近红外光谱结合径向基神经网络在三种药用真菌云芝、虫草和松茸活性成分无损分析中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文完成了应用近红外光谱结合径向基神经网络模型,对三种药用真菌云芝、虫草和松茸的活性成分含量建模分析。经过光谱的预处理和径向基神经网络模型输入节点,隐含节点和径向基宽度(SC)等参数的优化,得到了最佳的三种药用真菌活性成分分析的近红外光谱径向基模型分别为:云芝多糖含量分析的最优径向基神经网络模型是6尺度分解的WPT-NIRS-RBFNN(7-12-1,3.2)、云芝蛋白含量分析的最优径向基神经网络模型是6尺度分解的WPT-NIRS-RBFNN (12-10-1,3.0);虫草腺苷的最优分析模型为小波包分解的5尺度WPT-NIRS-RBFNN(6-6-1,3),此时模型的RMSECV为0.002541,模型的校正集相关系数为0.901162、虫草蛋白含量分析的最优的模型为小波包分解的4尺度WPT-NIRS-RBFNN(9-10-1,3.2),此时模型的RMSECV为0.013678,模型的校正集相关系数为0.951925;松茸蛋白的最优分析模型为径向基神经网络模型是5尺度分解WPT-NIRS-RBFNN(10-18-1,3.0),此时模型的RMSECV为0.00543,模型的校正集相关系数为0.99335、松茸多糖含量分析的最优的模型为径向基神经网络模型是5尺度分解WPT-NIRS-RBFNN(12-10-1,2.6),此时模型的RMSECV为0.00825,模型的校正集相关系数为0.99055。同时各个模型的预测性能很好,满足快速无损分析的要求。
Along with the modern science technology's swift development, the analysis work's meter mechanized, the automation to obtain the unprecedented development, the request drug analysis toward the green, fast, highly effective and so on directions has also developed.Near infrared spectroscopy technology (NIRS) is a novel technology applying to rapid determination of single component or multicomponents in materials depend on their optical characteristic in near infrared spectroscopy region. The equipment now analysts can rapidly and precisely acquire a large amount of measured data. As the NIRS is very complicate and serious overlap, it is difficult to quantitative analyze multi-components sample depend on the height of peaks in spectra, however, the analysts have to face this problem: how to extract more meaningful chemical information from the measured data, it is necessary to apply a chemometric to develop a multiple regression quantitative model using for analysis and prediction.
     The radial basis function neural network (RBFNN) has been developed for quantitative analysis of drugs during the last decade. Because of its powerful nonlinear projection ability and local approximation, it is very suitable for the solution of the inherent relationship from mass. The topologic structure of a typical RBF networks is characterized by input nodes number, spread constant and hidden layer neurons number.
     Wavelet Transform (WT) and Wavelet Packet Transform (WPT) have been proved to be a powerful tool for compressing analytical data. It transforms the raw measured data into the wavelet domain. The information contained in the raw data can be represented by the wavelet coefficients. Because of the WT property, there are many wavelet coefficients with very small amplitude, which can be regarded as uninformative; these can be removed without substantially affecting the useful information. WPT is the generalization of WT, it can decompose the data with approximation coefficient and detail coefficient with different scales for a more precise signal extraction。
     In this paper, I have studied on the application of NIRS combination with RBFNN on the active constituent of Coriolus versicolor, Cordyceps sinensis and Tricholoma matsutake for non-destruction determination. And then I studied on the influence of pretreatment methods of NIRS spectra, such as Savitzky-Golay smoothing, Fast Fourier Transform (FFT), derivative, and Wavelet Transform (WT) and Wavelet Packet Transform (WPT) on establishing quantitative analysis model, discussed the optimal method and opportune factors influences in the models.
     1. The optimal quantitative analysis model for Polysaccharide and Protein of Coriolus versicolor: for Polysaccharide the optimal model is 6 scales decompose of WPT, WPT-NIRS-RBFNN(7-12-1,3.2),and RMSECV is 0.009897, Rc is 0.98357; RMSEP is 0.00909;Rp is 0.98283。For Protein the optimal model is 6 scales decompose of WPT, WPT-NIRS-RBFNN(12-10-1,3.0),and RMSECV is 0.00524, Rc is 0.99426; RMSEP is 0.00998;Rp is 0.98246。
     2. The optimal quantitative analysis model for Adenosine and Protein of Coriolus versicolor: for Adenosine the optimal model is 5 scales decompose of WPT, WPT-NIRS-RBFNN(6-6-1,3.0),and RMSECV is 0.002541, Rc is 0.901162; RMSEP is 0.001969;Rp is 0.950076。For Protein the optimal model is 4 scales decompose of WPT, WPT-NIRS-RBFNN(9-10-1,3.2),and RMSECV is 0.013678, Rc is 0.951925; RMSEP is 0.017243;Rp is 0.950056。
     3. The optimal quantitative analysis model for Protein and Polysaccharide of Tricholoma matsutake: for Protein the optimal model is 5 scales decompose of WPT, WPT-NIRS-RBFNN(10-18-1,3.2),and RMSECV is 0.00543, Rc is 0.99335; RMSEP is 0.00943;Rp is 0.98292。For Polysaccharide the optimal model is 5 scales decompose of WPT, WPT-NIRS-RBFNN(12-10-1,2.6),and RMSECV is 0.00825, Rc is 0.99055; RMSEP is 0.00956;Rp is 0.98638。
     Each ingredient's optimization model's reproduction quality and the returns-ratio experimental result further indicated that this method is good to for medicinal purposes fungus active constituent's modelling determination reproduction quality, the returns-ratio is high. In the experiment simultaneously had also indicated the WPT in spectrum pretreatment method has under the suitable scale compared to a convention processing method more superior effect. The results indicate that it is feasible to apply NIRS combine with RBFNN to non-destruction determination of the active constituent of Coriolus versicolor, Cordyceps sinensis and Tricholoma matsutake. It can be generalized to on-line and real-time quality control in pharmacy.
引文
[1] Stark E.,Luchter K., Near-Infrared Analysis:A Technology for Qantitative and Qanlititive Analysis, Applied Spectroscopy Review, 1986, 22(4):335-339
    [2] Herschel W. Philos. Trans. R. Soc., 1800, 90:255
    [3] Abney W and Festing E R. Philos. Trans. R. Soc.,1881,172:889
    [4] Brackett F S. Proc.Natl. Acad. Sci.(US),1928,14:857
    [5] 中华人民共和国国家技术监督局,GB 8322-87,中华人民共和国国家标准-分子吸收光谱法术语,北京:中国标准出版社,1987
    [6] 中华人民共和国国家技术监督局,GB 9721-88,中华人民共和国国家标准-分子吸收分光光度法通则(紫外和可见光部分),北京:中国标准出版社,1984
    [7] 吴瑾光. 近代傅里叶变换红外光谱技术及应用(上卷),北京:科学技术文献出版社,1994, 251-281
    [8] Kaye W. Spectrochim Acta,1954,6:257
    [9] Kaye W. Spectrochim Acta,1955,7:181
    [10] Birth G S and Norris K H. Food Technol.,1958,12:592
    [11] Norris K H. Agric.Eng.,1964,45:154
    [12] Whetse K B, Appl. Spectrosc. Rew.,1968,2:11
    [13] Birth G S and Zachariah. Trans. Am. Soc. Agric. Eng.,1973,16:371
    [14] Watson C. Anal. Chem., 1979,44:949
    [15] Williams P C, Stevenson S G and Irvine G N.Creal Chim., 1978,55:263
    [16] Brith G S, J. Food.. Sci.,1979,44:949
    [17] McClure W F and Hamid A, Am, Lab.,1980,12:57
    [18] Wetzle D. Anal. Chem.1983,55:1165
    [19] 任继平,黄苏西. 应用近红外技术快速测定饲料原料氨基酸含量[J].中国饲料,2005,(05) : 26-28.
    [20] 徐广通,袁洪福,陆婉珍.现代近红外光谱技术及应用进展[J].光谱学与光谱分析,1999, 20(2):134-142.
    [21] 褚小立,袁洪福,陆婉珍.基础数据准确性对近红外光谱分析结果的影响[J].光谱学与光谱分析,2005, (06):88-91.
    [22] 刘蓉,陈文亮,徐可欣,邱庆军,崔厚欣. 奇异点快速检测在牛奶成分近红外光谱测量中的应用[J].光谱学与光谱分析,2005, (02).49-52.
    [23] 逯家辉,蒋朝军,孟庆繁,高朝辉,韦韦,赵航,滕利荣.近红外光谱偏最小一乘法测定二元混合物中甲醇和乙醇的含量[J].吉林大学学报(理学版),2005, (03):121-124.
    [24] 王贞佐,逯家辉,郭伟良,陈淑彦,韦韦,滕利荣.短波近红外光谱一偏最小一乘法测定白酒中乙醇含量[J].食品工业科技,2005, (11).158-160.
    [25] 张洪艳,张来明,陈月,刘少明,孙颖,唐玉国.近红外漫反射光谱在人体血糖无创检测中的应用[[J] .激光与红外,2005, (02):32-35.
    [26] 张洪艳,丁东,宋立强,谷琳娜,杨鹏,唐玉国.血糖无创监测中近红外漫反射光谱技术的研究[[J].光谱学与光谱分析,2005, (06):84-87
    [27] 刘沐华, 张学工,孙素琴.中药材产地的近红外光谱自动鉴别和特征谱段选择[J].科学通报,2005, (04):87-92.
    [28] 邢志娜,张达磊.近红外光谱分析技术及其在中药领域的应用进展[[J].时珍国医国药,2005, (O5).51-53.
    [29] 王凤霞,张卓勇,王亚敏,范国强.近红外光谱技术在医药领域应用的新进展[J].首都师范大学学报(自然科学版),2005, (O3).53-59.
    [30] 刘福强,赵羚志,窦英,任玉秋,任玉林.短波近红外光谱的盐酸环丙沙星粉末药品的定量分析[J].生命科学仪器,2005, (04):42-44.
    [31] 胡钢亮,陈瑞珍,程柯,吕秀阳.近红外漫反射光谱快速检测川贝母中浙贝母的掺入量[J].药物分析杂志, 2005, (02):26-28.
    [32] 陈雨,张经硕,蒋雪,赵大将,谢洪平,郭莉萍.近红外光谱一偏最小二乘方法同时测定复方磺胺甲哇片的两种有效成分[[J].中国药物与临床,2005, (11):16-18.
    [33] 阎衍禄,现代科学仪器,1992, 32, 27
    [34] 袁洪福,龙义成,陆婉珍,ZL96218361X,1997
    [35] 袁洪福,陆婉珍,现代科学仪器,1998, 5, 6
    [36] 袁洪福,陆婉珍,石油冶炼与化工, 1998, 29 (9),27
    [37] 徐锦堂. 中国药用真菌学[M].北京:北京医科大学和北京协和医科大学联合出版社,1997,12(1)394~401.
    [38] 韩立苹, 须海荣, 倪君. 近红外光谱技术及其在茶叶上应用研究[J]. 茶叶, 2007,33(1):4-7
    [39] 赵深,瞿海斌,程翼宇. 虫草氨基酸的人工神经网络-近红外光谱快速测定方法[J]. 光谱学与光谱分析, 2001,24(1):50-53
    [40] 朱景申. 药物分析[M].北京:中国医药科技出版社.2004.
    [41] 严衍禄. 近红外光谱分析基础与应用[M].北京:中国轻工业出版社,2005.1.
    [42] Osbome, B. G., Feam, T. Near Infrared Spectroscopy in Food Analysis[M]. New York: John Wilev and Sona Inc. 1986.
    [43] Ingle, J. D. J.,Crouch S. H. Spectrochemical Analysis[M].New York: Prentice-Hall Englewood Cliffs. 1988.
    [44] Davies A M C and Williams P. Near infrared spectroscopy: The Future Waves. Chichester, UK: NIRS Publications. 1996.
    [45] Jonas Sjoblom, Olof Svensson, Mats Josefson, et al.,An evaluation of orthogonal signal correction applied to calibration transfer of near infrared spectra, Chemometricsand Intelligent Laboratory Systems, 1998, 44:229-244
    [46] Mark A.Arnold, Determination of Physiological Levels of Glucose in an Aqueous Matrix with Digitally Filtered Fourier Transform Near-Infrared Spectra, Analytical Chemistry, 1990, 62(14):1457-1464
    [47] 梁逸曾,俞汝勤. 分析化学手册(10)——化学计量学. 北京: 化工出版社,2001
    [48] 刘树深,易忠胜. 基础化学计量学. 北京: 科学出版社,1999
    [49] 逯家辉,近红外光谱技术在抗结核药物分析中的应用[M]. 吉林大学硕士毕业论文,2006:23-28
    [50] 鲍伦军, 莫金垣, 唐祖英. 化学学报(Acta Chim. Sinica), 1997, 55: 907-914
    [51] Small G W, Amold M A, Marquardt L A. Anal. Chem.,1993,65:3279-3289
    [52] 王洪,司圣柱. 分析仪器(Analytical Instni-ment),1997,2: 46-49
    [53] 何锡文,李鼎. 分析化学(Chin. J. Anal.Chem.),1994, 22:94-100
    [54] 瞿鹏, 李保新 ,章竹 君 . 流动注 射化 学发光法测定异烟阱 [J]. 分析化学,2004,(05):665-667.
    [55] McClure, W. F., Hamid, A., Giesbrecht, F. G., Weeks, W. W. Fourier analysis enhances NIRS diffuse reflectance spectroscopy. [J]. Appl Spectrosc 1984, 38(3):322-328
    [56] Devaux, M.-F., Bertrand, D., Robert, P., Morat,J.-L. Extraction of near infra-red spectral information by fast Fourier transform and principal component analysis. Application to the discrimination of baking quality of wheat flours[J]. Journal of Chemometrics, 1987,1(2):103-110
    [57] Wu, W., Walczak, B., Penninckx, W., Massart, D. L. Feature reduction by Fourier transform in pattern recognition of NIRS data[J]. Analytica Chimica Acta, 1996, 331(1-2):75-83
    [58] Pasti, L., Jouan-Rimbaud, D., Massart, D. L., Noord, O. E. d. Application of Fourier transform to multivariate calibration of near-infrared data[J]. Analytica Chimica Acta, 1998, 364(1-3):253-263
    [59] 徐广通, 袁洪福, 陆婉珍. 光谱学与光谱分折(Spectroscopy and Spectral Analysis ) , 2000,20: 619-622
    [60] 卢小泉, 莫金垣. 分析化学(Chin. J.Anal .Chem .),1996, 24: 1100-1106
    [61] Fearn T, Daviesb A M C. J. Near Infrared Spectrosc.,2003,11:333-339
    [62] 高志明,李井会, 高礼让等. 化学进展(Prog. Chem. ) , 2000, 12; 179-191
    [63] 邵学广,庞春艳,孙莉.化学进展(Prog. Chem. ) , 2000, 12: 233-244
    [64] 秦侠,沈兰荪. 光谱学与光谱分析(Spectroscopy and Spectral Analysis),2000, 20: 892-897
    [65] 郭怀忠,杨准,张尊建. 药学进展(Prog. Pharm. ) , 2000, 1; 5-9
    [66] Cai C S, Harrington P D B .J. Chem. Inf. Comput. Sci.,1998,38: 1161-1170
    [67] Bakshi B R. J. Chemom.,1999,13; 415-434
    [68] 刘蓉. 近红外无创伤血糖测量信号构成和拾取的理论及实验研究[M].天津大学博士毕业论文,2006
    [69] GUO J, SUN W J. Matlab Application(小波分析理论与Matlab7实现)[M]. Beijing: Publishing House of Electronics Industry: 2005.
    [70] STEPHANE M A. Wavelet Tour of Signal Processing, Academic Press, 1999.
    [71] LV J, LIN M, ZHUANG S L. Analysis for the Near Infrared Spectrum Characteristic of Tea Based on Orthogonal Wavelet Packet[J]. Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2005, 25(11): 1790-1792.
    [72] DONOHO D. L. IEEE, Trans. on Info. Theory, 1995, 41(3):61.
    [73] YANG F S. The Engineering Analysis and Application of the Wavelet Transfoman(小波变换的工程分析与应用)[M]. Beijing: Science Press, 2000.
    [74] Parrish A ,Zweben S.Analysis and Refinement of So ftware Test Data Adequacy Properties[J].IEEE Trans on Software Eng,1991;17(6):565-58l
    [75] Zweben S ,Gourlay J .On the Adequacy of Weyuker's Test Data Adequacy Axiom[J].IEEE Trans on Software Eng,1989;15(4):496~501
    [76] Weyuker E.Axiomatizing Software Test Data Adequacy[J].IEEE Tram on Software Eng,1986;12(12):1128-1138
    [77] Weyuker E . The Evaluation of Program-based Software Test Data AdequacyCriterla[J].Communication of the ACM,1988;31(6):668-675
    [78] 柴杰,江青茵,曹志凯.RBF神经网络的函数逼近能力及其算法[J].模式识别与人工智能,2002;15(3):310-316
    [79] Espinosa-Mansilla A, Valenzuela MIA, de la Pena AM, Salinas F , Canada FC. Anal. Chim. Acta, 2001, 427: 129.
    [80] WANG Duo-jia, ZHOU Xiang-yang, JIN Tong-ming(王多加,周向阳,金同铭). Spectroscopy and Spectral Analysis (光谱学与光谱分析), 2004, 24(4): 447.
    [81] 张惟杰. .糖复合物生化研究技术[M].浙江大学出版社,2003,12~13.
    [82] 逯家辉. 近红外光谱技术在抗结核药物分析中的应用[M]. 吉林大学硕士学位毕业论文. 2006
    [83] Boccorh K. R.,Paterson A.,Food Quality and Preference, 2002, 13, 117
    [84] Udelhoven T.,Schutt B.,Chemom. Intell. Lab. Syst.,2000, 51, 9
    [85] Hemmateene jad B.,Chemom. Intell. Lab. Syst.,2005,75, 231
    [86] Khayamian T.,Ensafiu A. A.,Atabati M.,et al, 2000, 65, 347
    [87] Brereton G. R.,McCalley V. D.,Analyst, 1999, 124, 27
    [88] Guiberteau A.,Galeano Diaz T.,Rodriguez Caceres M.I.,et al, Talanta, 2004, 62, 357
    [89] Condon E. M.,Golden B. L.,Wasil E. A.,Computers & Operations Research, 1999, 26, 1243
    [90] Zarei K., Atabati M.,Kazemi L., Frmaco, 2005, 60, 37
    [91] Ni Y.,Liu C.,Kokot S.,Anal. Chlm. Acta, 2000, 419,185
    [92] Ensafi A. A.,Khayamian T.,Atabati M.,Talanta, 2002, 57, 785
    [93] 李宁,阂顺耕,覃方丽等.近红外光谱法非破坏性测定黄豆籽粒中蛋白质、脂肪含量.光谱学与光谱分析,2004 14(1): 45 -49
    [94] 祝诗平,王一鸣,张小超等. 近红外光谱建模异常样品剔除准则与方法.农业机械学报,2004,35(4):115-119
    [95] 阂顺耕,覃方丽,李宁等. 傅里叶变换近红外光谱法测定大麦中蛋白质、淀粉和赖氨酸含量.分析化学.2003,31(7):843-845
    [96] 徐锦堂著. 中国药用真菌学[M].北京:北京医科大学和北京协和医科大学联合出版社, 1997, 12 (1) 394.
    [97] 邵力平 沈瑞祥 张素轩等. 真菌分类学[M]. 北京:北京科技出版社,1984,12(1), 258~261.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700