脉冲激光在硅表面制备微纳结构的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在自然界中,很多生物体表的有序微纳结构使其具有独特的性能,如结构色、超疏水和超黏附等,引起了人们很大的兴趣。硅是一种重要的半导体材料,表面具有微纳结构的硅材料在红外探测器、太阳能电池以及平板显示器等领域都有着重要的应用前景,因此硅表面微纳结构制备及性质的研究具有重要的意义。激光在材料表面直接诱导有序微纳结构是该领域具有潜力的制备方法之一。在本文中我们研究了纳秒与飞秒激光在硅表面微纳结构的制备和性质。
     在特定的气氛环境下,用Nd:YAG纳秒脉冲激光(波长1064 nm、532 nm和355nm)与钛宝石飞秒脉冲激光(波长800 nm)对硅表面累积脉冲辐照,硅表面产生了周期性波纹和锥形等不同的微纳结构。研究了激光参数、气氛条件和硅片晶向等因素对表面微结构的影响,并对其形成机理给出了定性的理论解释。
     采用飞秒激光对硅表面进行扫描,首次发现了辐照过的硅表面会呈现不同的颜色。研究表明:在空气、氮气和真空条件下形成的彩色硅表面均出现了亚波长周期性结构,真空中的结果要更明显,且波纹间距依次增加。反射谱的研究表明:在500-1500 nm波段范围内的彩色硅表面的光辐射反射率不高于30%。
     首次采用频率较低(10Hz),而且更便宜、更容易维护的纳秒激光实现了黑硅的高效率制备。不同气氛条件下制备的微构造硅表面浸润性有很大的差异,空气中为强亲水,真空中为超疏水,而SF_6中则表现为亲水性。500-2400 nm的吸收率光谱曲线的结果表明:SF_6下制备的具有微结构的硅表面呈现很强的红外吸收特性,其原因可能与表面的多次反射和硫杂质掺杂有关。
In nature, biological surfaces with orderly micro-nano structures make it show unique properties, such as structural color, hydrophobic membranes, super adhesion and so on, which cause people having great interest on it. As an important semi-conductor material, silicon with micro-nano structured surface has broad applications in infrared detectors, solar cells, flat panel displays and so on. It has a great interest to explore the micro-nano structures on the silicon surface. Laser direct-inducing micro-nano surface structure has been demonstrated to be a promising method. In this thesis, the silicon surfaces with micro-nano structure are formed by using femtosecond and nanosecond laser under certain conditions and the properties are researched.
     Different micro-nano structures such as periodic ripple structures and conical spikes are prepared on silicon surfaces by the cumulative Nd:YAG nanosecond laser pulses (wavelength 1064 nm, 532 nm and 355 nm) and Ti:Sapphire femtosecond laser pulses (wavelength 800 nm). The effects of laser parameters, atmosphere conditions and crystal orientation to the forming of the micro-structures have been studied. Qualitative theoretical explanations to the formation of microstructure have been given.
     We discovered that silicon surface will appear different colors after scanning with femtosecond laser. The results show that sub-wavelength periodic structures appear on the colored silicon surfaces under air, nitrogen and vacuum atmosphere. The color for the silicons prepared under vacuum is much clearer. The periods of the ripple structures on colored silicon surfaces produced on vacuum have the maximum value, and the ones prepared on air are the smallest. The study of reflection spectrum shows that the reflectivity of colored silicon’s surfaces is not higher than 30% in the wavelength range 500-1500 nm.
     Black silicon is firstly achieved efficiently by using the nanosecond laser with low frequency (10Hz), which is much cheaper and easier to maintain than the femtosecond laser. The wettability of micro-structure silicon surface formed under different atmosphere has different performances: super-hydrophilic under air, superhydrophobic under vacuum and hydrophilic under SF6. The study of absorption spectrum in the wavelength 500-2400 nm indicates that the silicon surface with the microstructure fabricated under SF6 atmosphere has strong infrared absorption characteristics which are due to the multiple reflections within surface microstructures and the doped sulfur in silcon.
引文
[1] Zi J, Yu X, Li Y, et al. Coloration strategies in peacock feathers[J]. Proc Natl.Acad Sci USA, 2003, 100(22):12576—12578
    [2] Vukusic P, Sambles J R. Photonic structures in biology[J]. nature, 2003, 424(6950):852-855
    [3] Vukusic P, Sambles J R, Lawrence C R. Structural colour:colour mixing in wing scales of a butterfly[J]. Nature, 2000, 404(6777):457-457
    [4] Onda T, Shibuichi S, Satoh N, et al.Super-water-repellent fractal surfaces [J]. Langmuir, 1996, 12(9):2125一2127
    [5] Barthlott W, Neinhuis C. Purity of the sacred lotus,or eseape from contamination in biological surfaces[J]. Planta, 1997, 202(l):l一8
    [6] Feng L, Li S, Li Y, Li H, Zhang L, et al. Super-hydrophobic surfaces,from natural to artificial[J]. Adv. Mater, 2002, (24)14:1857-1860
    [7] Lee W, Jin M K, Yoo W C, Lee J K. Nanostructuring of a Polymeric Substrate with Well-Defined Nanometer-Scale Topography and Tailored Surface Wettability[J]. Langmuir 2004, 20(18):7665-7669
    [8] Parker A R, Lawrence C R. Nature[J]. 2001, 414(6859):33—34
    [9] James E. Carey, Ph.D. thesis, Harvard University, 2004.
    [10] Vorobyev A Y, Chunlei Guo. Colorizing metals with femtosecond laser pulses[J]. Appl. Phys. Lett, 2008, 92(4):0419141-0419143
    [11] Vorobyev A Y, Chunlei Guo. Spectral and polarization responses of femtosecond laser-induced periodic surface structures on metals[J]. J. Appl. Phys, 2008, 103(4):0435131-0435133
    [12] Vorobyev A Y, Chunlei Guo. Femtosecond laser blackening of platinum[J]. J. Appl. Phys, 2008, 104(5):0535161-0535163
    [13] Vorobyev A Y, Topkov A N, Gurin O V, Svich V A, Chunlei Guo. Enhanced absorption of metals over ultrabroad electromagnetic spectrum[J]. Appl. Phys. Lett, 2009, 95(12):1211061-1211063
    [14] Hans Lochbihler. Colored images generated by metallic sub-wavelength gratings[J]. Optics Express, 2009.17(14): 12189-12196
    [15] Dusser B, Sagan Z, Soder H, et al. Controlled nanostructrures formationby ultra fast laser pulses for color marking[J]. Optics Express, 2010,18(3):2913-2924
    [16] Jin M, Feng X, Feng L, etal. Superdrophobic aligned polystyrene nanotube films with high adhesive force[J]. Adv Mater,2005,17(16):1977-1981
    [17] Wang Z, Koratkar N, CiL,etal. Combined micro/nano scale surface roughness for enhanced hydrophobic staLbility in carbon nanotube array[J]. Appl Phy sLett,2007,90(14):143117
    [18]李书宏,冯琳,李欢军.柱状结构阵列碳纳米管膜的超疏水性研究[J].高等学校化学学报,2003,24(2):340-342
    [19] Vorobyev A Y, Chunlei Guo. Metal pumps liquid uphill[J]. Applied Physics Letters, 2009, 94(22):2241021-2241023
    [20] Vorobyev A Y, Chunlei Guo. Laser turns silicon superwicking[J]. Optics Express, 2010, 18(7):6455-6460
    [21] Birnbaum M. Semiconductor Surface Damage Produced by Ruby Lasers[J]. Journal of Applied Physics, 1965, 36:3688-3689
    [22] Young J F, Sipe J E, Preston J S. et al. Laser induced periodic surface damage and radiation remnents [ J] . Applied Physics Letters, 1982, 41: 261
    [23] Young J F, Preston J S, Van Driel H M. et al. Laser induced periodic surface structure.Ⅱ: experiments on Ge, Si, Al and brass [ J ]. Phys. Rev. 1983, 27: 1155-1172
    [24] Yong J E, Sipe J E, van Driel H M. laser-induced periodic surface structu-re.III. Fluence regimes, the role of feedback, and details of the induced topography in germanium[J]. Physical Review B, 1984, 30(4):2001-2015
    [25] Zhou G H, Fauchet P M, Siegman A E. Growth of spontaneous periodic surface structures on solids during laser illumination[J]. Physical Review B, 1982, 26(10):5366-5381
    [26] Clark S E, Emmony D C. Ultraviolet-laser-induced periodic surface structures[J]. Physical Review B, 1989, 40(4):2031-2041
    [27] Gorodetsky G, Kanicki J, Kazyaka T, et al. Far UV pulsed laser melting of silicon[J].Applied Physics Letters, 1985, 46(6):547-549
    [28] Clark S E, Emmony D C. Ultraviolet-laser-induced periodic surfacestru-ctures[J]. Physical Review B, 1989, 40(4):2031-2041
    [29] Dem chuk A V, Labunov V A. Surface morphology and structure modificat ion of silicon layers induced by nanosecond laser radiation [ J]. Applied Surface Science, 1995, 86: 353~-358
    [30]袁永华,刘颂豪,孙承纬等.脉冲激光辐照硅材料引起表面波纹的特性研究[J].光学学报, 2004, 24(2):239- 242
    [31] Lu Y F, Choi W K, Aoyagi Y, et al. Controllable laser-induced periodic structures at silicon-dioxide/silicon interface by excimer laser irradiation[J]. Journal of Applied Physics, 1996, 80(12):7052-7056
    [32] Demcuk A V, Labunov V A. Surface morphology and structure modification of silicon layers induced by nanosecond laser radiation[J]. Applied Surface science, 1995, 86(1-4):353-358
    [33] Ren J, Orlov S S, Hessslink L. Rear surface spallation on singlecrystal silicon in nanosecond laser micromachining[J]. Journal of Applied Physics, 2005, 97:104304-1-4
    [34] Yoo J H, Jeong S H, Greif R, et al. Explosive change in crater properties during high power nanosecond laser ablation of silicon[J]. Journal of Applied Physics, 2000, 88(3):1638-1649
    [35] Sanchez F, Morenza J L, Aguiar R, et al. Dynamics of the hydrodynamical growth of columns on silicon exposed to ArF excimer-laser irradiation[J]. Applied Physics A, 1998, 66:83-86
    [36] Sanchez F, Morenza J L, Trtik V. Characterization of the progressive growth of columns by excimer laser irradiation of silicon[J]. Applied Physics Letters, 1999, 75(21):3303-3305
    [37] Pedraza A J, Fowlkes J D, Lowndes D H. Silicon microcolumn arrays grown by nanosecond pulsed-excimer laser irradiation[J]. Applied Physics Letters, 1999, 74(16):2322-2324
    [38] Pedraza A J, Fowlkes J D, Jesse S, et al. Surface microstructuring of silicon by excimer-laser irradiation in reactive atmospheres[J]. Applied Surface science, 2000, 168:251-257
    [39] Fowlkes J D, Pedraza A J, Blom D A, et al. Surface microstructuring and long-range ordering of silicon nanoparticles[J]. Applied Physics Letters, 2002, 80(20):3799-3801
    [40] Bassam M A, Parvin P, Sajad B, et al. Measurement of optical and electrical properties of silicon microstructuring induced by ArF excimer laser at SF6 atmosphere[J]. Applied Surface Science, 2008, 254:2621-2628
    [41] Dehgganpour H R, Parvin P, Sajad B, et al. Dose and pressure dependence of silicon microstructure in SF6 gas due to excimer laser irradiation[J]. Applied Surface Science, 2009, 255:4664-4669
    [42] Pedraza A J, Fowlkes J D, Guan Y F. Surface nanostructuring of silicon[J]. Applied Physics A, 2003, 77:277-284
    [43] Karabutov A V, Shafeev G A, Simakin A V, et al. Low-field electron emission of self-organized laser-produced micro-tip arrays with incorporated carbon nanotubes[J]. Diamond and Related Materials, 2003, 12:1705-1709
    [44] Karabutov A V, Frolov V D, Loubnin E N,et al. Low-threshold field electron emission of Si micro-tip arrays produced by laser ablation[J]. Applied Physics A, 2004, 76:413-416
    [45] Amit P S, Avinashi K, Tripathi K N, et al. Laser damage studies of silicon surfaces using ultra-short laser pulses[J]. Optics & Laser Technology, 2002, 34:37-43
    [46] Tran D V, Zheng H Y, Lam Y C, et al. Femtosecond laser-induced damage morphologies of crystalline silicon by sub-threshold pulses[J]. Optics and Lasers in Engineering, 2005, 43:977-986
    [47] Hommes V, Miclea M, Hergenroder R. Silicon surface morphology study after exposure to tailored femtosecond pulses[J]. Applied Surface Science, 2006, 252:7449-7460
    [48] Tan B, Venkatakrishnan K. A femtosecond laser-induced periodical surface structure on crystalline silicon [J]. Journal of Micromechanics and Microengineering, 2006, 16:1080-1085
    [49] Li J M, Xu J T. The Evolution of a Microstructure on Si by a Femtosecond Laser[J]. Laser Physics, 2008, 18(12):1539-1543
    [50] Tomita T, Kumai R, Shigeki M, et al. Cross-sectional morphological profiles of ripples on Si, SiC, and HOPG[J]. Applied Physics A, 2009, 97:271-276
    [51] Varlamova O, Costache F, Reif J, et al.Self-organized pattern formation upon femtosecond laser ablation by circularly polarized light[J].Applied Surface Science, 2006, 252:4702-4706
    [52] V arlamova O, Costache F, Ratzke M, et al. Control parameters in pattern formation upon femtosecond laser ablation[J]. Applied Surface Science, 2007, 253:7932-7936
    [53] Harzic R L. Sub-100 nm nanostructuring of silicon by ultrashort laser pulses[J]. Optics Express, 2005, 13(17):6651-6656
    [54] Wagner R, Jens G, Alexander H, et al. Subwavelength ripple formation induced by tightly focused femtosecond laser radiation[J]. Applied Surface Science, 2006, 252:8576-8579
    [55] Zhou M, Yuan D Q, Zhang W, et al. Sub-wavelength Ripple Formation on Silicon Induced by Femtosecond Laser Radiation[J]. Chinese Physics Letters, 2009, 26(3):037901
    [56] Bonse J, Wrobel J M, Krüger J, et al. Ultrashort-pulse laser ablation of indium phosphide in air[J]. Applied Physics A, 2001, 72:89-94
    [57]陈洪新,贾天卿,黄敏,等.飞秒激光对SiC材料烧蚀的影响[J].光子学报,2006,26(3):467-470
    [58] Guo X D, Li R X, Hang Y, et al. Coherent linking of periodic nano-ripples on a ZnO crystal surface induced by femtosecond laser pulses[J]. Applied Physics A, 2009, 94:423-426
    [59] Susanta K D, Daniela D, Arkadi R, et al. Femtosecond laser induced quasip eriodic nanostructures on TiO2 surfaces[J].Journal of Applied Physics, 2009, 105:084912
    [60] Cavalleri A, Sokolowski-Tinten K, Bialkowski J, et al. Femtosecond melting and ablation of semiconductors studied with time of flight mass spectroscopy[J]. Journal of Applied Physics, 1999, 85(6):3301-3309
    [61] von der Linde D, Sokolowski-Tinten K. The physical mechanisms of short-pulse laser ablation[J]. Applied Surface Science, 2000, 154-155:1-10
    [62] Her T H, Finlay R J, Wu C, et al. Microstructuring of silicon with femtosecond laser pulses[J]. Applied Physics Letters, 1998, 73(12):1673-1675
    [63] Her T H, Finlay R J, Wu C, et al. Femtosecond laser-induced formation of spikes on silicon[J]. Applied Physics A, 2000, 70:383-385
    [64] Shen M Y, Crouch C H, Carey J E, et al. Formation of regular arrays of silicon microspikes by femtosecond laser irradiation through a mask[J]. Applied Physics Letters, 2003, 82(11):1715-1717
    [65] Wu C, Crouch C H, Zhao L, et al. Visible luminescence from silicon surfaces microstructured in air[J]. Applied Physics Letters, 2002, 81(11): 1999-2001
    [66] Serpngiizel A, Kurt A, Inanc I, et al. Luminescence of black silicon[J]. Journal of Nanophotonics, 2008, 2:021770
    [67] Sheehy M A, Winston L, Carey J E, et al. Role of the Background Gas in the Morphology and Optical Properties of Laser Microstructured Silicon[J]. Chemistry of Materials, 2005, 17:3582-3586
    [68] Tull B R, Carey J E, Sheehy M A, et al. Formation of silicon nano-particles and web-like aggregates by femtosecond laser ablation in a background gas[J]. Applied Physics A, 2006, 83:341-346
    [67] Shen M Y, Crouch C H, Carey J E, etal. Femtosecond laser-induced formation of submicrometer spikes on silicon in water[J]. Applied Physics Letters, 2004, 85(23):5694-5696
    [68] Shen M Y, Carey J E, Crouch C H, etal. High-Density Regular Arrays of Nanometer-Scale Rods Formed on Silicon Surfaces via Femtosecond Laser Irradiation in Water[J]. Nano Letters, 2008, 8(7):2087-2091
    [69] Riedel D, Hernandez-Pozos J L, Palmer R E, etal. Fabrication of ordered arrays of silicon cones by optical diffraction in ultrafast laser etching with SF6[J]. Applied Physics A, 2004, 78:381-385
    [70] Nayak B K, Gupta M C, Kolasinski K W.Spontaneous formation of nanospiked microstructures in germanium by femtosecond laser irradiation[J]. Nanotechnology, 2007, 18:195302
    [71] Nayak B K, Gupta M C, Kolasinski K W. Ultrafast-laser assisted chemical restructuring of silicon and germanium surfaces[J]. Applied Surface Science, 2007, 253:6580-6583
    [72] Zorba V, Boukos N, Zergioti I, etal. Ultraviolet femtosecond, picoseconds and nanosecond laser microstructuring of silicon: structural and optical properties[J]. Applied Optics, 2008, 47(11):1846-1850
    [73] Zhu J T, Shen Y F, Li W, etal. Effect of polarization on femtosecond laserpulses structuring silicon surface[J]. Applied Surface Science, 2006, 252:2752-2756
    [74] Zhu J T, Yin G, Zhao M, etal. Evolution of silicon surface microstructures by picosecond and femtosecond laser irradiations[J]. Applied Surface Science, 2005, 245:102-108
    [75] Liu S Y, Zhu J T, Liu Y, etal. Laser induced plasma in the formation ofsurface-microstructured silicon[J]. Materials Letters, 2008, 62:3881-3883
    [76] Chen X, Zhu J T, Yin G, et al. Thermal diffusivity of surface micro- Structured silicon measured by photothermal deflection technique [J].Materials Letters, 2006, 60:63-66
    [77] Wu C, Crouch C H, Zhao L, et al. Near-unity below-band-gap absorption by microstructured silicon[J]. Applied Physics Letters,2001,78(13):1850-1852
    [78] Younkin R, Carey J E, Mazur E, et al. Infrared absorption by conical silicon microstructures made in a variety of background gases using femtosecond-laser pulses[J]. Journal of Applied Physics, 2003 ,93(5):2626-2629
    [79] Crouch C H, Carey J E, Shen M, et al. Infrared absorption by sulfur-doped silicon formed by femtosecond laser irradiation[J]. Applied Physics A, 2004, 79:1635-1641
    [80] Crouch C H, Carey J E, Warrender J M, et al. Comparison of structure and properties of femtosecond and nanosecond laser-structured silicon[J]. Applied Physics Letters, 2004, 84(11):1850-1852
    [81] Carey J E, Ceouch C H, Younkin R, et al. Fabrication of micrometer-sized conical the 14th International Vacuum Microelectronics Conference, 2001:75-76
    [82] Zorba V, Stratakis E, Barberoglou M, et al. Tailoring the wetting response of silicon surfaces via fs laser structuring[J]. Applied Physics A, 2008,93:819-825
    [83] Zorba V, Persano L, Pisignano D, et al. Making silicon hydrophobic: wettability control by two-lengthscale simultaneous patterning with femtosecond laser irradiation[J]. Nanotechnology, 2006, 17:3234-3238
    [84] Baldacchini T, Carey J C, Zhou M, et al. Superhydrophobic Surfaces Prepared by Microstructuring of Silicon Using a Femtoecond Laser[J]. Langmuir, 2006, 22:4917-4919
    [85] Baldacchini T, Carey J C, Zhou M, et al. Superhydrophobic Surfaces Prepared by Microstructuring of Silicon Using a Femtoecond Laser[J]. Langmuir, 2006, 22:4917-4919
    [86]门海宁,程光华,孙传东.飞秒激光作用下的硅表面微结构及发光特[J].强激光与粒子束,2006,18(7):1081-1084
    [87]袁春华,李晓红,唐多昌,杨宏道.纳秒激光诱导硅表面微结构[J].强激光与粒子束, 2010, 22(2):393-396
    [88]袁春华,李晓红,唐多昌,杨宏道,波长和气氛对激光诱导硅表面微结构的影响[J].激光技术,2010, 34(5):647-649
    [89]袁春华,李晓红,唐多昌,杨宏道,李国强Nd:YAG纳秒激光诱导硅表面微结构演化[J].物理学报,2010, 59(10):7015-7019
    [90]袁春华,李晓红,唐多昌,杨宏道,李国强.不同气氛下飞秒激光诱导硅表面微结构的研究[J].强激光与粒子束,2010, 22(11):2749-2753
    [91] Craciun V, Craciun D. Evidence for volume boiling during laser ablation of single crystalline targets[J]. Applied Surface science, 1999, 138-139:218-223
    [92] Craciun V, Bassim N, Singh R K, et al. Laser-induced explosive boiling during nanosecond laser ablation of silicon[J]. Applied Surface science, 2002, 186:288-292
    [93] Bulgakova N M, Bulgakov A V. Pulsed laser ablation of solids: transition from normal vaporization to phase explosion[J]. Applied Physics A, 2001, 73:199-208
    [94] Martynyuk M M. Mechanism for metal damage by intense electromagnetic radiation[J]. Sov. Phys. Tech. Phys, 1976, 21(4):430-433
    [95] Martynyuk M M. Vaporization and boiling of liquid metal in an exploding wire[J]. Sov. Phys. Tech. Phys., 1974, 19(6):793-797
    [96] Chuang T J. Multiple photo excited SF6 interaction with silicon surfaces[J]. Journal of Chemical Physysics, 1981, 74(2):1453-1460
    [97] Sajad B, Parvin P, Bassam M. SF6 decomposition and layer formation due to excimer laser photoablation of SiO2 surface at gas-solid system[J].Journal of Physics D: Applied Physics, 2004, 37:3402-3408
    [98]李平,王煜,冯国进等.超短激光脉冲对硅表面微构造的研究[J].中国激光,2006,33(12): 1688-1691
    [99] Lowndes D H, Fowlkes J D, Pedraza A J. Early stages of pulsed laser growth of silicon microcolumns and microcones in air and SF6[J]. Applied Surface science, 2000, 154-155:647-658
    [100]孙承纬2002激光辐照效应(北京:国防工业出版社)第202-204页
    [101] Fowlkes J D, Pedraza A J, Lowndes D H. Microstructural evolution of laser-exposed silicon targets in SF6 atmospheres[J]. Applied Physics Letters, 2000, 77(11):1629-1631
    [102] Hommes V, Miclea M, Hergenroder R. Silicon surface morphology study after exposure to tailored femtosecond pulses[J]. Applied Surface Science, 2006, 252:7449-7460
    [103] Shank C V, Yen R, Hirlimann C. Time-Resolved Reflectivity Measurements of Femtosecond-Optical-Pulse-Induced Phase Transitions Silicon[J]. Physical Review Letters, 1983, 50(6):454-457
    [104] Shank C V, Yen R, Hirlimann C. Femtosecond-Time-Resolved Surface Struc-tural Dynamics of Optically Excited Silicon[J]. Physical Review Letters, 1983, 51(10):900-902
    [105] Seel M, Bagus P S. Ab initio cluster study of the interaction of fluorine and chlorine with the Si (111) surface[J]. Physical Review B, 1983, 28(4):2023-2038
    [106] Goldman J R, Prybyla J A. Ultrafast dynamics of laser excited electron distributions in silicon [J]. Phys. Rev. Lett.1994, 72(9):1364-1367
    [107]赵明,苏卫锋,赵利.表面微构造的硅材料—种新型的光电功能材料[J].物理, 2003 , 32(7):455~457
    [108] Kawamura K, OgawaT, Sarukura N, Hirano M, Hosono H. Fabrication of surface relief gratings on transparent dielectric materials by two-beam holo-graphicmethod using infrared femtosecond laser pulses [J]. Appl. Phys. B, 2000, 71(1):119-121
    [109] Reif J, Costache F, Henyk Mand Pandelov S. Ripples revisited: non-classical morphology at the bottom of femtosecond laser ablation craters in transparent dielectrics [J]. Applied Surface Science, 2002,197-198, 891-895
    [110] Bonse J, Munz M, Sturm H. structure formation on the surface of indium phosphide irradiated by femtosecond laser pulses [J]. J. Appl. Phys. 2005, 97(1):0135381-0135389
    [111] Jia T Q, Chen HX, Huang M, Zhao FL, Qiu JR, Li RX, Xu ZZ, He X K, Zhang J, Kuroda H. Formation of nanogratings on the surface of a ZnSe crystal irradiated by femtosecond laser pulses[J]. Phys. Rev. B, 2005, 72, 1254291-1254294
    [112] Bhardwaj V R, Simova E, Rajeev P P, Hnatovsky C, Taylor RS, Rayner D M, Corkum PB. Optically Produced Arrays of Planar Nanostructures inside Fused Silica[J]. Phys. Rev. Lett, 2006, 96(5):0574041-0574044
    [113] Wang J and Guo C. Formation of extraordinarily uniform periodic structures on metals induced by femtosecond laser pulses[J]. J.Appl.Phys, 2006, 100:023511.
    [114] Hsu E M, Crawford T H R, Tiedje H F, Haugen H K, Periodic surface structures on gallium phosphide after irradiation with 150 fs–7 ns laser pulses at 800 nm[J]. Applied Physics Letters, 2007, 91 111102
    [115] Reif J, Costache F, Henyk M . Explosive ion emission from ionic crystals induced by ultrashort laser pulses:influence on surface morphology. SPIE, 2003, 4948:380-387.
    [116] Bonse J, Baudach S, Krüger J, Kautek W, Lenzner M. Femtosecond laser ablation of silicon–modification thresholds and morphology. Applied Physics A, 2002, 74(1):19-25
    [117] Costache F, Kouteva-Arguirova S, Reif J. Sub–damage–threshold femtosecond laser ablation from crystalline Si: surface nanostructures and phase transformation [J]. Applied Physics A, 2004, 79(4-5):1429-1432
    [118] Guillermin M, Garrelie F, Sanner N, Audouard E, Soder H. Single and multi-pulse formation of surface structures under static femtosecond irradiation[J]. Applied Surface Science, 2007, 253(19):8075-8079
    [119] Wagner R, Gottmann J, Sub-wavelength ripple formation on various materials induced by tightly focused femtosecond laser radiation[J].J. Phys: Conf. Ser.2007,59 333
    [120] Emmony D C, Howson R P, Willis LJ, Laser mirror damage in germanium at 10.6μm[J]. Applied Physics Letters, 1973, 23(11):598-600
    [121] Bonch-Bruevich A M, Libenson M n, Makin V S. Surface electromagnetic waves in optics[J].opt. eng, 1991, 31(4):718-730.
    [122] J?rn Bonse, Arkadi Rosenfeld, J?rg Krüger. On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecond-laser pulses[J].J. Appl. Phys, 2009, 106(10):104910-104915
    [123]朱京涛.超短激光脉冲微构造硅表面[D].复旦大学,20050520
    [124]姜晶,吴志明,王涛,郭正宇,于贺,蒋亚东革命性的新材料-黒硅[J]材料导报,2010, 24(4):2:122-126
    [125] Younkin R J, Carey J E, Mazur E,et al. Infrared absorp-tion by conical silicon microstructures made in a variety of background gases using femtosecond-laser pulses[J].J Appl Phys, 2003, 93(5):2626-2629
    [126] Wu C, Crouch C H, Zhao L, et a1.Near-unity below-band gap absorption by microstructured silicon[J].Appl Phys Lett, 2001, 78(13):1850-1852
    [127] Crouch C H, Carey J E,Shen M, et a1.Infrared absorption by sulfur-doped silicon formed by femtosecond laser irradiation[J].Appl Phys A,2004,79:1635-1641
    [128] Carey J E, Crouch C H, Shen M, etal. Visible and near-infrared responsivity of femtosecond-laser microstructured silicon photodiodes[J].Opt Lett, 2005, 30(14):1773-1775

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700