氟硼二吡咯(BODIPY)荧光探针的设计、合成与应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
荧光分子探针能够将分子识别的信息转换成荧光信号,具有最高可达单分子检测的高灵敏度、能够实现开关操作、对亚微粒子具有可视的亚纳米空间分辨能力和亚毫秒时间分辨能力、原位检测(荧光成像技术)以及利用光纤进行远距离检测等众多优点。开关型信号变化能够降低自身荧光的干扰,从而极大地提高探针的灵敏度。
     氟硼吡咯(BODIPY)作为荧光发色团具有非常优越的特性:1、摩尔消光系数比较大;2、尖锐的紫外吸收和荧光发射峰;3、很高的荧光量子产率;4、对极性和PH的耐受性比较好,而且在生理环境下非常稳定。本文基于BODIPY荧光团,设计合成了五个荧光探针。所有探针结构都经1H NMR、13C NMR和HRMS等确认。利用紫外-可见光和荧光光谱法系统研究了荧光探针对目标物的识别性能及识别机理。
     1、将多酰胺链受体通过苯乙烯基共轭连接到BODIPY的3位,合成了Cd2+探针CSl。该探针在中性缓冲液中高选择、高灵敏识别镉离子,镉离子结合前后荧光强度增强了大约200倍,荧光量子产率增加了大约100倍。CSI可以裸眼和荧光双通道区分Cd2+和Zn2+。它还可以穿透细胞膜,用于细胞内的Cd2+成像。
     2、在BODIPY的3位和5位引入两个多酰胺链受体,合成了探针CS2。它可以在中性缓冲溶液中选择性地识别镉离子,在镉离子结合前后真正实现了从无到有OFF-ON地信号变化。探针CS2和镉离子的金属螯合物CS2-Cd在水溶液中可以高灵敏、高选择性地检测PPi。在PPi存在时,CS2-Cd的荧光强度会迅速地减弱,但是在同样条件下PPi类似物(ADP和ATP)没有引起任何荧光变化。
     3、在BODIPY的3位和5位引入不同的取代基,设计、合成了近红外探针HMS (λem=658 nm)。该荧光探针的选择性可以通过改变缓冲体系进行调控,在不同的缓冲液体系,HMS可以选择性识别Hg2+、Pb2+和Cd2+。
     4、合成了基于氟硼吡咯荧光团和肼活性基团的次氯酸根离子荧光探针HCS。该探针在中性条件下,随着C1O-的加入,HCS的吸收有着明显的波长变化,荧光急剧增加而且有明显的蓝移过程。
Fluorescent probes can transfer molecular recognition events into fluorescence signals and then make a bridge between man and molecule. The advantages of molecular fluorescence for sensing can be summarized:high sensitivity of detection down to the single molecule, "on-off”switch ability, subnanometer spatial resolution and submillisecond temporal resolution, observation in situ, remote sensing by using optical fibres, etc. Off-On fluorescent probes have tremendous superiority. They have low autofluorescence and show good sensitivity.
     Boron dipyrromethene (BODIPY) as a fluorophore has tremendous superiority, such as big molar extinction coefficient, sharp absorption and fluorescence peaks, high fluorescence quantum yield and high stability. Herein five fluorescent probes based on BODIPY for ions were designed and synthesized. All compounds were characterized by 1HNMR,13C NMR and HRMS. Their photophysical properties and responses to cations were systematically investigated by means of UV-vis and fluorescence methods.
     1. Fluorescent probe (CS1) was designed and synthesized, whose receptor of polyamide was conjugated to 3-position of BODIPY through styryl. The probe could detect Cd2+ selectively and sensitively in neutral buffer solution. The fluorescent intensity enhanced about 200-fold and fluorescence quantum yield increased almost 100-fold after Cd2+addition. Moreover, its fluorescence intensity enhanced in a linear fashion with concentration of Cd2+ and thus can be potentially used for quantification of Cd2+. CS1 can readily distinguish Cd2+ from Zn2+by both naked eye and fluorescence, and the living cell image experiments further demonstrate its value in the practical applications of biological systems.
     2. Another fluorescent probe of CS2 for cadmium was synthesized through conjugating two polyamide receptors to 3-and 5-position of BODIPY. It is a selective off-on probe for Cd2+in aqueous solution. The complex CS2-Cd of CS2 with Cd2+showed good selectivity and sensitivity toward pyrophosphate (PPi). The fluorescent intensity of CS2-Cd decreased significantly with PPi addition, and it could distinguish PPi from ADP and ATP.
     3. NIR probe HMS (λem= 658nm) was designed and synthesized, which introduced two different substituent groups to 3-and 5-position of BODIPY. The selectivity of HMS toward Cd2+, Hg2+and Pb2+could be modulated via judicious choice of aqueous buffer solutions.
     4. A hypochlorite probe HCS based on BODIPY and hydrazinium was synthesized. When C10- was added, obvious absorption wavelength change was observed and the fluorescence decreased significantly with wavelength blue-shift.
引文
[1]W., S. J.; L., A. J. Supramolecular Chemistry. John wiley & Sons Ltd., Chichester. 2000.
    [2]吴世康超分子光化学导论-基础与应用.科学出版社.2005.
    [3]Behr, J. P. The Lock and Key Principle. The State of the Art-100 Years On, Wiley, Chichester.1994.
    [4]de Silva, A. P.; Gunaratne, H. Q. N.; Gunnlaugsson, T.; Huxley, A. J. M.; McCoy, C. P.; Rademacher, J. T.; Rice, T. E. Signaling Recognition Events with Fluorescent Sensors and Switches. Chemical Reviews.1997,97 (5):1515-1566.
    [5]Ramamurthy V.; Schanze, K. S. Optical sensors and switches. Marcel Dekker, Inc. 2001.
    [6]Wang, J.; Qian, X. A Series of Polyamide Receptor Based PET Fluorescent Sensor Molecules:Positively Cooperative Hg2+Ion Binding with High Sensitivity. Organic Letters.2006,8 (17):3721-3724.
    [7]Valeur, B. Molecular Fluorescence. Wiley-VCH, Wenheim,2002.
    [8]Xu, Z.; Xiao, Y.; Qian, X.; Cui, J.; Cui, D. Ratiometric and Selective Fluorescent Sensor for Cu(II) Based on Internal Charge Transfer (ICT). Organic Letters.2005,7 (5): 889-892.
    [9]Gunnlaugsson, T.; Harte, A. J.; Leonard, J. P.; Nieuwenhuyzen, M. Delayed lanthanide luminescence sensing of aromatic carboxylates using heptadentate triamide Tb(III) cyclen complexes:the recognition of salicylic acid in water. Chemical Communications. 2002, (18):2134-2135.
    [10]B., B. J. Photophysics of Aromatic Molecules. Wiley, London,.1970.
    [11]Zhang, X.; Xiao, Y; Qian, X. A Ratiometric Fluorescent Probe Based on FRET for Imaging Hg2+Ions in Living Cells. Angewandte Chemie International Edition.2008,47 (42):8025-8029.
    [12]Treibs, A.; Kreuzer, F. H.; Difluorboryl-Komplexe von Di-und Tripyrrylmethenen. Justus Liebigs Annalen der Chemie.1968,718:208-223.
    [13]Van, K., J. A.; Lugtenburg, J. Novel pyrromethenes.1-Oxygen and 1-sulfur analogues; evidence for photochemical Z-E isomerization. Recueil des Travaux Chimiques des Pays-Bas.1977,96 (2):55-57.
    [14]Wagner, R. W.; Lindsey, J. S. Boron-dipyrromethene dyes for incorporation in synthetic multi-pigment light-harvesting arrays. Pure and Applied Chemistry.1996,68 (7): 1373-1380.
    [15]Yee, M.-c.; Fas, S. C; Stohlmeyer, M. M.; Wandless, T. J.; Cimprich, K. A. A Cell-permeable, Activity-based Probe for Protein and Lipid Kinases. Journal of Biological Chemistry.2005,280 (32):29053-29059.
    [16]Haugland, R. P. Handbook of Fluorescent Probes and Research Chemicals,6th ed. Molecular Probes:Eugene, OR.1996.
    [17]Karolin, J.; Johansson, L. B. A.; Strandberg, L.; Ny, T. Fluorescence and Absorption Spectroscopic Properties of Dipyrrometheneboron Difluoride (BODIPY) Derivatives in Liquids, Lipid Membranes, and Proteins. Journal of the American Chemical Society. 1994,116 (17):7801-7806.
    [18]Metzker, M. L. WO Patent WO/2003/066812.2003.
    [19]Boyer, J. H.; Haag, A. M.; Sathyamoorthi, G.; Soong, M.-L.; Thangaraj, K.; Pavlopoulos, T. G. Pyrromethene-BF2 complexes as laser dyes:2. Heteroatom Chemistry.1993,4 (1):39-49.
    [20]Shah, M.; Thangaraj, K.; Soong, M.-L.; Wolford, L. T.; Boyer, J. H.; Politzer, I. R.; Pavlopoulos, T. G. Pyrromethene-BF2 complexes as laser dyes:l. Heteroatom Chemistry.1990,1 (5):389-399.
    [21]Li, Z.; Mintzer, E.; Bittman, R. First Synthesis of Free Cholesterol-BODIPY Conjugates. The Journal of Organic Chemistry.2006,71 (4):1718-1721.
    [22]Li, M.; Wang, H.; Zhang, X.; Zhang, H.-S. Development of a new fluorescent probe: l,3,5,7-tetramethyl-8-(4'-aminophenyl)-4,4-difluoro-4-bora-3a,4a-diaza-s-indacence for the determination of trace nitrite. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy.2004,60 (4):987-993.
    [23]Zhang, X.; Zhang, H.-s. Design, synthesis and characterization of a novel fluorescent probe for nitric oxide based on difluoroboradiaza-s-indacene fluorophore. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy.2005,61 (6): 1045-1049.
    [24]Zhang, X.; Wang, H.; Li, J.-S.; Zhang, H.-S. Development of a fluorescent probe for nitric oxide detection based on difluoroboradiaza-s-indacene fluorophore. Analytica ChimicaActa.2003,481 (1):101-108.
    [25]Oleynik, P.; Ishihara, Y.; Cosa, G. Design and Synthesis of a BODIPY-a-Tocopherol Adduct for Use as an Off/On Fluorescent Antioxidant Indicator. Journal of the American Chemical Society.2007,129 (7):1842-1843.
    [26]Werner, T.; Huber, C; Heinl, S.; Kollmannsberger, M.; Daub, J.; Wolfbeis, O. S. Novel optical pH-sensor based on a boradiaza-indacene derivative. Fresenius'Journal of Analytical Chemistry.1997,359 (2):150-154.
    [27]Baki, C. N.; Akkaya, E. U. Boradiazaindacene-Appended Calix[4]arene:Fluorescence Sensing of pH Near Neutrality. The Journal of Organic Chemistry.2001,66 (4): 1512-1513.
    [28]Qi, X.; Jun, E. J.; Xu, L.; Kim. S.-J.; Joong Hong, J. S.; Yoon, Y. J.; Yoon, J. New BODIPY Derivatives as OFF-ON Fluorescent Chemosensor and Fluorescent Chemodosimeter for Cu2+:Cooperative Selectivity Enhancement toward Cu2+. The Journal of Organic Chemistry.2006,71 (7):2881-2884.
    [29]Bricks, J. L.; Kovalchuk, A.; Trieflinger, C; Nofz, M.; Buschel, M.; Tolmachev, A. I.; Daub, J.; Rurack, K. On the Development of Sensor Molecules that Display FeIII-amplified Fluorescence. Journal of the American Chemical Society.2005,127 (39):13522-13529.
    [30]Wu, Y.; Peng, X.; Guo, B.; Fan, J.; Zhang, Z.; Wang, J.; Cui, A.; Gao, Y. Boron dipyrromethene fluorophore based fluorescence sensor for the selective imaging of Zn(ii) in living cells. Organic& Biomolecular Chemistry.2005,3 (8):1387-1392.
    [31]Martin, V. V.; Rothe, A.; Gee, K. R. Fluorescent metal ion indicators based on benzoannelated crown systems:a green fluorescent indicator for intracellular sodium ions. Bioorganic & Medicinal Chemistry Letters.2005,15 (7):1851-1855.
    [32]Rurack, K.; Kollmannsberger, M.; Resch-Genger, U.; Daub, J. A Selective and Sensitive Fluoroionophore for Hgll, Agl, and Cull with Virtually Decoupled Fluorophore and Receptor Units. Journal of the American Chemical Society.2000,122 (5):968-969.
    [33]Basaric, N.; Baruah, M.; Qin, W.; Metten, B.; Smet, M.; Dehaen, W.; Boens, N. Synthesis and spectroscopic characterisation of BODIPY[registered sign] based fluorescent off-on indicators with low affinity for calcium. Organic & Biomolecular Chemistry.2005,3 (15):2755-2761.
    [34]DiCesare, N.; Lakowicz, J. R. Fluorescent probe for monosaccharides based on a functionalized boron-dipyrromethene with a boronic acid group. Tetrahedron Letters. 2001,42 (52):9105-9108.
    [35]Li, J.-S.; Wang, H.; Huang, K.-J.; Zhang, H.-S. Determination of biogenic amines in apples and wine with 8-phenyl-(4-oxy-acetic acid N-hydroxysuccinimide ester)-4, 4-difluoro-l,3,5,7-tetramethyl-4-bora-3a,4a-diaza-s-indacene by high performance liquid chromatography. Analytica Chimica Acta.2006,575 (2):255-261.
    [36]Ueno, T; Urano, Y; Setsukinai, K.-i.; Takakusa, H.; Kojima, H.; Kikuchi, K.; Ohkubo, K.; Fukuzumi, S.; Nagano, T. Rational Principles for Modulating Fluorescence Properties of Fluorescein. Journal of the American Chemical Society.2004,126 (43): 14079-14085.
    [37]Tanaka, K.; Miura, T.; Umezawa, N.; Urano, Y.; Kikuchi, K.; Higuchi, T.; Nagano, T. Rational Design of Fluorescein-Based Fluorescence Probes. Mechanism-Based Design of a Maximum Fluorescence Probe for Singlet Oxygen. Journal of the American Chemical Society.2001,123 (11):2530-2536.
    [38]Sunahara, H.; Urano, Y.; Kojima, H.; Nagano, T. Design and Synthesis of a Library of BODIPY-Based Environmental Polarity Sensors Utilizing Photoinduced Electron-Transfer-Controlled Fluorescence ON/OFF Switching. Journal of the American Chemical Society.2007,129 (17):5597-5604.
    [39]Gabe, Y.; Urano, Y; Kikuchi, K.; Kojima, H.; Nagano, T. Highly Sensitive Fluorescence Probes for Nitric Oxide Based on Boron Dipyrromethene ChromophoreRational Design of Potentially Useful Bioimaging Fluorescence Probe. Journal of the American Chemical Society.2004,126 (10):3357-3367.
    [40]Morgan, L. R.; Boyer, J. H. Boron difluoride compounds useful in photodynamic therapy and production of laser light. U.S. Patent 5,189,029,1995.
    [41]Boyer, J. H.; Morgan, L. R. Fluorescent chemical compositions useful as laser dyes and photodynamic therapy agents, and methods for their use. U.S. Patent 361936,1990.
    [42]Pavlopoulos, T. G.; Boyer, J. H.; Shah, M.; Thangaraj, K.; Soong, M.-L. Laser action from 2,6,8-position trisubstituted 1,3,5,7-tetramethylpyrromethene-BF2 complexes: part 1. Appl. Opt.1990,29 (27):3885-3886.
    [43]Suzuki, T.; Tanaka, T.; Higashiguchi, I.; Oda, A. Organic electroluminescent device elements. JP Patent 11176572,1999.
    [44]H.; Tsuda, T.; Imai, G.; Kogure, H. Visible light-curable resin compositions and their use in inks. JP Patent 10273504, January 29,1998.
    [45]Imai, G.; Kogure, H.; Ogiso, A.; Misawa, T.; Nishimoto, T.; Tsukahara, H.; Takuma, K. Visible light-curable resin compositions and their use in electrophotographic material. JP Patent 2000001509,2000.
    [46]Imai, G.; Kogure, H.; Ogiso, A.; Misawa, T.; Nishimoto, T.; Tsukahara, H.; Takuma, K. Visible light-curable resin compositions and their use in electrophotographic material. JP Patent 2000001510,2000.
    [47]Imai, G.; Kogure, H.; Ogiso, A.; Misawa, T.; Nishimoto, T.; Tsukahara, H.; Takuma, K. Positive-working visible ray-sensitive resin composition containing pyrromethene boron complex sensitizer and its usage. JP Patent 2000039715,2000.
    [48]Imai, G.; Kogure, H.; Ogiso, A.; Misawa, T.; Nishimoto, T.; Tsukahara, H.; Takuma, K. Positive-working visible ray-sensitive resin composition containing pyrromethene boron complex sensitizer and its usage. JP Patent 2000039716,2000.
    [49]Haugland, R. P.; Kang, H. C. Reactive fluorescent dipyrrometheneboron difluoride dyes as molecular probes for biopolymers. U.S. Patent 4,774,339,1988.
    [50]Yogo, T.; Urano, Y.; Ishitsuka, Y.; Maniwa, F.; Nagano, T. Highly Efficient and Photostable Photosensitizer Based on BODIPY Chromophore. Journal of the American Chemical Society.2005,127 (35):12162-12163.
    [51]Amat-Guerri, F.; Liras, M.; Carrascoso, M. L.; Sastre, R. Methacrylate-tethered Analogs of the Laser Dye PM567—Synthesis, Copolymerization with Methyl Methacrylate and Photostability of the Copolymers. Photochemistry and Photobiology. 2003,77 (6):577-584.
    [52]Baruah, ML; Qin, W.; Vallee, R. A. L.; Beljonne, D.; Rohand, T.; Dehaen, W.; Boens, N. A Highly Potassium-Selective Ratiometric Fluorescent Indicator Based on BODIPY Azacrown Ether Excitable with Visible Light. Organic Letters.2005,7 (20): 4377-4380.
    [53]Rohand, T.; Baruah, M.; Qin, W.; Boens, N.; Dehaen, W. Functionalisation of fluorescent BODIPY dyes by nucleophilic substitution. Chemical Communications. 2006, (3):266-268.
    [54]Kalai, T.; Hideg, K. Synthesis of new, BODIPY-based sensors and labels. Tetrahedron. 2006,62(44):10352-10360.
    [55]Yu, Y.-H.; Descalzo, A. B.; Shen, Z.; Rohr, H.; Liu, Q.; Wang, Y.-W.; Spieles, M.; Li, Y.-Z.; Rurack, K.; You, X.-Z. Mono-and Di(dimethylamino)styryl-Substituted Borondipyrromethene and Borondiindomethene Dyes with Intense Near-Infrared Fluorescence. Chemistry-An Asian Journal.2006,1 (1-2):176-187.
    [56]Dost, Z.; Atilgan, S.; Akkaya, E. U. Distyryl-boradiazaindacenes:facile synthesis of novel near IR emitting fluorophores. Tetrahedron.2006,62 (36):8484-8488.
    [57]Coskun, A.; Akkaya, E. U. Difluorobora-s-diazaindacene dyes as highly selective dosimetric reagents for fluoride anions. Tetrahedron Letters.2004,45 (25):4947-4949.
    [58]Rurack, K.; Kollmannsberger, M.; Daub, J. A highly efficient sensor molecule emitting in the near infrared (NIR):3,5-distyryl-8-(p-dimethylaminophenyl)difluoroboradiaza-s-indacene. New Journal of Chemistry.2001,25 (2):289-292.
    [59]Saki, N.; Dine, T.; Akkaya, E. U. Excimer emission and energy transfer in cofacial boradiazaindacene (BODIPY) dimers built on a xanthene scaffold. Tetrahedron.2006, 62 (11):2721-2725.
    [60]Dahim, M.; Mizuno, N. K.; Li, X.-M.; Momsen, W. E.; Momsen, M. M.; Brockman, H. L. Physical and Photophysical Characterization of a BODIPY Phosphatidylcholine as a Membrane Probe. Biophysical journal.2002,83 (3):1511-1524.
    [61]Rurack, K.; Kollmannsberger, M.; Daub, J. Molecular Switching in the Near Infrared (NIR) with a Functionalized Boron-Dipyrromethene Dye. Angewandte Chemie International Edition.2001,40 (2):385-387.
    [62]Baruah, M.; Qin, W.; Flors, C.; Hofkens, J.; Vallee, R. A. L.; Beljonne, D.; Van der Auweraer, M.; De Borggraeve, W. M; Boens, N. Solvent and pH Dependent Fluorescent Properties of a Dimethylaminostyryl Borondipyrromethene Dye in Solution. The Journal of Physical Chemistry A.2006,110 (18):5998-6009.
    [63]Mikhalyov, I.; Gretskaya, N.; Bergstrom, F.; Johansson, L. B. A. Electronic ground and excited state properties of dipyrrometheneboron difluoride (BODIPY):Dimers with application to biosciences. Physical Chemistry Chemical Physics.2002,4 (22): 5663-5670.
    [64]Winnik, F. M; Adronov, A.; Kitano, H. Pyrene-labeled amphiphilic poly-(N-isopropylacrylamides) prepared by using a lipophilic radical initiator: Synthesis, solution properties in water, and interactions with liposomes. Canadian Journal of Chemistry-Revue Canadienne De Chimie.1995,73 (11):2030-2040.
    [65]Fabbrizzi, L.; Licchelli, M.; Pallavicini, P.; Perotti, A.; Taglietti, A.; Sacchi, D. Fluorescent sensors for transition metals based on electron-transfer and energy-transfer mechanisms. Chemistry-a European Journal.1996,2(1):75-82.
    [66]Brunet, E.; Alonso, M. T.; Juanes, O.; Velasco, O.; Rodrlguez-Ubis, J. C. Novel polyaminocarboxylate chelates derived from 3-aroylcoumarins. Tetrahedron.2001,57 (15):3105-3116.
    [67]Rodriguez-Ubis, J. C; Alonso, M. T.; Juanes, O.; Brunet, E. Luminescent cryptands. 3-aroylcoumarin macrobicyclic complexes of europium(Ⅲ) and terbium(Ⅲ):the effect of coumarin substitution. Luminescence.2000,15 (6):331-340.
    [68]Maton, L.; Taziaux, D.; Soumillion, J. P.; Jiwan, J. L. H. About the use of an amide group as a linker in fluoroionophores:competition between linker and ionophore acting as chelating groups. Journal of Materials Chemistry.2005,15 (27-28):2928-2937.
    [69]Suzuki, Y.; Komatsu, H.; Ikeda, T.; Saito, N.; Araki, S.; Citterio, D.; Hisamoto, H.; Kitamura, Y.; Kubota, T.; Nakagawa, J.; Oka, K.; Suzuki, K. Design and synthesis of Mg2+-selective fluoroionophores based on a coumarin derivative and application for Mg2+measurement in a living cell. Analytical Chemistry.2002,74 (6):1423-1428.
    [70]Leray, I.; Asfari, Z.; Vicens, J.; Valeur, B. Synthesis and binding properties of calix[4]biscrown-based fluorescent molecular sensors for caesium or potassium ions. Journal of the Chemical Society-Perkin Transactions 2.2002, (8):1429-1434.
    [71]Leray, I.; Asfari, Z.; Vicens, J.; Valeur, B. Photophysics of calix[4]biscrown-based ditopic receptors of caesium containing one or two dioxocoumarin fluorophores. Journal of Fluorescence.2004,14 (4):451-458.
    [72]Kiyose, K.; Kojima, H.; Urano, Y; Nagano, T. Development of a ratiometric fluorescent zinc ion probe in near-infrared region, based on tricarbocyanine chromophore. Journal of the American Chemical Society.2006,128 (20):6548-6549.
    [73]Xiang, Y.; Tong, A. J. A new rhodamine-based chemosensor exhibiting selective Fe-III-amplified fluorescence. Organic Letters.2006,8 (8):1549-1552.
    [74]Nolan, E. M; Jaworski, J.; Okamoto, K. I.; Hayashi, Y.; Sheng, M.; Lippard, S. J. QZ1 and QZ2:Rapid, reversible quinoline-derivatized fluoresceins for sensing biological Zn(II). Journal of the American Chemical Society.2005,127 (48):16812-16823.
    [75]Nolan, E. M.; Racine, M. E.; Lippard, S. J. Selective Hg(II) detection in aqueous solution with thiol derivatized fluoresceins. Inorganic Chemistry.2006,45 (6): 2742-2749.
    [76]Carreon, J. R.; Stewart, K. M; Mahon Jr, K. P.; Shin, S.; Kelley, S. O. Cyanine dye conjugates as probes for live cell imaging. Bioorganic & Medicinal Chemistry Letters. 2007,17 (18):5182-5185.
    [77]Pauli, J.; Vag, T.; Haag, R.; Spieles, M; Wenzel, M.; Kaiser, W. A.; Resch-Genger, U.; Hilger, I. An in vitro characterization study of new near infrared dyes for molecular imaging. European Journal of Medicinal Chemistry.2009,44 (9):3496-3503.
    [78]Deligeorgiev, T.; Vasilev, A.; Drexhage, K.-H. Synthesis of novel cyanine dyes containing carbamoylethyl component-Noncovalent labels for nucleic acids detection. Dyes and Pigments.2007,74 (2):320-328.
    [79]Hilal, H.; Taylor, J. A. Cyanine dyes for the detection of double stranded DNA. Journal of Biochemical and Biophysical Methods.2008,70 (6):1104-1108.
    [80]Berezin, M. Y.; Guo, K.; Akers, W.; Livingston, J.; Solomon, M.; Lee, H.; Liang, K.; Agee, A.; Achilefu, S. Rational Approach To Select Small Peptide Molecular Probes Labeled with Fluorescent Cyanine Dyes for in Vivo Optical Imaging. Biochemistry. 2011,50 (13),2691-2700.
    [81]Resch-Genger, U.; Grabolle, M.; Cavaliere-Jaricot, S.; Nitschke, R.; Nann, T. Quantum dots versus organic dyes as fluorescent labels. Nature Methods.2008,5 (9):763-775.
    [82]Constantin, T. P.; Silva, G. L.; Robertson, K. L.; Hamilton, T. P.; Fague, K.; Waggoner, A. S.; Armitage, B. A. Synthesis of New Fluorogenic Cyanine Dyes and Incorporation into RNA Fluoromodules. Organic Letters.2008,10 (8):1561-1564.
    [83]Fegan, A.; Shirude, P. S.; Balasubramanian, S. Rigid cyanine dyenucleic acid labels. Chemical Communications.2008, (17):2004-2006.
    [84]Holzhauser, C.; Berndl, S.; Menacher, F.; Breunig, M.; Gopferich, A.; Wagenknecht, H.-A. Synthesis and Optical Properties of Cyanine Dyes as Fluorescent DNA Base Substitutions for Live Cell Imaging. European Journal of Organic Chemistry.2010, 2010(7):1239-1248.
    [85]Benniston, A. C; Rewinska, D. B. Simultaneous fluorescence and redox modulation in an irreversible photochrome based on a strained dibenzo-acridinium cation. Organic & Biomolecular Chemistry.2006,4 (21):3886-3888.
    [86]Yang, Y. K.; Tae, J. Acridinium salt based fluorescent and colorimetric chemosensor for the detection of cyanide in water. Organic Letters.2006,8 (25):5721-5723.
    [87]King, D. W.; Cooper, W. J.; Rusak, S. A.; Peake, B. M.; Kiddle, J. J.; O'Sullivan, D. W.; Melamed, M. L.; Morgan, C. R.; Theberge, S. M. Flow injection analysis of H2O2 in natural waters using acridinium ester chemiluminescence:Method development and optimization using a kinetic model. Analytical Chemistry.2007,79 (11):4169-4176.
    [88]Kuruvilla, E.; Ramaiah, D. Selective interactions of a few acridinium derivatives with single strand DNA:Study of photophysical and DNA binding interactions. Journal of Physical Chemistry B.2007,111 (23):6549-6556.
    [89]Tanaka, M.; Yukimoto, K.; Ohkubo, K.; Fukuzumi, S. Intermolecular vs. intramolecular photoinduced electron transfer from nucleotides in DNA to acridinium ion derivatives in relation with DNA cleavage. Journal of Photochemistry and Photobiology A-Chemistry.2008,197 (2-3):206-212.
    [90]Xu, S.; Li, W.; Chen, K.-C. Naphthalimide as Highly Selective Fluorescent Sensor for Ag+Ions. Chinese Journal of Chemistry.2007,25 (6):778-783.
    [91]Bojinov, V. B.; Konstantinova, T. N. Fluorescent 4-(2,2,6,6-tetramethylpiperidin-4-ylamino)-l,8-naphthalimide pH chemosensor based on photoinduced electron transfer. Sensors and Actuators B:Chemical.2007,123 (2): 869-876.
    [92]Bojinov, V. B.; Georgiev, N. I.; Nikolov, P. S. Synthesis and photophysical properties of fluorescence sensing ester-and amidoamine-functionalized 1,8-naphthalimides. Journal of Photochemistry and Photobiology A:Chemistry.2008,193 (2-3):129-138.
    [93]Grabchev, I.; Dumas, S.; Chovelon, J. M.; Nedelcheva, A. First generation poly(propyleneimine) dendrimers functionalised with 1,8-naphthalimide units as fluorescence sensors for metal cations and protons. Tetrahedron.2008,64 (9): 2113-2119.
    [94]Zhou, Y; Xiao, Y; Qian, X. H. A highly selective Cd2+sensor of naphthyridine: fluorescent enhancement and red-shift by the synergistic action of forming binuclear complex. Tetrahedron Letters.2008,49 (21):3380-3384.
    [95]Li, L. B.; Ji, S. J.; Lu, W. H. A novel highly selective fluorescent chemosensor for Zn2+ by terpyridyl based on naphthalimide fluorophore. Chinese Journal of Chemistry.2008, 26 (3):417-420.
    [96]Lippard, S. J.; Berg, J. M. Principles of Bioinorganic Chemistry; led.; University Science Books:Mill Valley, CA,1994.
    [97]Domaille, D. W.; Que. E. L.; Chang, C. J. Synthetic fluorescent sensors for studying the cell biology of metals. Nature Chemical Biology.2008,4 (3):168-175.
    [98]Que, E. L.; Domaille, D. W.; Chang, C. J. Metals in neurobiology:Probing their chemistry and biology with molecular imaging. Chemical Reviews.2008,108 (5): 1517-1549.
    [99]Berg, J. M.; Shi, Y. The galvanization of biology:a growing appreciation for the roles of zinc. Science.1996,271 (5252):1081-1085.
    [100]Sensi, S. L.; Ton-That, D.; Weiss, J. H.; Rothe, A.; Gee, K. R. A new mitochondrial fluorescent zinc sensor. Cell Calcium.2003,34 (3):281-284.
    [101]Wang, J. B.; Xiao, Y.; Zhang, Z. C.; Qian, X. H.; Yang, Y. Y; Xu, Q. A pH-resistant Zn(II) sensor derived from 4-aminonaphthalimide:design, synthesis and intracellular applications. Journal of Materials Chemistry.2005,15 (27-28):2836-2839.
    [102]Haugland, R. P. Handbook of Fluorescent Probes and Research Products,9th ed.; Molecular Probes, Inc.:Eugene, OR,2002.
    [103]Aisen, P.; Wessling-Resnick, M; Leibold, E. A. Iron metabolism. Current Opinion in Chemical Biology.1999,3 (2):200-206.
    [104]Ferrali, M.; Donati, D.; Bambagioni, S.; Fontani, M.; Giorgi, G.; Pietrangelo, A. 3-hydroxy-(4H)-benzopyran-4-ones as potential iron chelating agents in vivo. Bioorganic & Medicinal Chemistry.2001,9(11):3041-3047.
    [105]Sayre, L. M.; Perry, G.; Smith, M. A. Redox metals and neurodegenerative disease. Current Opinion in Chemical Biology.1999,3 (2):220-225.
    [106]Sumner, J. P.; Kopelman, R. Alexa Fluor 488 as an iron sensing molecule and its application in PEBBLE nanosensors. Analyst.2005,130 (4):528-533.
    [107]Weizman, H.; Ardon, O.; Mester, B.; Libman, J.; Dwir, O.; Hadar, Y; Chen, Y; Shanzer, A. Fluorescently-labeled ferrichrome analogs as probes for receptor-mediated, microbial iron uptake. Journal of the American Chemical Society.1996,118 (49): 12368-12375.
    [108]Eisenstein, R. S. Iron regulatory proteins and the molecular control of mammalian iron metabolism. Annual Review of Nutrition.2000,20:627-662.
    [109]Ma, Y M.; Luo, W.; Quinn, P. J.; Liu, Z. D.; Hider, R. C. Design, synthesis, physicochemical properties, and evaluation of novel iron chelators with fluorescent sensors. Journal of Medicinal Chemistry.2004,47 (25):6349-6362.
    [110]Tumarnbac, G. E.; Rosencrance, C. M.; Wolf, C. Selective metal ion recognition using a fluorescent 1,8-diquinolylnaphthalene-derived sensor in aqueous solution. Tetrahedron. 2004,60(49):11293-11297.
    [111]Wolf, C; Mei, X. F.; Rokadia, H. K. Selective detection of Fe(Ⅲ) ions in aqueous solution with a 1,8-diacridylnaphthalene-derived fluorosensor. Tetrahedron Letters. 2004,45 (42):7867-7871.
    [112]Kikkeri, R.; Traboulsi, H.; Humbert, N.; Gumienna-Kontecka, E.; Arad-Yellin, R.; Melman, G.; Elhabiri, M.; Albrecht-Gary, A. M; Shanzer, A. Toward iron sensors: Bioinspired tripods based on fluorescent phenol-oxazoline coordination sites. Inorganic Chemistry.2007,46 (7):2485-2497.
    [113]Gross, L. Manipulating cellular pH suggests novel anticancer therapy. PLoS Biol.2007, 5(1):e10.
    [114]Tang, B.; Yu, F.; Li, P.; Tong, L. L.; Duan, X.; Xie, T.; Wang, X. A Near-Infrared Neutral pH Fluorescent Probe for Monitoring Minor pH Changes:Imaging in Living HepG2 and HL-7702 Cells. Journal of the American Chemical Society.2009,131 (8): 3016-3023.
    [115]Urano, Y.; Asanuma, D.; Hama, Y.; Koyama, Y; Barrett, T.; Kamiya, M.; Nagano, T.; Watanabe, T.; Hasegawa, A.; Choyke, P. L.; Kobayashi, H. Selective molecular imaging of viable cancer cells with pH-activatable fluorescence probes. Nature Medicine.2009, 15(1):104-109.
    [116]Dougherty TJ, H. B. H. p. S. S., Winkelman JW, Lipson RL. In:Henderson BW, Dougherty TJ, editors. Photodynamic therapy. New York:Marcel Dekker Inc.1992: 1-15.
    [117]Sternberg E D, D. D. Porphyrin-based photosensitizers for use in photodynamic therapy. Tetrahedron.1998,54:4151-4202.
    [118]Thomas J. Dougherty, C. J. G., Barbara W. Henderson, Giulio Jori, David Kessel, Mladen Korbelik, Johan Moan, Qian Peng. Photodynamic Therapy. Journal of the National Cancer Institute.1998,90 (12):889-905.
    [119]Tsien, R. Y. THE GREEN FLUORESCENT PROTEIN. Annual Review of Biochemistry.1998,67 (1):509-544.
    [120]Cabantous, S.; Terwilliger, T. C; Waldo, G. S. Protein tagging and detection with engineered self-assembling fragments of green fluorescent protein. Nat Biotech.2005, 23(1):102-107.
    [121]Chalfie, M.; Tu, Y; Euskirchen, G.; Ward, W.; Prasher, D. Green fluorescent protein as a marker for gene expression. Science.1994,263 (5148):802-805.
    [122]Maniak, M.; Rauchenberger, R.; Albrecht, R.; Murphy, J.; Gerisch, G. Coronin involved in phagocytosis:Dynamics of particle-induced relocalization visualized by a green fluorescent protein tag. Cell.1995,83 (6):915-924.
    [123]Harper, B. K.; Mabon, S. A.; Leffel, S. M.; Halfhill, M. D.; Richards, H. A.; Moyer, K. A.; Stewart, C. N. Green fluorescent protein as a marker for expression of a second gene in transgenic plants. Nature Biotechnology.1999,17(11):1125-1129.
    [124]Hertzberg, R. P.; Pope, A. J. High-throughput screening:new technology for the 21st century. Current Opinion in Chemical Biology.2000,4 (4):445-451.
    [125]Sundberg, S. A. High-throughput and ultra-high-throughput screening:solution-and cell-based approaches. Current Opinion in Biotechnology.2000,11 (1):47-53.
    [126]Conway, B. R.; Minor, L. K.; Xu, J. Z.; Gunnet, J. W.; DeBiasio, R.; D' Andrea, M. R.; Rubin, R.; DeBiasio, R.; Giuliano, K.; Zhou, L.; Demaresti, K. T. Quantification of G-Protein Coupled Receptor Internalization Using G-Protein Coupled Receptor-Green Fluorescent Protein Conjugates with the ArrayScanTM High-Content Screening System. Journal of Biomolecular Screening.1999,4 (2):75-86.
    [127]Kain, S. R. Green fluorescent protein (GFP):applications in cell-based assays for drug discovery. Drug Discovery Today.1999,4 (7):304-312.
    [128]Dooley, C. T.; Dore, T. M.; Hanson, G. T.; Jackson, W. C; Remington, S. J.; Tsien, R. Y. Imaging Dynamic Redox Changes in Mammalian Cells with Green Fluorescent Protein Indicators. Journal of Biological Chemistry.2004,279 (21):22284-22293.
    [129]Nakai, J.; Ohkura, M.; Imoto, K. A high signal-to-noise Ca2+probe composed of a single green fluorescent protein. Nature Biotechnology.2001,19 (2):137-141.
    [130]Barak, L. S.; Ferguson, S. S. G.; Zhang, J.; Caron, M. G. A β-Arrestin/Green Fluorescent Protein Biosensor for Detecting G Protein-coupled Receptor Activation. Journal of Biological Chemistry.1997,272 (44):27497-27500.
    [131]Kneen, M.; Farinas, J.; Li, Y.; Verkman, A. S. Green Fluorescent Protein as a Noninvasive Intracellular pH Indicator. Biophysical journal.1998,74 (3):1591-1599.
    [132]Marti, A.; Lopez, N.; Antolin, E.; Canovas, E.; Luque, A.; Stanley, C. R.; Farmer, C. D.; Diaz, P. Emitter degradation in quantum dot intermediate band solar cells. Applied Physics Letters.2007,90 (23):233510-233510-233513.
    [133]Lee, Y.-L.; Lo, Y.-S. Highly Efficient Quantum-Dot-Sensitized Solar Cell Based on Co-Sensitization of CdS/CdSe. Advanced Functional Materials.2009,19 (4):604-609.
    [134]Lee, Y.-L.; Huang, B.-M.; Chien, H.-T. Highly Efficient CdSe-Sensitized TiO2 Photoelectrode for Quantum-Dot-Sensitized Solar Cell Applications. Chemistry of Materials.2008,20 (22):6903-6905.
    [135]Robel, I.; Subramanian, V.; Kuno, M.; Kamat, P. V. Quantum Dot Solar Cells. Harvesting Light Energy with CdSe Nanocrystals Molecularly Linked to Mesoscopic TiO2 Films. Journal of the American Chemical Society.2006,128 (7):2385-2393.
    [136]Kongkanand, A.; Tvrdy, K.; Takechi, K.; Kuno, M.; Kamat, P. V. Quantum Dot Solar Cells. Tuning Photoresponse through Size and Shape Control of CdSe-TiO2 Architecture. Journal of the American Chemical Society.2008,130 (12):4007-4015.
    [137]Forbes, D. V.; Hubbard, S. M; Bailey, C.; Polly, S.; Andersen, J.; Raffaelle, R. Ⅲ-V Quantum Dot Enhanced Photovoltaic Devices. Next Generation (Nano) Photonic and Cell Technologies for Solar Energy Conversion.2010,7772:77720C.
    [138]Kuo, C. Y.; Su, M. S.; Hsu, Y. C; Lin, H. N.; Wei, K. H. An Organic Hole Transport Layer Enhances the Performance of Colloidal PbSe Quantum Dot Photovoltaic Devices. Advanced Functional Materials.2010,20 (20):3555-3560.
    [139]Zhang, Y.; Xie, T. F.; Jiang, T. F.; Wei, X.; Pang, S.; Wang, X.; Wang, D. Surface photovoltage characterization of a ZnO nanowire array/CdS quantum dot heterogeneous film and its application for photovoltaic devices. Nanotechnology.2009, 20(15):155707.
    [140]Chanyawadee, S.; Harley, R. T.; Henini, M.; Talapin, D. V.; Lagoudakis, P. G. Photocurrent Enhancement in Hybrid Nanocrystal Quantum-Dot p-i-n Photovoltaic Devices. Physical Review Letters.2009,102 (7):077402.
    [141]Klem, E. J. D.; MacNeil, D. D.; Cyr, P. W.; Levina, L.; Sargenta, E. H. Efficient solution-processed infrared photovoltaic cells:Planarized all-inorganic bulk heterojunction devices via inter-quantum-dot bridging during growth from solution. Applied Physics Letters.2007,90 (18):183113-183113-3.
    [142]Qian, J.; Zhang, C. Y.; Cao, X. D.; Liu, S. Q. Versatile Immunosensor Using a Quantum Dot Coated Silica Nanosphere as a Label for Signal Amplification. Analytical Chemistry.2010,82 (15):6422-6429.
    [143]Charlebois, M; Paquet, A.; Verret, L. S.; Boissinot, K.; Boissinot, M.; Bergeron, M. G.; Allen, C. N. Toward Automatic Label-Free Whispering Gallery Modes Biodetection with a Quantum Dot-Coated Microsphere Population. Nanoscale Research Letters. 2010,5 (3):524-532.
    [144]Zhao, Y. J.; Zhao, X. W.; Tang, B. C; Xu, W. Y.; Li, J.; Hu, L.; Gu, Z. Z. Quantum-Dot-Tagged Bioresponsive Hydrogel Suspension Array for Multiplex Label-Free DNA Detection. Advanced Functional Materials.2010,20 (6):976-982.
    [145]Zhou, D. J.; Ying, L. M.; Hong, X.; Hall, E. A.; Abell, C; Klenerman, D. A compact functional quantum dot-DNA conjugate:Preparation, hybridization, and specific label-free DNA detection. Langmuir.2008,24 (5):1659-1664.
    [146]Wu, H. X.; Liu, G.; Zhang, S. J.; Shi, J. L.; Zhang, L. X.; Chen, Y; Chen, F.; Chen, H. R. Biocompatibility, MR imaging and targeted drug delivery of a rattle-type magnetic mesoporous silica nanosphere system conjugated with PEG and cancer-cell-specific ligands. Journal of Materials Chemistry.2011,21 (9):3037-3045.
    [147]Zhao, T. T.; Wu, H.; Yao, S. Q.; Xu, Q. H.; Xu, G. Q. Nanocomposites Containing Gold Nanorods and Porphyrin-Doped Mesoporous Silica with Dual Capability of Two-Photon Imaging and Photosensitization. Langmuir.2010,26 (18):14937-14942.
    [148]Cheng, S. H.; Lee, C. H.; Chen, M. C.; Souris, J. S.; Tseng, F. G.; Yang, C. S.; Mou, C. Y.; Chen, C. T.; Lo, L. W. Tri-functionalization of mesoporous silica nanoparticles for comprehensive cancer theranostics-the trio of imaging, targeting and therapy. Journal of Materials Chemistry.2010,20 (29):6149-6157.
    [149]Zhan, Q. Q.; Qian, J.; Li, X.; He, S. L. A study of mesoporous silica-encapsulated gold nanorods as enhanced light scattering probes for cancer cell imaging. Nanotechnology. 2010,21 (5):055704.
    [150]Gartmann, N.; Bruhwiler, D. Controlling and Imaging the Functional-Group Distribution on Mesoporous Silica. Angewandte Chemie-International Edition.2009, 48 (34):6354-6356.
    [151]Wang, F. G.; Yang, J. Q.; Wu, K. B. Mesoporous silica-based electrochemical sensor for sensitive determination of environmental hormone bisphenol A. Analytica Chimica Acta.2009,638(1):23-28.
    [152]Tan, J.; Wang, H. F.; Yan, X. P. A fluorescent sensor array based on ion imprinted mesoporous silica. Biosensors & Bioelectronics.2009,24 (11):3316-3321.
    [153]Goettmann, F.; Moores, A.; Boissiere, C.; Le Floch, P.; Sanchez, C. A selective chemical sensor based on the plasmonic response of phosphinine-stabilized gold nanoparticles hosted on periodically organized mesoporous silica thin layers. Small. 2005,1 (6):636-639.
    [154]Lei, J. Y; Wang, L. Z.; Zhang, J. L. Ratiometric pH sensor based on mesoporous silica nanoparticles and Forster resonance energy transfer. Chemical Communications.2010, 46 (44):8445-8447.
    [155]Radu, D. R.; Lai, C. Y.; Wiench, J. W.; Pruski, M.; Lin, V. S. Y. Gatekeeping layer effect: A poly(lactic acid)-coated mesoporous silica nanosphere-based fluorescence probe for detection of amino-containing neurotransmitters. Journal of the American Chemical Society.2004,126 (6):1640-1641.
    [156]Cheng, S. H.; Lee, C. H.; Yang, C. S.; Tseng, F. G.; Mou, C. Y.; Lo, L. W. Mesoporous silica nanoparticles functionalized with an oxygen-sensing probe for cell photodynamic therapy:potential cancer theranostics. Journal of Materials Chemistry.2009,19 (9): 1252-1257.
    [157]Huang, C. C; Huang, W; Yeh, C. S. Shell-by-shell synthesis of multi-shelled mesoporous silica nanospheres for optical imaging and drug delivery. Biomaterials. 2011,32 (2):556-564.
    [158]Sauer, A. M.; Schlossbauer, A.; Ruthardt, N.; Cauda, V.; Bein, T.; Brauchle, C. Role of Endosomal Escape for Disulfide-Based Drug Delivery from Colloidal Mesoporous Silica Evaluated by Live-Cell Imaging. Nano Letters.2010,10 (9):3684-3691.
    [159]Lee, J. E.; Lee, N.; Kim, H.; Kim, J.; Choi, S. H.; Kim, J. H.; Kim, T.; Song,1. C; Park, S. P.; Moon, W. K.; Hyeon, T. Uniform Mesoporous Dye-Doped Silica Nanoparticles Decorated with Multiple Magnetite Nanocrystals for Simultaneous Enhanced Magnetic Resonance Imaging, Fluorescence Imaging, and Drug Delivery. Journal of the American Chemical Society.2010,132 (2):552-557.
    [160]Mesoporous hybrid silica nanoparticles for targeted intracellular delivery of hydrophobic imaging and therapeutic agents. Nanomedicine.2009,4 (8):866-868.
    [161]Kim, J.; Kim, H. S.; Lee, N.; Kim, T.; Kim, H.; Yu, T.; Song, I. C; Moon, W. K.; Hyeon, T. Multifunctional Uniform Nanoparticles Composed of a Magnetite Nanocrystal Core and a Mesoporous Silica Shell for Magnetic Resonance and Fluorescence Imaging and for Drug Delivery. Angewandte Chemie-International Edition.2008,47 (44): 8438-8441.
    [162]Lippard, S. J.; Berg, J. M. Principles of Bioinorganic Chemistry. University Science Books, Mill Valley.1994.
    [163]Kaim, W.; Schwederski, B. Bioinorganic Chemistry:Inorganic Elements in the Chemistry of Life. Wiley, New York.1994.
    [164]Sigel, A.; Sigel, H.; Sigel, R. K. O. Metal Ions in Life Sciences, Vol.1: Neurodegenerative Diseases and Metal Ions. Wiley, New York.2006.
    [165]Nordberg, G. F.; Fowler, B. A.; Nordberg, M.; Friberg, L. Handbook on the Toxicology of Metals,3rd ed. Elsevier, Amsterdam.2007.
    [166]Prochnow, L. I.; Plese, L. P. M.; Abreu, M. F. Bioavailability of cadmium contained in single superphosphates produced from different Brazilian raw materials. Communications in Soil Science and Plant Analysis.2001,32 (1-2):283-294.
    [167]Lu, L. T.; Chang, I. C; Hsiao, T. Y; Yu, Y. H.; Ma, H. W. Identification of pollution source of cadmium in soil-Application of material flow analysis and a case study in Taiwan. Environmental Science and Pollution Research.2007,14(1):49-59.
    [168]van der Voet, E.; van Egmond, L.; Kleijn, R.; Huppes, G. Cadmium in the European Community:a Policy-Oriented Analysis. Waste Management & Research.1994,12 (6): 507-526.
    [169]Jiang, G. F.; Xu, L.; Song, S. Z.; Zhu, C. C.; Wu, Q.; Zhang, L. Effects of long-term low-dose cadmium exposure on genomic DNA methylation in human embryo lung fibroblast cells. Toxicology.2008,244 (1):49-55.
    [170]Goyer, R. A.; Liu, J.; Waalkes, M. P. Cadmium and cancer of prostate and testis. BioMetals.2004,17 (5):555-558.
    [171]Satarug, S.; Baker, J. R.; Urbenjapol, S.; Haswell-Elkins, M.; Reilly, P. E. B.; Williams, D. J.; Moore, M. R. A global perspective on cadmium pollution and toxicity in non-occupationally exposed population. Toxicology Letters.2003,137 (1-2):65-83.
    [172]Huston, M. E.; Engleman, C.; Czarnik, A. W. Chelatoselective fluorescence perturbation in anthrylazamacrocycle conjugate probes. Electrophilic aromatic cadmiation. Journal of the American Chemical Society.1990,112 (19):7054-7056.
    [173]Prodi, L.; Montalti, M.; Zaccheroni, N.; Bradshaw, J. S.; Izatt, R. M.; Savage, P. B. Characterization of 5-chloro-8-methoxyquinoline appended diaza-18-crown-6 as a chemosensor for cadmium. Tetrahedron Letters.2001,42 (16):2941-2944.
    [174]Tamayo, A.; Oliveira, E.; Covelo, B.; Casabo, J.; Escriche, L.; Lodeiro, C. Exploring the interaction of anthracene-containing macrocyclic chemosensors with silver(I) and cadmium(II) ions-Photophysical and structural studies. Zeitschrift fur Anorganische und Allgemeine Chemie.2007,633(11-12):1809-1814.
    [175]Choi, M.; Kim, M.; Lee, K. D.; Han, K. N.; Yoon, I. A.; Chung, H. J.; Yoon, J. Anew reverse PET chemosensor and its chelatoselective aromatic cadmiation. Organic Letters. 2001,3 (22):3455-3457.
    [176]Gunnlaugsson, T.; Lee, T. C; Parkesh, R. Cd(II) sensing in water using novel aromatic iminodiacetate based fluorescent chemosensors. Organic Letters.2003,5 (22): 4065-4068.
    [177]Luo, H.-Y.; Jiang, J.-H.; Zhang, X.-B.; Li, C.-Y; Shen, G.-L.; Yu, R.-Q. Synthesis of porphyrin-appended terpyridine as a chemosensor for cadmium based on fluorescent enhancement. Talanta.2007,72 (2):575-581.
    [178]Lu, C. L.; Xu, Z. C; Cui, J. N.; Zhang, R.; Qian, X. H. Ratiometric and highly selective fluorescent sensor for cadmium under physiological pH range:A new strategy to discriminate cadmium from zinc. Journal of Organic Chemistry.2007,72 (9): 3554-3557.
    [179]Zhou, Y; Xiao, Y; Qian, X. A highly selective Cd2+sensor of naphthyridine:fluorescent enhancement and red-shift by the synergistic action of forming binuclear complex. Tetrahedron Letters.2008,49 (21):3380-3384.
    [180]Banerjee, S.; Kara, S.; Santra, S. A simple strategy for quantum dot assisted selective detection of cadmium ions. Chemical Communications.2008, (26):3037-3039.
    [181]Li, H. B.; Zhang, Y; Wang, X. Q. L-Carnitine capped quantum dots as luminescent probes for cadmium ions. Sensors and Actuators B-Chemical.2007,127 (2):593-597.
    [182]El-Safty, S. A.; Prabhakaran, D.; Ismail, A. A.; Matsunaga, H.; Mizukami, F. Nanosensor design packages:A smart and compact development for metal ions sensing responses. Advanced Functional Materials.2007,17(18):3731-3745.
    [183]Bronson, R. T.; Michaelis, D. J.; Lamb, R. D.; Husseini, G. A.; Farnsworth, P. B.; Linford, M. R.; Izatt, R. M.; Bradshaw, J. S.; Savage, P. B. Efficient immobilization of a cadmium chemosensor in a thin film:Generation of a cadmium sensor prototype. Organic Letters.2005,7 (6):1105-1108.
    [184]Liu, W. M.; Xu, L. W.; Sheng, R. L.; Wang, P. F.; Li, H. P.; Wu, S. K. A water-soluble "Switching on" fluorescent chemosensor of selectivity to Cd2+. Organic Letters.2007,9 (19):3829-3832.
    [185]Peng, X. J.; Du, J. J.; Fan, J. L.; Wang, J. Y.; Wu, Y. K.; Zhao, J. Z.; Sun, S. G.; Xu, T. A selective fluorescent sensor for imaging Cd2+in living cells. Journal of the American Chemical Society.2007,129 (6):1500-1501.
    [186]Christianson, D. W.; Lipscomb, W. N. Carboxypeptidase A. Accounts of Chemical Research.1989,22 (2):62-69.
    [187]Berg, J. M. Zinc Finger Domains:From Predictions to Design. Accounts of Chemical Research.1995,28(1):14-19.
    [188]Puglisi, J. D.; Chen, L.; Frankel, A. D.; Williamson, J. R. Role of RNA structure in arginine recognition of TAR RNA. Proceedings of the National Academy of Sciences. 1993,90 (8):3680-3684.
    [189]Shannon, R. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica Section A.1976,32 (5): 751-767.
    [190]Mathews, C. P.; van Hold, K. E. Biochemistry. The Benjamin/Cummings Publishing Company, Inc.:Redwood City, CA.1990.
    [191]Ronaghi, M.; Karamohamed, S.; Pettersson, B.; Uhlen, M.; Nyren, P. Real-Time DNA Sequencing Using Detection of Pyrophosphate Release. Analytical Biochemistry.1996, 242 (1):84-89.
    [192]Xu, S. Q.; He, M.; Yu, H. P.; Cai, X. K.; Tan, X. L.; Lu, B.; Shu, B. H. A quantitative method to measure telomerase activity by bioluminescence connected with telomeric repeat amplification protocol. Analytical Biochemistry.2001,299 (2):188-193.
    [193]Timms, A. E.; Zhang, Y; Russell, R. G. G.; Brown, M. A. Genetic studies of disorders of calcium crystal deposition. Rheumatology.2002,41 (7):725-729.
    [194]Ratner, B.; Hoffman, A. S.; Schoen, F. J.; Lemons, J. E. Biomaterials Science. Academic Press, London.1996.
    [195]Vance, D. H.; Czarnik, A. W. Real-Time Assay of Inorganic Pyrophosphatase Using a High-Affinity Chelation-Enhanced Fluorescence Chemosensor. Journal of the American Chemical Society.1994,116 (20):9397-9398.
    [196]Mizukami, S.; Nagano, T.; Urano, Y.; Odani, A.; Kikuchi, K. A fluorescent anion sensor that works in neutral aqueous solution for bioanalytical application. Journal of the American Chemical Society.2002,124 (15):3920-3925.
    [197]Lee, D. H.; Im, J. H.; Son, S. U.; Chung, Y. K.; Hong, J.-I. An Azophenol-based Chromogenic Pyrophosphate Sensor in Water. Journal of the American Chemical Society.2003,125 (26):7752-7753.
    [198]Lee, D. H.; Kim, S. Y.; Hong, J. I. Fluorescent pyrophosphate sensor with high selectivity over ATP in water. Angewandte Chemie-International Edition.2004,43 (36): 4777-4780.
    [199]Jang, Y. J.; Jun, E. J.; Lee, Y. J.; Kim, Y. S.; Kim, J. S.; Yoon, J. Highly effective fluorescent and colorimetric sensors for pyrophosphate over H2PO4-in 100% aqueous solution. Journal of Organic Chemistry.2005,70 (23):9603-9606.
    [200]Lee, H. N.; Swamy, K. M. K.; Kim, S. K.; Kwon, J. Y; Kim, Y; Kim, S. J.; Yoon, Y. J.; Yoon, J. Simple but effective way to sense pyrophosphate and inorganic phosphate by fluorescence changes. Organic Letters.2007,9 (2):243-246.
    [201]Cho, H. K.; Lee, D. H.; Hong, J. I. A fluorescent pyrophosphate sensor via excimer formation in water. Chemical Communications.2005, (13):1690-1692.
    [202]Lee, H. N.; Xu, Z. C.; Kim, S. K.; Swamy, K. M. K.; Kim, Y; Kim, S. J.; Yoon, J. Pyrophosphate-selective fluorescent chemosensor at physiological pH:Formation of a unique excimer upon addition of pyrophosphate. Journal of the American Chemical Society.2007,129 (13):3828-+.
    [203]Huang, X. M.; Guo, Z. Q.; Zhu, W. H.; Xie, Y. S.; Tian, H. A colorimetric and fluorescent turn-on sensor for pyrophosphate anion based on a dicyanomethylene-4H-chromene framework. Chemical Communications.2008, (41): 5143-5145.
    [204]Kim, S. K.; Singh, N. J.; Kwon, J.; Hwang, I. C.; Park, S. J.; Kim, K. S.; Yoon, J. Fluorescent imidazolium receptors for the recognition of pyrophosphate. Tetrahedron. 2006,62 (25):6065-6072.
    [205]Kim, S. K.; Seo, D.; Han, S. J.; Son, G.; Lee, I. J.; Lee, C.; Lee, K. D.; Yoon, J. A new imidazolium acridine derivative as fluorescent chemosensor for pyrophosphate and dihydrogen phosphate. Tetrahedron.2008,64 (27):6402-6405.
    [206]Sun, Y. M.; Zhong, C; Gong, R.; Fu, E. Q. A highly selective fluorescent probe for pyrophosphate in aqueous solution. Organic & Biomolecular Chemistry.2008,6 (17): 3044-3047.
    [207]Niu, S. L.; Ulrich, G.; Ziessel, R.; Kiss, A.; Renard, P. Y; Romieu, A. Water-Soluble BODIPY Derivatives. Organic Letters.2009,11(10):2049-2052.
    [208]Boening, D. W. Ecological effects, transport, and fate of mercury:a general review. Chemosphere.2000,40 (12):1335-1351.
    [209]Renzoni, A.; Zino, F.; Franchi, E. Mercury Levels along the Food Chain and Risk for Exposed Populations. Environmental Research.1998,77 (2):68-72.
    [210]Nendza, M.; Herbst, T.; Kussatz, C.; Gies, A. Potential for secondary poisoning and biomagnification in marine organisms. Chemosphere.1997,35 (9):1875-1885.
    [211]Chu, P.; Porcella, D. B. Mercury stack emissions from U.S. electric utility power plants. Water, Air,& Soil Pollution.1995,80 (1):135-144.
    [212]Malm, O. Gold Mining as a Source of Mercury Exposure in the Brazilian Amazon. Environmental Research.1998,77 (2):73-78.
    [213]Mercury Update:Impact of Fish Advisories. EPA Fact Sheet EPA-823-F-01-011; EPA, Office of Water:Washington, DC,2001.
    [214]Mason, R. P.; Morel, F. M. M.; Hemond, H. F. The role of microorganisms in elemental mercury formation in natural waters. Water, Air,& amp; Soil Pollution.1995,80 (1): 775-787.
    [215]Mason, R. P.; Reinfelder, J. R.; Morel, F. M. M. Bioaccumulation of mercury and methylmercury. Water, Air,& amp; Soil Pollution.1995,80 (1):915-921.
    [216]Clarkson, T. W.; Magos, L. The Toxicology of Mercury and Its Chemical Compounds. Critical Reviews in Toxicology.2006,36 (8):609-662.
    [217]Clarkson, T. W.; Magos, L.; Myers, G. J. The Toxicology of Mercury—Current Exposures and Clinical Manifestations. New England Journal of Medicine.2003,349 (18):1731-1737.
    [218]Kaur, P.; Aschner, M.; Syversen, T. Glutathione modulation influences methyl mercury induced neurotoxicity in primary cell cultures of neurons and astrocytes. Neurotoxicology.2006,27 (4):492-500.
    [219]Milaeva, E. R. The role of radical reactions in organomercurials impact on lipid peroxidation. Journal of Inorganic Biochemistry.2006,100 (5-6):905-915.
    [220]Zalups, R. K.; Lash, L. H. Cystine alters the renal and hepatic disposition of inorganic mercury and plasma thiol status. Toxicology and Applied Pharmacology.2006,214(1): 88-97.
    [221]Silbergeld, E. K.; Silva, I. A.; Nyland, J. F. Mercury and autoimmunity:implications for occupational and environmental health. Toxicology and Applied Pharmacology.2005, 207 (2, Supplement 1):282-292.
    [222]Anthemidis, A. N.; Karapatouchas, C.-P. P. Flow injection on-line hydrophobic sorbent extraction for flame atomic absorption spectrometric determination of cadmium in water samples. Microchimica Acta.2008,160 (4):455-460.
    [223]Davis, A. C.; Calloway Jr, C. P.; Jones, B. T. Direct determination of cadmium in urine by tungsten-coil inductively coupled plasma atomic emission spectrometry using palladium as a permanent modifier. Talanta.2007,71 (3):1144-1149.
    [224]Costero, A. M.; Andreu, R.; Monrabal, E.; Martinez-Manez, R.; Sancenon, R.; Soto, J. 4,4[prime or minute]-Bis(dirnethylamino)biphenyl containing binding sites. A new fluorescent subunit for cation sensing. Journal of the Chemical Society, Dalton Transactions.2002, (8):1769-1775.
    [225]Zhu, X.-J.; Fu, S.-T.; Wong, W.-K.; Guo, J.pR; Wong, W.-Y. A Near-Infrared-Fluorescent Chemodosimeter for Mercuric Ion Based on an Expanded Porphyrin. Angewandte Chemie International Edition.2006,45 (19):3150-3154.
    [226]Metivier, R.; Leray, I.; Valeur, B. Lead and Mercury Sensing by Calixarene-Based Fluoroionophores Bearing Two or Four Dansyl Fluorophores. Chemistry-A European Journal.2004,10 (18):4480-4490.
    [227]Chen, Q.-Y.; Chen, C.-F. A new Hg2+-selective fluorescent sensor based on a dansyl amide-armed calix[4]-aza-crown. Tetrahedron Letters.2005,46 (1):165-168.
    [228]Kim, J. H.; Hwang, A.-R.; Chang, S.-K. Hg2+-selective fluoroionophore of p-tert-butylcalix[4]arene-diaza-crown ether having pyrenylacetamide subunits. Tetrahedron Letters.2004,45 (41):7557-7561.
    [229]Yoon, J.; Ohler, N. E.; Vance, D. H.; Aumiller, W. D.; Czarnik, A. W. A fluorescent chemosensor signalling only Hg(Ⅱ) and Cu(Ⅱ) in water. Tetrahedron Letters.1997,38 (22):3845-3848.
    [230]Descalzo, A. B.; Martinez-Maaáez, R.; Radeglia, R.; Rurack, K.; Soto, J. Coupling Selectivity with Sensitivity in an Integrated Chemosensor Framework:Design of a Hg2+-Responsive Probe, Operating above 500 nm. Journal of the American Chemical Society.2003,125 (12):3418-3419.
    [231]Wang, L.; Zhu, X.-J.; Wong, W.-Y; Guo, J.-P.; Wong, W.-K.; Li, Z.-Y. Dipyrrolylquinoxaline-bridged Schiff bases:a new class of fluorescent sensors for mercury(ii). Dalton Transactions.2005, (19):3235-3240.
    [232]Wang, L.; Wong, W.-k.; Wu, L.; Li, Z.-y. A Highly Selective Fluorescent Chemosensor for Hg2+in Aqueous Solution. Chemistry Letters.2005,34 (7):934-935.
    [233]Deo, S.; Godwin, H. A. A Selective, Ratiometric Fluorescent Sensor for Pb2+. Journal of the American Chemical Society.1999,122 (1):174-175.
    [234]Chen, P.; Greenberg, B.; Taghavi, S.; Romano, C; van der Lelie, D.; He, C. An Exceptionally Selective Lead(ⅡI)-Regulatory Protein from Ralstonia Metallidurans: Development of a Fluorescent Lead(II) Probe. Angewandte Chemie International Edition.2005,44 (18):2715-2719.
    [235]Liu, J.; Lu, Y. A Colorimetric Lead Biosensor Using DNAzyme-Directed Assembly of Gold Nanoparticles. Journal of the American Chemical Society.2003,125 (22): 6642-6643.
    [236]Kumar, M.; Dhir, A.; Bhalla, V. Molecular trafficking based on latch circuit. Chemical Communications.2010,46 (36):6744-6746.
    [237]Li, X.; Chow, D.-C; Tu, S.-C. Thermodynamic Analysis of the Binding of Oxidized and Reduced FMN Cofactor to Vibrio harveyi NADPH-FMN Oxidoreductase FRP Apoenzymet. Biochemistry.2006,45 (49):14781-14787.
    [238]Srivastava, D. K.; Wang, S.; Peterson, K. L. Isothermal Titration Microcalorimetric Studies for the Binding of Octenoyl-CoA to Medium Chain Acyl-CoA Dehydrogenase. Biochemistry.1997,36 (21):6359-6366.
    [239]Fuchs, J.; Freisleben, H. J.; Grothc, N.; Herrling, T.; Zimmer, G.; Milbradt, R.; Packer, L. One-and Two-Dimensional Electron Paramagnetic Resonance Imaging in Skin. Free Radical Research.1991,15 (5):245-253.
    [240]Chavko, M.; Harabin, A. L. Regional lipid peroxidation and protein oxidation in rat brain after hyperbaric oxygen exposure. Free Radical Biology and Medicine.1996,20 (7):973-978.
    [241]Imlay, J.; Chin, S.; Linn, S. Toxic DNA damage by hydrogen peroxide through the Fenton reaction in vivo and in vitro. Science.1988,240 (4852):640-642.
    [242]Lapenna, D.; Cuccurullo, F. Hypochlorous acid and its pharmacological antagonism:An update picture. General Pharmacology:The Vascular System.1996,27 (7):1145-1147.
    [243]Whiteman, M.; Yap, Y. W.; Cheung, N. S. Chlorinative stress:An under appreciated mediator of neurodegeneration? Cellular Signalling.2007,19 (2):219-228.
    [244]Sugiyama, S.; Okada, Y; Sukhova, G. K.; Virmani, R.; Heinecke, J. W.; Libby, P. Macrophage myeloperoxidase regulation by granulocyte macrophage colony-stimulating factor in human atherosclerosis and implications in acute coronary syndromes. American Journal of Pathology.2001,158 (3):879-891.
    [245]Steinbeck, M. J.; Nesti, L. J.; Sharkey, P. F.; Parvizi, J. Myeloperoxidase and chlorinated peptides in osteoarthritis:Potential biornarkers of the disease. Journal of Orthopaedic Research.2007,25 (9):1128-1135.
    [246]Hoy, A.; Leininger-Muller, B.; Kutter, D.; Siest, G.; Visvikis, S. Growing significance of myeloperoxidase in non-infectious diseases. Clinical Chemistry and Laboratory Medicine.2002,40(1):2-8.
    [247]Setsukinai, K.-i.; Urano, Y; Kakinuma, K.; Majima, H. J.; Nagano, T. Development of Novel Fluorescence Probes That Can Reliably Detect Reactive Oxygen Species and Distinguish Specific Species. Journal of Biological Chemistry.2003,278 (5): 3170-3175.
    [248]Kenmoku, S.; Urano, Y; Kojima, H.; Nagano, T. Development of a Highly Specific Rhodamine-Based Fluorescence Probe for Hypochlorous Acid and Its Application to Real-Time Imaging of Phagocytosis. Journal of the American Chemical Society.2007, 129 (23):7313-7318.
    [249]Libby, P.; Shepherd, J.; Hilderbrand, S. A.; Waterman, P.; Heinecke, J. W.; Weissleder, R. A fluorescent probe for the detection of myeloperoxidase activity in atherosclerosis-associated macrophages. Chemistry & Biology.2007,14 (11): 1221-1231.
    [250]Sun, Z.-N.; Liu, F.-Q.; Chen, Y.; Tam, P. K. H.; Yang, D. A Highly Specific BODIPY-Based Fluorescent Probe for the Detection of Hypochlorous Acid. Organic Letters.2008,10 (11):2171-2174.
    [251]Chen, X.; Wang, X.; Wang, S.; Shi, W.; Wang, K.; Ma, H. A Highly Selective and Sensitive Fluorescence Probe for the Hypochlorite Anion. Chemistry-A European Journal.2008,14 (15):4719-4724.
    [252]Jeong, T.-S.; Kim, M. J.; Yu, H.; Kim, K. S.; Choi, J.-K.; Kim, S.-S.; Lee, W. S. (E)-Phenyl-and-heteroaryl-substituted O-benzoyl-(or acyl)oximes as lipoprotein-associated phospholipase A2 inhibitors. Bioorganic & Medicinal Chemistry Letters.2005,15 (5):1525-1527.
    [253]Khurana, J. M.; Ray, A.; Sahoo, P. K. Oxidative Deoximation with Sodium-Hypochlorite. Bulletin of the Chemical Society of Japan.1994,67 (4): 1091-1093.
    [254]Lin, W.; Long, L.; Chen, B.; Tan, W. A Ratiometric Fluorescent Probe for Hypochlorite Based on a Deoximation Reaction. Chemistry-A European Journal.2009,15 (10): 2305-2309.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700