具有近红外光学性质多肽聚合物的合成及其在药物输运领域的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚氨基酸类聚合物由于其合成方法的简便以及经济性,近年来已被广泛的用于制备生物材料,而可控开环聚合N-羧基-环内酸酐(NCA)已经成为合成多肽材料的最常用方法。由于支化聚合物的一系列特殊物理及化学性质,论文第二部分我们以胱氨酸NCA(Cystine-NCA)以及谷氨酸NCA(Glu-NCA)为单体,合成了以聚乙二醇单甲醚为壳层,聚多肽为核的具有还原响应性质的核壳交联星型聚合物。并将憎水药吲哚美辛作为模型药物,分别在还原敏感以及不敏感的情况下进行了体外药物释放实验。由于双硫键的还原敏感性此药物载体在还原剂谷胱甘肽存在的情况下,表现出明显的促进释放行为。
     由于花菁花染料特殊的光学性质(激发和发射都为于体液干扰较小的近红外区域)以及低毒性,因此近年来被广泛的用于生物显像领域。论文的第三部分我们合成了中环上炔基取代的七甲川花菁花染料。以含有叠氮基团的聚乙二醇单甲醚(mPEG (N3,-OH))为引发剂引发L-Cystine-NCA聚合,我们同时制备出了同时含有双硫键交联内核和含叠氮官能团的纳米水凝胶。运用点击化学反应(Click chemistry),进一步合成了具有近红外光学特性的荧光纳米水凝胶(NIRF nanogel)。通过物理负载的方法,我们将抗癌药物阿霉素包载进了所制备的NIRF凝胶中,制备出了具有近红外光学特性的药物负载体系(NIRFDDS)。由于双硫键对还原剂的敏感性,体外的释放试验表明,在还原剂谷胱甘肽的存在下,NIRF药物负载体系表现出还原促进的药物释放行为。
     论文的第四部分我们首先合成了中环为羧基基团取代的七甲川花菁花染料(Cyanine-nBu-ac)。运用开环共聚合的方法,以胺基封端的聚乙二醇单甲醚为引发剂(mPEG-NH2),引发赖氨酸NCA (ZLLys-NCA)以及胱氨酸NCA(L-Cystine-NCA)聚合,得到了内核交联的纳米凝胶。通过多肽耦合(Peptide coupling)的方法,我们将所合成的花菁花染料键合到了纳米凝胶的内核上,制备出了具有近红外光学特性的纳米凝胶。运用物理包载的方法,我们将抗癌药物阿霉素负载进了凝胶内核。所得的药物负载体系的体外释放试验表明,在还原剂存在下,表现出促进释放的行为。运用活体成像的方法,我们研究了所制备材料的体内输运行为。结果表明材料可以成功的在肿瘤部位富集,实现对肿瘤的诊断。激光共聚焦实验以及肿瘤的切片实验表明,此材料可以通过内吞作用进入细胞,实现对药物的体内输运以及肿瘤的治疗。
     论文的第五部分我们以端氨基的聚乙二醇单甲醚为大分子引发剂(mPEG-NH2),运用顺序开环聚合方法,合成了具有天门冬氨酸苄脂以及赖氨酸组分的三嵌段共聚物(mPEG-NH2-PZLLys-PAsp)。通过运用盐酸联氨对天门冬氨酸苄脂部分进行胺解,得到了侧链含肼基的三嵌段共聚物。然后与阿霉素进行缩水反应,将阿霉素通过腙键键合在了大分子侧链上,制备出了聚合物药物体系(prodrug)。运用第三章合成的中环为羧基的七甲川花菁花染料,通过多肽耦合反应(peptide coupling reaction),制备出了具有近红外光学特性的药物负载体系(NIRF prodrug)。体外的药物释放实验表明,在模拟肿瘤细胞的微酸性条件下(pH=5.0),所制备的NIRF prodrug表现出促进释放的行为。细胞内吞实验的结果表明,所合成的NIRF prodrug在细胞内药物释放最终接近完全,且所释放的药物全部进入了细胞核内。
     由于可逆加成-断裂链转移自由基(RAFT)聚合在活性自由基聚合领域的广泛应用,第六章中我们采用开环聚合与RAFT聚合的方法制备出了具有近红外光学特性的三嵌段两亲聚合物,采用与第五章类似的肼解然后与阿霉素缩合的方法制备出了具有pH响应特定的大分子药物,之后在将近红外探针引入分子,得到了具有近红外光学特性的大分子药物(NIRF Prodrug),所得的NIRF prodrug在近红外区具有强烈的荧光,且在酸性的外环境中表新出促进的药物释放行为。
     本论文中,我们以合成可体内跟踪的药物-聚合物体系(image-guided drug system delivery)为最终目标,首先制备了一系列以聚乙二醇单甲醚为亲水部分,以多肽聚合物为核疏水部分多肽共聚物一系列含不同官能团的七甲川花菁花染料,在此两者的基础上,我们合成了不同的聚合物-染料聚合物,并将其用作大分子探针用于体内肿瘤的检测,或者用于可跟踪的药物负载体系,同时达到肿瘤检测以及治疗的目的。
Polypeptide materials have been widely studied in biomedical relevant areas during recent years because it can be obtained facially and economically by one-step ring opening polymerization of amino acid N-Carboxyl-anhydride (NCA). Here in the second part of this dissertation, we prepared a novel reduction sensitive core cross-linked star polymer (CCS polymer) with a disulfide cross-linked polypeptide core and an mPEG cornea. Indomethin was physically loaded into this disulfide cross-linked nanogel to prepare a drug delivery system, and its drug release behavior was studied under both reduction-sensitive and reduction-insensitive conditions. The results showed an accelerated drug release behavior under reduction-sensitive condition.
     Cyanine relevant dye has been widely used for the bioimaging purpose because of its unique optical properties such as long wavelength nature and low toxicity. In the third part of this dissertation, we prepared a series of cyanine dyes with different physical structures and chemical properties. These carboxyl and alkyne-functionalized cyanine can be used to react with free amine group of polypeptide or azide functionalized polymer to prepare fluorescent polymer with near infrared fluorescence property. As a paradigm, we prepared alkyne nanogel with a disulfide cross-linked polypeptide core. Cyanine dye with azide group was then conjugated to the alkyne nanogel by Click chemistry. Anticancer drug doxorubicin was then encapsulated into the obtained NIRF nanogel, the obtained drug loade NIRF nanogel showed reduction triggered drug release behavior in the presence of10mM glutathione.
     Disulfide-cross-linked nanogel with near infrared fluorescence property (NIRF nanogel) was synthesized in this report. Anticancer drug doxorubicin was then encapsulated into polypeptide core of the NIRF nanogel to prepare a drug carrier with near infrared fluorescence (NIRF prodrug). In vitro drug release study of the NIRF prodrug reveals an accelerated release behavior in the presence of10mM glutathione (GSH). In vivo distribution of the NIRF nanogel and NIRF prodrug on tumor bearing nude mice shows that both of the NIRF nanogel and NIRF prodrug accumulate at tumor place at24h after tail veil injection via enhanced permeability and retention effect (EPR). Cellular uptake study of both the NIRF nanogel and NIRF prodrug shows that both of the two materials could enter cell via endocytosis. The NIRF nanogel and NIRF prodrug prepared here have the potential application for the respective purpose of cancer diagnostics and treatment.
     In the fifth part of this dissertation, near infrared fluorescent drug delivery system (NIRF DDS) with pH-responsive drug release ability has been designed and developed. This material was prepared by chemical conjugation of anticancer drug doxorubicin and hydrophobic aminocyanine dye to triblock copolypeptide via hydrazone and amide bond, respectively. pH sensitive drug release nature of the near infrared fluorescent polymeric drug (NIRF prodrug) was confirmed by accelerated drug release at pH of5.0via in vitro drug release experiment and a gradual drug cleavage form NIRF prodrug. Confocal laser scanning microscopic (CLSM) experiment revealed that the released drug subsequently migrated to nucleus while the polymeric residue located in cytoplast, indicating the as-prepared polymer is a candidate for theranosis of cancer.
     Reversible Addition-Fragmentation Chain Transfer Polymerization (RAFT) polymerization has been extensively studied and widely employed for the production of polymers with various structures and functionalities. In Chapter6, a novel amphiphilic tri-block copolymer with both near infrared fluorescence and pH responsive property was prepared. Di-block copolypeptide was prepared in the first place by the sequential ring opening polymerization of ZLLys-NCA and Asp-NCA, a hydrophilic block was then attached to the copolypeptide by RFAT polymerization initiated by the thiol ester located at the chain end. NIRF prodrug was thus prepared following a similar method as documented in chapter5, the obtained NIRF has strong fluorescence in near infrared region and shows pH responsive drug release behavior.
引文
[1]H. Maeda, J. Wu, T. Sawa, Y. Matsumura, K. Hori. Tumor vascular permeability and the EPR effect in macromolecular therapeutics:a review, J. Controlled Release 2000,65,271.
    [2]R. Langer. Drug delivery and targeting, Nature 1998,392,5.
    [3]J. Panyam, V. Labhasetwar. Biodegradable nanoparticles for drug and gene delivery to cells and tissue, Adv. Drug Del. Rev.2003,55,329.
    [4]K. Kataoka, A. Harada, Y. Nagasaki. Block copolymer micelles for drug delivery:design, characterization and biological significance, Adv. Drug Del. Rev.2001,47,113.
    [5]C. Allen, Y. S. Yu, D. Maysinger, A. Eisenberg. Polycaprolactone-b-poly(ethylene oxide) block copolymer micelles as a novel drug delivery vehicle for neurotrophic agents FK506 and L-685,818, Bioconjug. Chem.1998,9,564.
    [6]X. T. Shuai, T. Merdan, A. K. Schaper, F. Xi, T. Kissel. Core-cross-linked polymeric micelles as paclitaxel carriers, Bioconjug. Chem.2004,15,441.
    [7]I. J. Majoros, T. P. Thomas, C. B. Mehta, J. R. Baker. Poly(amidoamine) dendrimer-based multifunctional engineered nanodevice for cancer therapy, J. Med. Chem.2005,48,5892.
    [8]V. Toncheva, M. A. Wolfert, P. R. Dash, D. Oupicky, K. Ulbrich, L. W. Seymour, E. H. Schacht. Novel Vectors for gene delivery formed by self-assembly of DNA with poly(L-lysine) grafted with hydrophilic polymers, Biochimica Et Biophysica Acta-General Subjects 1998, 1380,354.
    [9]W. Feng, W. Yu-Cai, Y. Li-Feng, W. Jun. Biodegradable vesicular nanocarriers based on poly(epsiv-caprolactone)-block-poly(ethyl ethylene phosphate) for drug delivery, Polymer 2009,50.
    [10]Y.-C. Wang, Y. Li, X.-Z. Yang, Y.-Y. Yuan, L.-F. Yan, J. Wang. Tunable Thermosensitivity of Biodegradable Polymer Micelles of Poly (epsilon-caprolactone) and Polyphosphoester Block Copolymers, Macromolecules 2009,42,3026.
    [11]J. Wen, G. J. A. Kim, K. W. Leong. Poly(D,Llactide-co-ethyl ethylene phosphate)s as new drug carriers, J. Controlled Release 2003,92,39.
    [12]A. Lucke, J. Tessmar, E. Schnell, G Schmeer, A. Gopferich. Biodegradable poly(D,L-lactic acid)-poly(ethylene glycol)-monomethyl ether diblock copolymers:structures and surface properties relevant to their use as biomaterials, Biomaterials 2000,21,2361.
    [13]I. Molina, S. M. Li, M. B. Martinez, M. Vert. Protein release from physically crosslinked hydrogels of the PLA/PEO/PLA triblock copolymer-type, Biomaterials 2001,22,363.
    [14]H. A. Klok, J. Rodriguez-Hernandez. Dendritic-graft polypeptides, Macromolecules 2002, 35,8718.
    [15]S. Junnila, N. Houbenov, S. Hanski, H. Iatrou, A. Hirao, N. Hadjichristidis, O. Ikkala. Hierarchical Smectic Self-Assembly of an ABC Miktoarm Star Terpolymer with a Helical Polypeptide Arm, Macromolecules 2010,43,9071.
    [16]L.-Y. Li, W.-D. He, J. Li, B.-Y. Zhang, T.-T. Pan, X.-L. Sun, Z.-L. Ding. Shell-Cross-Linked Micelles from PNIPAM-b-(PLL)(2) Y-Shaped Miktoarm Star Copolymer as Drug Carriers, Biomacromolecules 2010,11,1882.
    [17]J. Rao, Y. Zhang, J. Zhang, S. Liu. Facile Preparation of Well-Defined AB(2) Y-Shaped Miktoarm Star Polypeptide Copolymer via the Combination of Ring-Opening Polymerization and Click Chemistry, Biomacromolecules 2008,9,2586.
    [18]CN101684174-A, Univ Tianjin, invs.:L. Deng, A. Dong, S. Guo;
    [19]N. Xu, F.-S. Du, Z.-C. Li. Synthesis of poly(L-lysine)-graft-polyesters through Michael addition and their self-assemblies in aqueous solutions, J. Polym. Sci., Part A:Polym.Chem. 2007,45,1889.
    [20]Y. Bae, S. Fukushima, A. Harada, K. Kataoka. Design of environment-sensitive supramolecular assemblies for intracellular drug delivery:Polymeric micelles that are responsive to intracellular pH change, Angew.Chem.Int.Ed.2003,42,4640.
    [21]D. Schmaljohann. Thermo-and pH-responsive polymers in drug delivery, Adv. Drug Del. Rev. 2006,58,1655.
    [22]S. R. Sershen, S. L. Westcott, N. J. Halas, J. L. West. Temperature-sensitive polymer-nanoshell composites for photothermally modulated drug delivery, Journal of Biomedical Materials Research 2000,51,293.
    [23]A. Klaikherd, C. Nagamani, S. Thayumanavan. Multi-Stimuli Sensitive Amphiphilic Block Copolymer Assemblies, J. Am. Chem. Soc.2009,131,4830.
    [24]F. Meng, W. E. Hennink, Z. Zhong. Reduction-sensitive polymers and bioconjugates for biomedical applications, Biomaterials 2009,30,2180.
    [25]K. Tae-il, O. Mei, L. Minhyung, K. Sung Wan. Arginine-grafted bioreducible poly(disulfide amine) for gene delivery systems, Biomaterials 2009,30,658.
    [26]J. K. Oh, D. J. Siegwart, H.-i. Lee, G. Sherwood, L. Peteanu, J. O. Hollinger, K. Kataoka, K. Matyjaszewski. Biodegradable nanogels prepared by atom transfer radical polymerization as potential drug delivery carriers:Synthesis, biodegradation, in vitro release, and bioconjugation, JACS 2007,129,5939.
    [27]K. Wang, G.-F. Luo, Y. Liu, C. Li, S.-X. Cheng, R.-X. Zhuo, X.-Z. Zhang. Redox-sensitive shell cross-linked PEG-polypeptide hybrid micelles for controlled drug release, Polym. Chem.2012,3,1084.
    [28]H. Sun, B. Guo, R. Cheng, F. Meng, H. Liu, Z. Zhong. Biodegradable micelles with sheddable poly(ethylene glycol) shells for triggered intracellular release of doxorubicin, Biomaterials 2009,30,6358.
    [29]S. Takae, K. Miyata, M. Oba, T. Ishii, N. Nishiyama, K. Itaka, Y. Yamasaki, H. Koyama, K. Kataoka. PEG-detachable polyplex micelles based on disulfide-linked block catiomers as bioresponsive nonviral gene vectors, JACS2008,130,6001.
    [30]E. S. Lee, K. Na, Y. H. Bae. Doxorubicin loaded pH-sensitive polymeric micelles for reversal of resistant MCF-7 tumor, J. Controlled Release 2005,103,405.
    [31]F. Zhan, W. Chen, Z. Wang, W. Lu, R. Cheng, C. Deng, F. Meng, H. Liu, Z. Zhong. Acid-Activatable Prodrug Nanogels for Efficient Intracellular Doxorubicin Release, Biomacromolecules 2011,12,3612.
    [32]L. Zhou, R. Cheng, H. Tao, S. Ma, W. Guo, F. Meng, H. Liu, Z. Liu, Z. Zhong. Endosomal pH-Activatable Poly(ethylene oxide)-graft-Doxorubicin Prodrugs:Synthesis, Drug Release, and Biodistribution in Tumor-Bearing Mice, Biomacromolecules 2011,12,1460.
    [33]W. Chen, F. Meng, R. Cheng, Z. Zhong. pH-Sensitive degradable polymersomes for triggered release of anticancer drugs:A comparative study with micelles, J. Controlled Release 2010, 142,40.
    [34]S. J. Lee, K. H. Min, H. J. Lee, A. N. Koo, H. P. Rim, B. J. Jeon, S. Y. Jeong, J. S. Heo, S. C. Lee. Ketal Cross-Linked Poly(ethylene glycol)-Poly(amino acid)s Copolymer Micelles for Efficient Intracellular Delivery of Doxorubicin, Biomacromolecules 2011,12,1224.
    [35]R. Jain, S. M. Standley, J. M. J. Frechet. Synthesis and degradation of pH-sensitive linear poly(amidoamine)s, Macromolecules 2007,40,452.
    [36]M. Prabaharan, J. J. Grailer, S. Pilla, D. A. Steeber, S. Gong. Amphiphilic multi-arm-block copolymer conjugated with doxorubicin via pH-sensitive hydrazone bond for tumor-targeted drug delivery, Biomaterials 2009,30,5757.
    [37]Z. Jia, L. Wong, T. P. Davis, V. Bulmus. One-Pot Conversion of RAFT-Generated Multifunctional Block Copolymers of HPMA to Doxorubicin Conjugated Acid- and Reductant-Sensitive Crosslinked Micelles, Biomacromolecules 2008,9,3106.
    [38]M. S. Shim, Y. J. Kwon. Controlled delivery of plasmid DNA and siRNA to intracellular targets using ketalized polyethylenimine, Biomacromolecules 2008,9,444.
    [39]T. J. Deming. Polypeptide materials:New synthetic methods and applications, Adv. Mater. 1997,9,299.
    [40]T. J. Deming. Methodologies for preparation of synthetic block copolypeptides:materials with future promise in drug delivery, Adv. Drug Del. Rev.2002,54,1145.
    [41]H. R. Kricheldorf. Polypeptides and 100 years of chemistry of alpha-amino acid N-carboxyanhydrides, Angew. Chem., Int. Ed.2006,45,5752.
    [42]Y. Matsumura. Poly (amino acid) micelle nanocarriers in preclinical and clinical studies, Adv. Drug Del. Rev.2008,60,899.
    [43]D. Chow, M. L. Nunalee, D. W. Lim, A. J. Simnick, A. Chilkoti. Peptide-based biopolymers in biomedicine and biotechnology, Materials Science & Engineering R-Reports 2008,62, 125.
    [44]T. J. Deming. Facile synthesis of block copolypeptides of defined architecture, Nature 1997, 390,386.
    [45]N. Hadjichristidis, H. Iatrou, M. Pitsikalis, G. Sakellariou. Synthesis of Well-Defined Polypeptide-Based Materials via the Ring-Opening Polymerization of alpha-Amino Acid N-Carboxyanhydrides, Chem. Rev.2009,109,5528.
    [46]T. J. Deming. Amino acid derived nickelacycles:Intermediates in nickel-mediated polypeptide synthesis, J. Am. Chem. Soc.1998,120,4240.
    [47]T. J. Deming. Cobalt and iron initiators for the controlled polymerization of alpha-amino acid-N-carboxyanhydrides, Macromolecules 1999,32,4500.
    [48]T. J. Deming, S. A. Curtin. Chain initiation efficiency in cobalt-and nickel-mediated polypeptide synthesis, J. Am. Chem. Soc.2000,122,5710.
    [49]I. Dimitrov, H. Schlaad. Synthesis of nearly monodisperse polystyrene-polypeptide block copolymers via polymerisation of N-carboxyanhydrides, Chem. Commun.2003,2944.
    [50]H. Lu, J. Cheng. Hexamethyldisilazane-mediated controlled polymerization of alpha-Amino acid N-carboxyanhydrides, J. Am. Chem. Soc.2007,129,14114.
    [51]H. Lu, J. Cheng. N-trimethylsilyl amines for controlled ring-opening polymerization of amino acid N-carboxyanhydrides and facile end group functionalization of polypeptides, J. Am. Chem. Soc.2008,130,12562.
    [52]W. Vayaboury, O. Giani, H. Cottet, A. Deratani, F. Schue. Living polymerization of alpha-amino acid N-carboxyanhydrides (NCA) upon decreasing the reaction temperature, Macromol. Rapid Commun.2004,25,1221.
    [53]R. Plasson, J. P. Biron, H. Cottet, A. Commeyras, J. Taillades. Kinetic study of the polymerization of alpha-amino acid N-carboxyanhydrides in aqueous solution using capillary electrophoresis, J. Chromatogr. A 2002,952,239.
    [54]T. Aliferis, H. Iatrou, N. Hadjichristidis. Living polypeptides, Biomacromolecules 2004,5, 1653.
    [55]W. H. Daly, D. Poche. THE PREPARATION OF N-CARBOXYANHYDRIDES OF ALPHA-AMINO-ACIDS USING BIS(TRICHLOROMETHYL)CARBONATE, Tetrahedron Lett.1988,29,5859.
    [56]A. Berger, J. Noguchi, E. Katchalski. POLY-L-CYSTEINE, J. Am. Chem. Soc.1956,78, 4483.
    [57]Hirschma.R, H. Schwam, R. G. Strachan, Schoenew.Ef, Barkemey.H, S. M. Miller, J. B. Conn, V. Garsky, D. F. Veber, Denkewal.Rg. CONTROLLED SYNTHESIS OF PEPTIDES IN AQUEOUS MEDIUM.8. PREPARATION AND USE OF NOVEL ALPHA-AMINO ACID N-CARBOXYANHYDRIDES, J. Am. Chem. Soc.1971,93,2746.
    [58]S. Mobashery, M. Johnston. A NEW APPROACH TO THE PREPARATION OF N-CARBOXY ALPHA-AMINO-ACID ANHYDRIDES, J. Org. Chem.1985,50,2200.
    [59]E. S. Lee, H. J. Shin, K. Na, Y. H. Bae. Poly(L-histidine)-PEG block copolymer micelles and pH-induced destabilization, J. Controlled Release 2003,90,363.
    [60]J. R. Kramer, T. J. Deming. General Method for Purification of alpha-Amino acid-N-carboxyanhydrides Using Flash Chromatography, Biomacromolecules 2010,11, 3668.
    [61]J. R. Kramer, T. J. Deming. Glycopolypeptides via Living Polymerization of Glycosylated-L-lysine N-Carboxyanhydrides, J. Am. Chem. Soc.2010,132,15068.
    [62]M. I. Gibson, N. R. Cameron. Experimentally Facile Controlled Polymerization of N-Carboxyan hydrides (NCAs), Including O-Benzyl-L-threonine NCA, J. Polym. Sci., Part A:Polym.Chem 2009,47,2882.
    [63]A. Blencowe, J. F. Tan, T. K. Goh, G. G Qiao. Core cross-linked star polymers via controlled radical polymerisation, Polymer 2009,50,5.
    [64]H. Gao, K. Matyjaszewski. Synthesis of functional polymers with controlled architecture by CRP of monomers in the presence of cross-linkers:From stars to gels, Prog. Polym. Sci. 2009,34,317.
    [65]M. Spiniello, A. Blencowe, G G Qiao. Synthesis and characterization of fluorescently labeled core cross-linked star polymers, J. Polym. Sci., Part A:Polym.Chem.2008,46,2422.
    [66]Y. Chan, T. Wong, F. Byrne, M. Kavallaris, V. Bulmus. Acid-labile core cross-linked micelles for pH-triggered release of antitumor drugs, Biomacromolecules 2008,9,1826.
    [67]J. T. Wiltshire, G. G. Qiao. Selectively degradable core cross-linked star polymers, Macromolecules 2006,39,9018.
    [68]J. G. Zilliox, P. Rempp, J. Parrod. PREPARATION OF STAR-SHAPED MACROMOLECULES BY ANIONIC COPOLYMERIZATION, Journal of Polymer Science Part C-Polymer Symposium 1968,145.
    [69]J. T. Wiltshire, G. G. Qiao. Degradable core cross-linked star polymers via ring-opening polymerization, Macromolecules 2006,39,4282.
    [70]M. Sameiro, T. Goncalves. Fluorescent Labeling of Biomolecules with Organic Probes, Chem. Rev.2009,109,190.
    [71]H. Kobayashi, M. Ogawa, R. Alford, P. L. Choyke, Y. Urano. New Strategies for Fluorescent Probe Design in Medical Diagnostic Imaging, Chem. Rev.2010,110,2620.
    [72]S. Luo, E. Zhang, Y. Su, T. Cheng, C. Shi. A review of NIR dyes in cancer targeting and imaging, Biomaterials 2011,32,7127.
    [73]A. Mishra, R. K. Behera, P. K. Behera, B. K. Mishra, G. B. Behera. Cyanines during the 1990s:A review, Chem. Rev.2000,100,1973.
    [74]Z. Cheng, J. Levi, Z. M. Xiong, O. Gheysens, S. Keren, X. Y. Chen, S. S. Gambhir. Near-infrared fluorescent deoxyglucose analogue for tumor optical imaging in cell culture and living mice, Bioconj. Chem.2006,17,662.
    [75]C. Bouteiller, G. Clave, A. Bernardin, B. Chipon, M. Massonneau, P.-Y. Renard, A. Romieu. Novel water-soluble near-infrared cyanine dyes:Synthesis, spectral properties, and use in the preparation of internally quenched fluorescent probes, Bioconj. Chem.2007,18,1303.
    [76]B. A. Smith, W. J. Akers, W. M. Leevy, A. J. Lampkins, S. Xiao, W. Wolter, M. A. Suckow, S. Achilefu, B. D. Smith. Optical Imaging of Mammary and Prostate Tumors in Living Animals using a Synthetic Near Infrared Zinc(Ⅱ)-Dipicolylamine Probe for Anionic Cell Surfaces, J. Am. Chem. Soc.2010,132,67.
    [77]Y. P. Ye, S. Bloch, B. G. Xu, S. Achilefu. Design, synthesis, and evaluation of near infrared fluorescent multimeric RGD peptides for targeting tumors, J. Med. Chem.2006,49,2268.
    [78]Y. Yunpeng, S. Bloch, X. Baogang, S. Achilefu. Synthesis and evaluation of two NIR fluorescent cyclic RGD penta-peptides for targeting integrins, Proceedings of the SPIE-The International Society for Optical Engineering 2006,6097.
    [79]H. Lee, W. Akers, K. Bhushan, S. Bloch, G Sudlow, R. Tang, S. Achilefu. Near-Infrared pH-Activatable Fluorescent Probes for Imaging Primary and Metastatic Breast Tumors, Bioconj. Chem.2011,22,777.
    [80]X. Y. Chen, P. S. Conti, R. A. Moats. In vivo near-infrared fluorescence imaging of integrin a,alpha(v)beta(3) in brain tumor xenografts, Cancer Res.2004,64,8009.
    [81]Y. P. Ye, S. Bloch, S. Achilefu. Polyvalent carbocyanine molecular beacons for molecular recognitions, J. Am. Chem. Soc.2004,126,7740.
    [82]L. Shan, J. Xue, J. Guo, Z. Qian, S. Achilefu, Y. Gu. Improved Targeting of Ligand-Modified Adenovirus as a New Near Infrared Fluorescence Tumor Imaging Probe, Bioconj. Chem. 2011,22,567.
    [83]Z. R. Zhang, S. Achilefu. Design, synthesis and evaluation of near-infrared fluorescent pH indicators in a physiologically relevant range, Chem. Commun.2005,5887.
    [84]A. K. Galande, R. Weissleder, C. H. Tung. Fluorescence probe with a pH-sensitive trigger, Bioconjug. Chem.2006,17,255.
    [85]S. A. Hilderbrand, R. Weissleder. Optimized pH-responsive cyanine fluorochromes for detection of acidic environments, Chem. Commun.2007,2747.
    [86]J. Tian, H. Chen, L. Zhuo, Y. Xie, N. Li, B. Tang. A Highly Selective, Cell-Permeable Fluorescent Nanoprobe for Ratiometric Detection and Imaging of Peroxynitrite in Living Cells, Chem.-a Europ. J.2011,17,6626.
    [87]Y. Gabe, Y. Urano, K. Kikuchi, H. Kojima, T. Nagano. Highly sensitive fluorescence probes for nitric oxide based on boron dipyrromethene chromophore-rational design of potentially useful bioimaging fluorescence probe, J. Am. Chem. Soc.2004,126,3357.
    [88]A. R. Lippert, E. J. New, C. J. Chang. Reaction-Based Fluorescent Probes for Selective Imaging of Hydrogen Sulfide in Living Cells, J. Am. Chem. Soc.2011,133,10078.
    [89]K. Okuda, Y. Okabe, T. Kadonosono, T. Ueno, B. G. M. Youssif, S. Kizaka-Kondoh, H. Nagasawa.2-Nitroimidazole-Tricarbocyanine Conjugate as a Near-Infrared Fluorescent Probe for in Vivo Imaging of Tumor Hypoxia, Bioconj. Chem.2012,23,324.
    [90]X. Peng, Z. Yang, J. Wang, J. Fan, Y. He, F. Song, B. Wang, S. Sun, J. Qu, J. Qi, M. Yan. Fluorescence Ratiometry and Fluorescence Lifetime Imaging:Using a Single Molecular Sensor for Dual Mode Imaging of Cellular Viscosity, J. Am. Chem. Soc.2011,133,6626.
    [91]P. Li, L. Fang, H. Zhou, W. Zhang, X. Wang, N. Li, H. Zhong, B. Tang. A new ratiometric fluorescent probe for detection of Fe(2+) with high sensitivity and its intracellular imaging applications, Chemistry (Weinheim an der Bergstrasse, Germany) 2011,17,10520.
    [92]J.-Y. Kim, W. Il Choi, Y. H. Kim, G. Tae. Highly selective in-vivo imaging of tumor as an inflammation site by ROS detection using hydrocyanine-conjugated, functional nano-carriers, J. Controlled Release 2011,156,398.
    [93]N. Narayanan, G Patonay. A NEW METHOD FOR THE SYNTHESIS OF HEPTAMETHINE CYANINE DYES-SYNTHESIS OF NEW NEAR-INFRARED FLUORESCENT LABELS, J. Org. Chem.1995,60,2391.
    [94]X. He, J. Gao, S. S. Gambhir, Z. Cheng. Near-infrared fluorescent nanoprobes for cancer molecular imaging:status and challenges, Trends Mol Med,2010,16,574.
    [95]S. A. Hilderbrand, R. Weissleder. Near-infrared fluorescence:application to in vivo molecular imaging, Curr. Opin. Chem. Biol.2010,14,71.
    [96]X.-B. Xiong, A. Lavasanifar. Traceable Multifunctional Micellar Nanocarriers for Cancer-Targeted Co-delivery of MDR-1 siRNA and Doxorubicin, Acs Nano 2011,5,5202.
    [97]B. M. Barth, E. I. Altinoglu, S. S. Shanmugavelandy, J. M. Kaiser, D. Crespo-Gonzalez, N. A. DiVittore, C. McGovern, T. M. Goff, N. R. Keasey, J. H. Adair, T. P. Loughran, Jr., D. F. Claxton, M. Kester. Targeted Indocyanine-Green-Loaded Calcium Phosphosilicate Nanoparticles for In Vivo Photodynamic Therapy of Leukemia, Acs Nano 2011,5,5325.
    [98]C.-L. Peng, Y.-H. Shih, P.-C. Lee, T. M.-H. Hsieh, T.-Y. Luo, M.-J. Shieh. Multimodal Image-Guided Photothermal Therapy Mediated by (188)Re-Labeled Micelles Containing a Cyanine-Type Photosensitizer, Acs Nano 2011,5,5594.
    [1]T. J. Deming. Synthetic polypeptides for biomedical applications, Prog. Polym. Sci.2007,32, 858.
    [2]T. J. Deming. Polypeptide materials:New synthetic methods and applications, Adv. Mater. 1997,9,299.
    [3]N. Hadjichristidis, H. Iatrou, M. Pitsikalis, G. Sakellariou. Synthesis of Well-Defined Polypeptide-Based Materials via the Ring-Opening Polymerization of alpha-Amino Acid N-Carboxyanhydrides, Chem. Rev.2009,109,5528.
    [4]G. Zhang, R. Zhang, X. Wen, L. Li, C. Li. Micelles based on biodegradable poly(L-glutamic acid)-b-polylactide with paramagnetic gd ions chelated to the shell layer as a potential nanoscale IVIRI-visible delivery system, Biomacromolecules 2008,9,36.
    [5]E. S. Lee, H. J. Shin, K. Na, Y. H. Bae. Poly(L-histidine)-PEG block copolymer micelles and pH-induced destabilization, J. Controlled Release.2003,90,363.
    [6]H. A. Klok, J. Rodriguez-Hernandez. Dendritic-graft polypeptides, Macromolecules 2002,35, 8718.
    [7]Y. Li, L. Cui, Q. Li, L. Jia, Y. Xu, Q. Fang, A. Cao. Novel symmetric amphiphilic dendritic poly(L-lysine)-b-poly(L-lactide)-b-dendritic poly(L-lysine) with high plasmid DNA binding affinity as a biodegradable gene carrier, Biomacromolecules 2007,8,1409.
    [8]Y. Li, Y. Zhu, K. Xia, R. Sheng, L. Jia, X. Hou, Y. Xu, A. Cao. Dendritic Poly(L-lysine)-b-Poly(L-lactide)-b-Dendritic Poly(L-lysine) Amphiphilic Gene Delivery Vectors:Roles of PLL Dendritic Generation and Enhanced Transgene Efficacies via Termini Modification, Biomacromolecules 2009,10,2284.
    [9]M. Prabaharan, J. J. Grailer, S. Pilla, D. A. Steeber, S. Gong. Amphiphilic multi-arm-block copolymer conjugated with doxorubicin via pH-sensitive hydrazone bond for tumor-targeted drug delivery, Biomaterials 2009,30,5757.
    [10]J. Rao, Y. Zhang, J. Zhang, S. Liu. Facile Preparation of Well-Defined AB(2) Y-Shaped Miktoarm Star Polypeptide Copolymer via the Combination of Ring-Opening Polymerization and Click Chemistry, Biomacromolecules 2008,9,2586.
    [11]S. Junnila, N. Houbenov, S. Hanski, H. Iatrou, A. Hirao, N. Hadjichristidis, O. Ikkala. Hierarchical Smectic Self-Assembly of an ABC Miktoarm Star Terpolymer with a Helical Polypeptide Arm, Macromolecules 2010,43,9071.
    [12]F. Meng, W. E. Hennink, Z. Zhong. Reduction-sensitive polymers and bioconjugates for biomedical applications, Biomaterials 2009,30,2180.
    [13]S. Cerritelli, D. Velluto, J. A. Hubbell. PEG-SS-PPS:Reduction-sensitive disulfide block copolymer vesicles for intracellular drug delivery, Biomacromolecules 2007,8,1966.
    [14]H. Sun, B. Guo, R. Cheng, F. Meng, H. Liu, Z. Zhong. Biodegradable micelles with sheddable poly(ethylene glycol) shells for triggered intracellular release of doxorubicin, Biomaterials 2009,30,6358.
    [15]Y. Bae, K. Kataoka. Intelligent polymeric micelles from functional poly(ethylene glycol)-poly(amino acid) block copolymers, Adv. Drug Del. Rev.2009,61,768.
    [16]E. S. Lee, K. Na, Y. H. Bae. Doxorubicin loaded pH-sensitive polymeric micelles for reversal of resistant MCF-7 tumor, J. Controlled Release 2005,103,405.
    [17]S. J. Lee, K. H. Min, H. J. Lee, A. N. Koo, H. P. Rim, B. J. Jeon, S. Y. Jeong, J. S. Heo, S. C. Lee. Ketal Cross-Linked Poly(ethylene glycol)-Poly(amino acid)s Copolymer Micelles for Efficient Intracellular Delivery of Doxorubicin, Biomacromolecules 2011,12,1224.
    [18]Y. Bae, N. Nishiyama, S. Fukushima, H. Koyama, M. Yasuhiro, K. Kataoka. Preparation and biological characterization of polymeric micelle drug carriers with intracellular pH-triggered drug release property:Tumor permeability, controlled subcellular drug distribution, and enhanced in vivo antitumor efficacy, Bioconjugate Chem.2005,16,122.
    [19]Y. Bae, N. Nishiyama, K. Kataoka. In vivo antitumor activity of the folate-conjugated pH-Sensitive polymeric micelle selectively releasing adriamycin in the intracellular acidic compartments, Bioconj. Chem.2007,18,1131.
    [20]A. Sulistio, J. Lowenthal, A. Blencowe, M. N. Bongiovanni, L. Ong, S. L. Gras, X. Zhang, G. G. Qiao. Folic Acid Conjugated Amino Acid-Based Star Polymers for Active Targeting of Cancer Cells, Biomacromolecules 2011,12,3469.
    [21]T. Xing, B. Lai, X. Ye, L. Yan. Disulfide Core Cross-Linked PEGylated Polypeptide Nanogel Prepared by a One-Step Ring Opening Copolymerization of N-Carboxyanhydrides for Drug Delivery, Macromol. Biosci.2011,11,962.
    [22]A. V. Kabanov, S. V. Vinogradov. Nanogels as Pharmaceutical Carriers:Finite Networks of Infinite Capabilities, Angew. Chem., Int. Ed.2009,48,5418.
    [23]W. H. Daly, D. Poche. THE PREPARATION OF N-CARBOXYANHYDRIDES OF ALPHA-AMINO-ACIDS USING BIS(TRICHLOROMETHYL)CARBONATE, Tetrahedron Lett.1988,29,5859.
    [24]Hirschma.R, H. Schwam, R. G. Strachan, Schoenew.Ef, Barkemey.H, S. M. Miller, J. B. Conn, V. Garsky, D. F. Veber, Denkewal.Rg. CONTROLLED SYNTHESIS OF PEPTIDES IN AQUEOUS MEDIUM.8. PREPARATION AND USE OF NOVEL ALPHA-AMINO ACID N-CARBOXYANHYDRIDES, J. Am. Chem. Soc.1971,93,2746.
    [25]A. Berger, J. Noguchi, E. Katchalski. POLY-L-CYSTEINE, J. Am. Chem. Soc.1956,78,4483.
    [26]H. R. Kricheldorf. Polypeptides and 100 years of chemistry of alpha-amino acid N-carboxyanhydrides, Angew. Chem., Int. Ed.2006,45,5752.
    [27]T. J. Deming. Facile synthesis of block copolypeptides of defined architecture, Nature 1997, 390,386.
    [28]T. J. Deming. Amino acid derived nickelacycles:Intermediates in nickel-mediated polypeptide synthesis, J. Am. Chem. Soc.1998,120,4240.
    [29]T. J. Deming. Cobalt and iron initiators for the controlled polymerization of alpha-amino acid-N-carboxyanhydrides, Macromolecules 1999,32,4500.
    [30]H. Lu, J. Cheng. Hexamethyldisilazane-mediated controlled polymerization of alpha-Amino acid N-carboxyanhydrides, J. Am. Chem. Soc.2007,129,14114.
    [31]H. Lu, J. Cheng. N-trimethylsilyl amines for controlled ring-opening polymerization of amino acid N-carboxyanhydrides and facile end group functionalization of polypeptides, J. Am. Chem. Soc.2008,130,12562.
    [32]T. Aliferis, H. Iatrou, N. Hadjichristidis. Living polypeptides, Biomacromolecules 2004,5, 1653.
    [33]M.-H. Xiong, J. Wu, Y.-C. Wang, L.-S. Li, X.-B. Liu, G.-Z. Zhang, L.-F. Yan, J. Wang. Synthesis of PEG-Armed and Polyphosphoester Core-Cross-Linked Nanogel by One-Step Ring-Opening Polymerization, Macromolecules 2009,42,893.
    [34]J. K. Oh, D. J. Siegwart, H.-i. Lee, G Sherwood, L. Peteanu, J. O. Hollinger, K. Kataoka, K. Matyjaszewski. Biodegradable nanogels prepared by atom transfer radical polymerization as potential drug delivery carriers:Synthesis, biodegradation, in vitro release, and bioconjugation, J. Am. Chem. Soc.2007,129,5939.
    [1]K. Kataoka, A. Harada, Y. Nagasaki. Block copolymer micelles for drug delivery:design, characterization and biological significance, Adv. Drug Delivery Rev.2001,47,113.
    [2]C. C. Lee, J. A. MacKay, J. M. J. Frechet, F. C. Szoka. Designing dendrimers for biological applications, Nat. Biotechnol. 2005,23,1517.
    [3]J. K. Oh, D. J. Siegwart, H.-i. Lee, G. Sherwood, L. Peteanu, J. O. Hollinger, K. Kataoka, K. Matyjaszewski. Biodegradable nanogels prepared by atom transfer radical polymerization as potential drug delivery carriers:Synthesis, biodegradation, in vitro release, and bioconjugation, J. Am. Chem. Soc.2007,129,5939.
    [4]J. Panyam, V. Labhasetwar. Biodegradable nanoparticles for drug and gene delivery to cells and tissue, Adv. Drug Deliv. Rev.2003,55 329.
    [5]C.-L. Peng, Y.-H. Shih, P.-C. Lee, T. M.-H. Hsieh, T.-Y. Luo, M.-J. Shieh. Multimodal Image-Guided Photothermal Therapy Mediated by (188)Re-Labeled Micelles Containing a Cyanine-Type Photosensitizer, Acs Nano 2011,5,5594.
    [6]X.-B. Xiong, A. Lavasanifar. Traceable Multifunctional Micellar Nanocarriers for Cancer-Targeted Co-delivery of MDR-1 siRNA and Doxorubicin, Acs Nano 2011,5,5202.
    [7]K.-J. Chen, Y.-L. Chiu, Y.-M. Chen, Y.-C. Ho, H.-W. Sung. Intracellularly monitoring/imaging the release of doxorubicin from pH-responsive nanoparticles using Forster resonance energy transfer, Biomaterials 2011,32,2586.
    [8]C. Ornelas, R. Lodescar, A. Durandin, J. W. Canary, R. Pennell, L. F. Liebes, M. Weck. Combining Aminocyanine Dyes with Polyamide Dendrons:A Promising Strategy for Imaging in the Near-Infrared Region, Chem.-a Europ. J.2011,17,3619.
    [9]A. Masotti, P. Vicennati, F. Boschi, L. Calderan, A. Sbarbati, G Ortaggi. A novel near-infrared indocyanine dye-Polyethylenimine conjugate allows DNA delivery imaging in vivo, Bioconj. Chem.2008,19,983.
    [10]C. Ornelas, R. Pennell, L. F. Liebes, M. Weck. Construction of a Well-Defined Multifunctional Dendrimer for Theranostics, Org. Lett.2011,13,976.
    [11]N. Narayanan, G. Patonay. A NEW METHOD FOR THE SYNTHESIS OF HEPTAMETHINE CYANINE DYES-SYNTHESIS OF NEW NEAR-INFRARED FLUORESCENT LABELS, J. Org. Chem.1995,60,2391.
    [12]K. Kiyose, S. Aizawa, E. Sasaki, H. Kojima, K. Hanaoka, T. Terai, Y. Urano, T. Nagano. Molecular Design Strategies for Near-Infrared Ratiometrio Fluorescent Probes Based on the Unique Spectral Properties of Aminocyanines, Chem.-a Europ. J.2009,15,9191.
    [13]S. A. Hilderbrand, K. A. Kelly, R. Weissleder, C. H. Tung. Monofunctional near-infrared fluorochromes for imaging applications, Bioconj. Chem.2005,16,1275.
    [14]W. H. Binder, R. Sachsenhofer. 'Click' chemistry in polymer and materials science, Macromol. Rapid Commun.2007,28,15.
    [15]H. C. Kolb, M. G. Finn, K. B. Sharpless. Click chemistry:Diverse chemical function from a few good reactions, Angew. Chem., Int. Ed.2001,40,2004.
    [16]J.-F. Lutz.1,3-dipolar cycloadditions of azides and alkynes:A universal ligation tool in polymer and materials science, Angew. Chem., Int. Ed.2007,46,1018.
    [17]K. Van Butsele, F. Stoffelbach, R. Jerome, C. Jerome. Synthesis of novel amphiphilic and pH-sensitive ABC miktoarm star terpolymers, Macromolecules 2006,39,5652.
    [18]Y.-Y. Yuan, Y.-C. Wang, J.-Z. Du, J. Wang. Synthesis of Amphiphilic ABC 3-Miktoarm Star Terpolymer by Combination of Ring-Opening Polymerization and "Click" Chemistry, Macromolecules 2008,41,8620.
    [19]X. J. Peng, F. L. Song, E. Lu, Y. N. Wang, W. Zhou, J. L. Fan, Y. L. Gao. Heptamethine cyanine dyes with a large stokes shift and strong fluorescence:A paradigm for excited-state intramolecular charge transfer, J. Am. Chem. Soc.2005,127,4170.
    [20]N. Hadjichristidis, H. Iatrou, M. Pitsikalis, G. Sakellariou. Synthesis of Well-Defined Polypeptide-Based Materials via the Ring-Opening Polymerization of alpha-Amino Acid N-Carboxyanhydrides, Chem. Rev.2009,109,5528.
    [21]H. R. Kricheldorf. Polypeptides and 100 years of chemistry of alpha-amino acid N-carboxyanhydrides, Angew. Chem., Int. Ed.2006,45,5752.
    [22]H. Lu, J. Cheng. Hexamethyldisilazane-mediated controlled polymerization of alpha-Amino acid N-carboxyanhydrides, J. Am. Chem. Soc.2007,129,14114.
    [23]H. Lu, J. Cheng. N-trimethylsilyl amines for controlled ring-opening polymerization of amino acid N-carboxyanhydrides and facile end group functionalization of polypeptides, J. Am. Chem. Soc.2008,130,12562.
    [24]T. J. Deming. Amino acid derived nickelacycles:Intermediates in nickel-mediated polypeptide synthesis, J. Am. Chem. Soc.1998,120,4240.
    [25]T. J. Deming. Cobalt and iron initiators for the controlled polymerization of alpha-amino acid-N-carboxyanhydrides, Macromolecules 1999,32,4500.
    [26]I. Dimitrov, H. Schlaad. Synthesis of nearly monodisperse polystyrene-polypeptide block copolymers via polymerisation of N-carboxyanhydrides, Chem. Commun.2003,2944.
    [27]W. Vayaboury, O. Giani, H. Cottet, A. Deratani, F. Schue. Living polymerization of alpha-amino acid N-carboxyanhydrides (NCA) upon decreasing the reaction temperature, Macromol. Rapid Commun.2004,25,1221.
    [28]G J. M. Habraken, M. Peeters, C. H. J. T. Dietz, C. E. Koning, A. Heise. How controlled and versatile is N-carboxy anhydride (NCA) polymerization at 0 degrees C? Effect of temperature on homo-, block-and graft (co)polymerization, Polym. Chem.2010,1,514.
    [29]T. Aliferis, H. Iatrou, N. Hadjichristidis. Living polypeptides, Biomacromolecules 2004,5, 1653.
    [30]X. Zhang, M. Oddon, O. Giani, S. Monge, J.-J. Robin. Novel Strategy for ROP of NCAs Using Thiols As Initiators:Synthesis of Diblock Copolymers Based on Polypeptides, Macromolecules.2010,43,2654.
    [31]T. Xing, B. Lai, X. Ye, L. Yan. Disulfide Core Cross-Linked PEGylated Polypeptide Nanogel Prepared by a One-Step Ring Opening Copolymerization of N-Carboxyanhydrides for Drug Delivery, Macromol. Biosci.2011,11,962.
    [32]M.-H. Xiong, J. Wu, Y.-C. Wang, L.-S. Li, X.-B. Liu, G.-Z. Zhang, L.-F. Yan, J. Wang. Synthesis of PEG-Armed and Polyphosphoester Core-Cross-Linked Nanogel by One-Step Ring-Opening Polymerization, Macromolecules 2009,42,893.
    [33]D. Fournier, R. Hoogenboom, U. S.Schubert. Clicking polymers:a straightforward approach to novel macromolecular architectures, Chem. Soc. Rev.2007,36,1369.
    [34]B. Helms, J. L. Mynar, C. J. Hawker, J. M. J. Frechet. Dendronized linear polymers via "click chemistry", J. Am. Chem. Soc.2004,126,15020.
    [35]B. Parrish, R. B. Breitenkamp, T. Emrick. PEG-and peptide-grafted aliphatic polyesters by click chemistry, J. Am. Chem. Soc.2005,127,7404.
    [36]A. Mishra, R. K. Behera, P. K. Behera, B. K. Mishra, G. B. Behera. Cyanines during the 1990s:A review, Chem. Rev.2000,100,1973.
    [1]Y. Bae, K. Kataoka. Intelligent polymeric micelles from functional poly(ethylene glycol)-poly(amino acid) block copolymers, Adv. Drug Del. Rev.2009,61,768.
    [2]T. J. Deming. Polypeptide materials:New synthetic methods and applications, Adv. Mater. 1997,9,299.
    [3]R. Duncan. The dawning era of polymer therapeutics, Nat. Rev. Drug Discovery.2003,2,347.
    [4]E. S. Gil, S. M. Hudson. Stimuli-reponsive polymers and their bioconjugates, Prog. Polym. Sci.2004,29,1173.
    [5]F. Aulenta, W. Hayes, S. Rannard. Dendrimers:a new class of nanoscopic containers and delivery devices, Eur. Polym. J.2003,39,1741.
    [6]L. Zhang, W. Liu, L. Lin, D. Chen, M. H. Stenze. Degradable Disulfide Core-Cross-Linked Micelles as a Drug Delivery System Prepared from Vinyl Functionalized Nucleosides via the RAFT Process, Biomacromolecules 2008,9,3321.
    [7]T. Xing, B. Lai, X. Ye, L. Yan. Disulfide Core Cross-Linked PEGylated Polypeptide Nanogel Prepared by a One-Step Ring Opening Copolymerization of N-Carboxyanhydrides for Drug Delivery, Macromol. Biosci.2011,11,962.
    [8]A. Sulistio, A. Widjaya, A. Blencowe, X. Zhang, G Qiao. Star polymers composed entirely of amino acid building blocks:a route towards stereospecific, biodegradable and hierarchically functionalized stars, Chem. Commun.2011,47,1151.
    [9]F. Meng, W. E. Hennink, Z. Zhong. Reduction-sensitive polymers and bioconjugates for biomedical applications, Biomaterials 2009,30,2180.
    [10]P. Sharrna, S. Brown, G Walter, S. Santra, B. Moudgil. Nanoparticles for bioimaging, Adv. Colloid Interface Sci.2006,123,471.
    [II]J. Kim, Y. Piao, T. Hyeon. Multifunctional nanostructured materials for multimodal imaging, and simultaneous imaging and therapy, Chem. Soc. Rev.2009,38,372.
    [12]C.-L. Peng, Y.-H. Shih, P.-C. Lee, T. M.-H. Hsieh, T.-Y. Luo, M.-J. Shieh. Multimodal Image-Guided Photothermal Therapy Mediated by (188)Re-Labeled Micelles Containing a Cyanine-Type Photosensitizer, Acs Nano 2011,5,5594.
    [13]X. Chen, S.-W. Nam, G.-H. Kim, N. Song, Y. Jeong, I. Shin, S. K. Kim, J. Kim, S. Park, J. Yoon. A near-infrared fluorescent sensor for detection of cyanide in aqueous solution and its application for bioimaging, Chem. Commun.2010,46,8953.
    [14]J. O. Escobedo, O. Rusin, S. Lim, R. M. Strongin. NIR dyes for bioimaging applications, Curr. Opin. Chem. Biol.2010,14,64.
    [15]X. J. Feng, P. L. Wu, F. Bolze, H. W. C. Leung, K. F. Li, N. K. Mak, D. W. J. Kwong, J.-F. Nicoud, K. W. Cheah, M. S. Wong. Cyanines as New Fluorescent Probes for DNA Detection and Two-Photon Excited Bioimaging, Org. Lett.2010,12,2194.
    [16]R. C. Benson, H. A. Kues. FLUORESCENCE PROPERTIES OF INDOCYANINE GREEN AS RELATED TO ANGIOGRAPHY, Phys. Med. Bio.1978,23,159.
    [17]Z. R. Zhang, S. Achilefu. Synthesis and evaluation of polyhydroxylated near-infrared carbocyanine molecular probes, Org. Lett.2004,6,2067.
    [18]X. J. Peng, F. L. Song, E. Lu, Y. N. Wang, W. Zhou, J. L. Fan, Y. L. Gao. Heptamethine cyanine dyes with a large stokes shift and strong fluorescence:A paradigm for excited-state intramolecular charge transfer, JACS 2005,127,4170.
    [19]M.-H. Xiong, J. Wu, Y.-C. Wang, L.-S. Li, X.-B. Liu, G.-Z. Zhang, L.-F. Yan, J. Wang. Synthesis of PEG-Armed and Polyphosphoester Core-Cross-Linked Nanogel by One-Step Ring-Opening Polymerization, Macromolecules 2009,42,893.
    [20]C. Ornelas, R. Lodescar, A. Durandin, J. W. Canary, R. Pennell, L. F. Liebes, M. Weck. Combining Aminocyanine Dyes with Polyamide Dendrons:A Promising Strategy for Imaging in the Near-Infrared Region, Chem.-a Europ. J.2011,17,3619.
    [21]P. Kele, X. Li, M. Link, K. Nagy, A. Herner, K. Lorincz, S. Beni, O. S. Wolfbeis. Clickable fluorophores for biological labeling-with or without copper, Org. Biomolecul. Chem.2009,7, 3486.
    [22]C. Ornelas, R. Pennell, L. F. Liebes, M. Weck. Construction of a Well-Defined Multifunctional Dendrimer for Theranostics, Org. Lett.2011,13,976.
    [23]A. Masotti, P. Vicennati, F. Boschi, L. Calderan, A. Sbarbati, G. Ortaggi. A novel near-infrared indocyanine dye-Polyethylenimine conjugate allows DNA delivery imaging in vivo, Bioconj. Chem.2008,19,983.
    [24]A. Mishra, R. K. Behera, P. K. Behera, B. K. Mishra, G. B. Behera. Cyanines during the 1990s:A review, Chem. Rev.2000,100,1973.
    [25]L. Zhang, M. Yang, Q. Wang, Y. Li, R. Guo, X. Jiang, C. Yang, B. Liu. 10-Hydroxycamptothecin loaded nanoparticles:Preparation and antitumor activity in mice, J. Controlled Release 2007, 119,153.
    [26]W. Qin, D. Ding, J. Liu, W. Z. Yuan, Y. Hu, B. Liu, B. Z. Tang. Biocompatible Nanoparticles with Aggregation-Induced Emission Characteristics as Far-Red/Near-Infrared Fluorescent Bioprobes for In Vitro and In Vivo Imaging Applications, Adv. Funct. Mater.2012,22,771.
    [27]S.-D. Li, L. Huang. Pharmacokinetics and biodistribution of nanoparticles, Mol. Pharm. 2008,5,496.
    [1]S. M. Janib, A. S. Moses, J. A. MacKay. Imaging and drug delivery using theranostic nanoparticles,Adv. Drug Del. Rev.2010,62,1052.
    [2]M. E. Caldorera-Moore, W. B. Liechty, N. A. Peppas. Responsive Theranostic Systems: Integration of Diagnostic Imaging Agents and Responsive Controlled Release Drug Delivery Carriers, Acc. Chem. Res.2011,44,1061.
    [3]H. Koo, M. S. Huh,I.-C. Sun, S. H. Yuk, K. Choi, K. Kim, I. C. Kwon. In Vivo Targeted Delivery of Nanoparticles for Theranosis, Acc. Chem. Res.2011,44,1018.
    [4]R. Duncan. The dawning era of polymer therapeutics, Nat. Rev. Drug Discovery.2003,2,347.
    [5]Y. Matsumura, H. Maeda. A NEW CONCEPT FOR MACROMOLECULAR THERAPEUTICS IN CANCER-CHEMOTHERAPY-MECHANISM OF TUMORITROPIC ACCUMULATION OF PROTEINS AND THE ANTITUMOR AGENT SMANCS, Cancer Res.1986,46,6387.
    [6]J. Kost, R. Langer. Responsive polymeric delivery systems, Adv. Drug Del. Rev.2001,46, 125.
    [7]E. R. Gillies, J. M. J. Frechet. pH-responsive copolymer assemblies for controlled release of doxorubicin, Bioconj. Chem.2005,16,361.
    [8]Y. Bae, S. Fukushima, A. Harada, K. Kataoka. Design of environment-sensitive supramolecular assemblies for intracellular drug delivery:Polymeric micelles that are responsive to intracellular pH change, Angew.Chem.Int.Ed.2003,42,4640.
    [9]K. Kataoka, T. Matsumoto, M. Yokoyama, T. Okano, Y. Sakurai, S. Fukushima, K. Okamoto, G. S. Kwon. Doxorubicin-loaded poly(ethylene glycol)-poly(beta-benzyl-l-aspartate) copolymer micelles:their pharmaceutical characteristics and biological significance, J. Controlled Release 2000,64,143.
    [10]L. Zhou, R. Cheng, H. Tao, S. Ma, W. Guo, F. Meng, H. Liu, Z. Liu, Z. Zhong. Endosomal pH-Activatable Poly(ethylene oxide)-graft-Doxorubicin Prodrugs:Synthesis, Drug Release, and Biodistribution in Tumor-Bearing Mice, Biomacromolecules 2011,12,1460.
    [11]W. K. Moon, Y. H. Lin, T. O'Loughlin, Y. Tang, D. E. Kim, R. Weissleder, C. H. Tung. Enhanced tumor detection using a folate receptor-targeted near-infrared fluorochrorne conjugate, Bioconj. Chem.2003,14,539.
    [12]H. Lee, W. Akers, K. Bhushan, S. Bloch, G. Sudlow, R. Tang, S. Achilefu. Near-Infrared pH-Activatable Fluorescent Probes for Imaging Primary and Metastatic Breast Tumors, Bioconj. Chem.2011,22,777.
    [13]C. Ornelas, R. Lodescar, A. Durandin, J. W. Canary, R. Pennell, L. F. Liebes, M. Weck. Combining Aminocyanine Dyes with Polyamide Dendrons:A Promising Strategy for Imaging in the Near-Infrared Region, Chem.-a Europ. J.2011,17,3619.
    [14]C. Ornelas, R. Pennell, L. F. Liebes, M. Weck. Construction of a Well-Defined Multifunctional Dendrimer for Theranostics, Org. Lett.2011,13,976.
    [15]X. Chi, D. Huang, Z. Zhao, Z. Zhou, Z. Yin, J. Gao. Nanoprobes for in vitro diagnostics of cancer and infectious diseases, Biomaterials 2012,33,189.
    [16]B. M. Barth, E. I. Altinoglu, S. S. Shanmugavelandy, J. M. Kaiser, D. Crespo-Gonzalez, N. A. DiVittore, C. McGovern, T. M. Goff, N. R. Keasey, J. H. Adair, T. P. Loughran, Jr., D. F. Claxton, M. Kester. Targeted Indocyanine-Green-Loaded Calcium Phosphosilicate Nanoparticles for In Vivo Photodynamic Therapy of Leukemia, Acs Nano 2011,5,5325.
    [17]P. Sharrna, S. Brown, G. Walter, S. Santra, B. Moudgil. Nanoparticles for bioimaging, Adv. Colloid Interface Sci.2006,123,471.
    [18]J. N. Demas, G A. Crosby. QUANTUM EFFICIENCIES ON TRANSITION METAL COMPLEXES.2. CHARGE-TRANSFER LUMINESCENCE, JACS 1971,93,2841.
    [19]R. C. Benson, H. A. Kues. FLUORESCENCE PROPERTIES OF INDOCYANINE GREEN AS RELATED TO ANGIOGRAPHY, Phys. Med. Bio.1978,23,159.
    [20]W. H. Daly, D. Poche. THE PREPARATION OF N-CARBOXYANHYDRIDES OF ALPHA-AMINO-ACIDS USING BIS(TRICHLOROMETHYL)CARBONATE, Tetrahedron Lett.1988,29,5859.
    [21]T. J. Deming. Polypeptide materials:New synthetic methods and applications, Adv. Mater. 1997,9,299.
    [22]T. J. Deming. Methodologies for preparation of synthetic block copolypeptides:materials with future promise in drug delivery, Adv. Drug Del. Rev.2002,54,1145.
    [23]N. Hadjichristidis, H. Iatrou, M. Pitsikalis, G. Sakellariou. Synthesis of Well-Defined Polypeptide-Based Materials via the Ring-Opening Polymerization of alpha-Amino Acid N-Carboxyanhydrides, Chem. Rev.2009,109,5528.
    [24]T. Xing, B. Lai, X. Ye, L. Yan. Disulfide Core Cross-Linked PEGylated Polypeptide Nanogel Prepared by a One-Step Ring Opening Copolymerization of N-Carboxyanhydrides for Drug Delivery, Macromol. Biosci.2011,11,962.
    [25]L. Zhang, W. Liu, L. Lin, D. Chen, M. H. Stenze. Degradable Disulfide Core-Cross-Linked Micelles as a Drug Delivery System Prepared from Vinyl Functionalized Nucleosides via the RAFT Process, Biomacromolecules 2008,9,3321.
    [26]G. J. M. Habraken, M. Peeters, C. H. J. T. Dietz, C. E. Koning, A. Heise. How controlled and versatile is N-carboxy anhydride (NCA) polymerization at 0 degrees C? Effect of temperature on homo-, block-and graft (co)polymerization, Polym. Chem.2010,1,514.
    [27]W. Vayaboury, O. Giani, H. Cottet, A. Deratani, F. Schue. Living polymerization of alpha-amino acid N-carboxyanhydrides (NCA) upon decreasing the reaction temperature, Macromol. Rapid Commun.2004,25,1221.
    [28]A. Mishra, R. K. Behera, P. K. Behera, B. K. Mishra, G. B. Behera. Cyanines during the 1990s:A review, Chem. Rev.2000,100,1973.
    [29]K. E. Sapsford, L. Berti, I. L. Medintz. Materials for fluorescence resonance energy transfer analysis:Beyond traditional donor-acceptor combinations, Angew.Chem.Int.Ed.2006,45, 4562.
    [1]C. Boyer, V. Bulmus, T. P. Davis, V. Ladmiral, J. Liu, S. Perrier. Bioapplications of RAFT Polymerization, Chem. Rev.2009,109,5402.
    [2]A. W. York, S. E. Kirkland, C. L. McCormick. Advances in the synthesis of amphiphilic block copolymers via RAFT polymerization:Stimuli-responsive drug and gene delivery, Adv. Drug Del. Rev.2008,60,1018.
    [3]P. De, S. R. Gondi, B. S. Sumerlin. Folate-conjugated thermoresponsive block copolymers: Highly efficient conjugation and solution self-assembly, Biomacromolecules 2008,9,1064.
    [4]M. H. Stenzel. RAFT polymerization:an avenue to functional polymeric micelles for drug delivery, Chem. Commun.2008,3486.
    [5]C. Zhu, S. Jung, S. Luo, F. Meng, X. Zhu, T. G. Park, Z. Zhong. Co-delivery of siRNA and paclitaxel into cancer cells by biodegradable cationic micelles based on PDMAEMA-PCL-PDMAEMA triblock copolymers, Biomaterials 2010,31,2408.
    [6]J. N. Demas, G. A. Crosby. MEASUREMENT OF PHOTOLUMINESCENCE QUANTUM YIELDS-REVIEW, J. Phys. Chem.1971,75,991.
    [7]R. C. Benson, H. A. Kues. FLUORESCENCE PROPERTIES OF INDOCYANINE GREEN AS RELATED TO ANGIOGRAPHY, Phys. Med. Bio.1978,23,159.
    [8]X.-P. Qiu, F. M. Winnik. Synthesis of alpha,omega-dimercapto poly(N-isopropylacrylamides) by RAFT polymerization with a hydrophilic difunctional chain transfer agent, Macromolecules 2007,40,872.
    [9]M. R. Whittaker, Y.-K. Goh, H. Gemici, T. M. Legge, S. Perrier, M. J. Monteiro. Synthesis of monocyclic and linear polystyrene using the reversible coupling/cleavage of thiol/disulfide groups, Macromolecules 2006,39,9028.
    [10]W. Agut, D. Taton, S. Lecommandoux. A versatile synthetic approach to polypeptide based rod-coil block copolymers by click chemistry, Macromolecules 2007,40,5653.
    [11]A. Mishra, R. K. Behera, P. K. Behera, B. K. Mishra, G. B. Behera. Cyanines during the 1990s:A review, Chem. Rev.2000,100,1973.
    [12]K. E. Sapsford, L. Berti, I. L. Medintz. Materials for fluorescence resonance energy transfer analysis:Beyond traditional donor-acceptor combinations, Angew.Chem.Int.Ed.2006,45, 4562.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700