003,3(4): 455-458
    [50]Heek T., Fasting C., Rest C., Zhang X., Wurthner F., Haag R., Highly Fluorescent Water-Soluble Polyglycerol-Dendronized Perylene Bisimide Dyes. Chem. Commun., 2010,46:1884-1886
    [51]Bene J. E. D., Hydrogen Bond Types, Binding Energies, and 1H NMR Chemical Shifts. J. Phys. Chem. A.,1999,103(40):8121-8124
    [52]Wurthner F., Thalacker C., Sautter A., Hierarchical Organization of Functional Perylene Chromophores to Mesoscopic Superstructures by Hydrogen Bonding and π-π-Interactions. Adv. Mater.,1999,11,754-758
    [53]Lin J. B., Dasgupta D., Cantekin S., Schenning A. P. H. J., Towards Racemizable Chiral Organogelators. Beilstein J. Org. Chem.,2010,6:960-965
    [54]Wang W., Li L.-S., Helms G., Zhou H.-H., Li A. D. Q., To Fold or to Assemble? J. Am. Chem. Soc.,2003,125(5):1120-1121
    [55]Liu, Y., Li, Y., Jiang, L., Gan, H., Liu, H., Li, Y., Zhuang, J., Lu, F., Zhu, D., Assembly and Characterization of Novel Hydrogen-Bond-Induced Nanoscale Rods. J. Org. Chem., 2004,69(26):9049-9054
    [56]Yan P., Chowdhury A., Holman M. W., Adams D. M. Self-Organized Perylene Diimide Nanofibers. J. Phys. Chem. B.,2005,109:724-730
    [57]Lorin M., Delepee R., Maurizot J.-C., Ribet J.-P., Morin P., Sensitivity Improvement of Circular Dichroism Detection in HPLC by Using a Low-Pass Electronic Noise Filter: Application to the Enantiomeric Determination Purity of a Basic Drug. Chirality,2007, 19:106-113
    [58]Berova N., Nakanish K., Exciton Chirality Method:Principles and Applications. In Circular Dichroism,2nd ed., Wiley-VCH: Berlin,2000,337-383
    [59]Berova N., Bari L. D., Pescitelli G., Application of Electronic Circular Dichroism in Configurational and Conformational Analysis of Organic Compounds. Chem. Soc. Rev., 2007,36:914-931
    [60]Boiadjiev S. E., Lightner D. A., Exciton Chirality. (A) Origins of and (B) Applications from Strongly Fluorescent Dipyrrinone Chromophores. Monatsh. Chem.,2005,136: 489-508
    [61]Berova N., Harada N., Nakanishi K. Electronic Spectroscopy:Exciton Coupling, Theory and Applications. Academic Press, New York,2000,470-488
    [62]Osswald P., Wurthner F., Effects of Bay Substituents on the Racemization Barriers of Perylene Bisimides:Resolution of Atropo-Enantiomers. J. Am. Chem. Soc.,2007,129: 14319-14326
    [63]Xie Z., Wurthner F., Perylene Bisimides with Rigid 2,2'-Biphenol Bridges at Bay Area as Conjugated Chiral Platforms. Org. Lett.,2010,12(14):3204-3207
    [64]Osswald P., Reichert M., Bringmann G., Wurthner F., Perylene Bisimide Atropisomers: Synthesis, Resolution, and Stereochemical Assignment. J. Org. Chem.,2007,72: 3404-3411
    [65]Pan J., Zhu W., Li S., Zeng W., Cao Y., Tian H., Dendron-Functionalized Perylene Diimides with Carrier-Transporting Ability for Red Luminescent Materials. Polymer, 2005,46:7658-7669
    [66]Wurthner F., Thalacker C., Diele S., Tschierske C., Fluorescent J-type Aggregates and Thermotropic Columnar Mesophases of Perylene Bisimide Dyes. Chem. Eur. J.,2001,7: 2245-2253
    [67]Haas U., Adams J., Fuhrmann J., Riethmiiller S., Beginn U., Ziener U., Moller M., Thalacker C., Dobrawa R., Wurthner F., Fabrication and Emission Properties of Perylene Bisimide Dye Aggregates Bound to Gold Surfaces and Nanopatterns. J. Mater Chem., 2003,13:767-772
    [68]Wurthner F., Thalacker C., Sautter A., Schartl W., Ibach W., Hollricher O., Hierarchical Self-Organization of Perylene Bisimide-Melamine Assemblies to Fluorescent Mesoscopic Superstructures. Chem. Eur. J.,2000,6:3871-3885
    [69]Chen S.-G., Wang G.-T., Ma Y.-G., Li Z.-T., Chiral Two-layer Turbine-like Assemblies Based on a Porphyrin-Appended Rosette-Styled Hexamer. International Workshop on Organic Photoswitchable Multifunctional Materials, Shanghai, October 25-27,2009, P-33
    [70]Huang C. H., Li F. Y., Huang Y. Y. Ultrathin Films for Optics and Electronics, Peking University Press:Beijing,2001
    [71]Ramos A. M., Meskers S. C. J., Beckers E. H. A., Prince R. B., Brunsveld L., Janssen R. A. J., Supramolecular Control over Donor-Acceptor Photoinduced Charge Separation. J. Am. Chem. Soc.,2004,126(31):9630-9644
    [72]Cai W., Wang G.-T., Xu Y.-X., Jiang X.-K., Li Z.-T., Vesicles and Organogels from Foldamers:A Solvent-Modulated Self-Assembling Process. J. Am. Chem. Soc.,2008, 130:6936-6937

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700