1,3-丙二胺类Salen稀土配合物的发光和分子磁性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
稀土配合物的发光和分子磁学性质是稀土配合物研究的热点问题,而新型稀土配合物的合成是开展性质研究的基础,以性能为导向设计具有独特结构的稀土配合物,研究结构和性能之间的构效关系,对于制备存在潜在应用价值的分子材料有着至关重要的作用。本文选用1,3-丙二胺类Salen配体与稀土反应设计合成了7类、21个新颖的同多核类Salen稀土配合物,利用X-射线单晶衍射仪测定了配合物的分子结构,通过元素分析、红外光谱、紫外光谱、热重分析等对配合物进行了表征,并研究了它们的分子磁性和发光性能。
     1、合成系列结构新颖的配合物[Yb(H_2L)_2(CH_3OH)](ClO_4)_3(1),[Yb(H_2L)(NO_3)_3]_2·CH_2Cl_2(2),[Yb(H_2L)_2(NO_3)]_2(PF_6)_4·4H_2O·2CH_2Cl_2(3),[Yb(H_2L)(OAc)_2]_2(PF_6)_2·4CH_2Cl_2(4),[Yb_3L′_3(OH)_2Cl(H_2O)5]Cl_3·4H_2O (5)。结构分析表明(PF_6~–, ClO_4~–)作为抗衡阴离子能取代配合物(NO_3~–, OAc~–),合成包裹性好的配合物,配位能力强的(NO_3~–)易占据Yb(Ⅲ)离子的配位点,而阴离子(Cl~–)易导致类Salen配体分解。该系列配合物近红外发光强度、寿命及发光量子效率比较数据表明具有包裹性结构的配合物具有更好的近红外性能,通过改变配体的三线态能级,使其与稀土的激发态能级更加匹配,能改善其近红外性能。初步建立了分子结构和近红外性能之间的构效关系。
     2、合成了系列1,3--丙二胺缩邻香兰素醋酸稀土配合物[Ln(H_2L)(OAc)_2]_2(PF_6)_2·2CH_2Cl_2[Ln=Nd (6), Eu (8), Tb (10)],[Ln(H_2L)(OAc)_2]_2(PF_6)_2·4CH_2Cl_2[Ln=Sm (7)],[Ln(H_2L)(OAc)_2]_2(PF_6)_2·8H_2O [Ln=Gd (9)];另外合成系列1,3-丙二胺缩水杨醛硝酸稀土配合物,得到一维双链结构[Ln(NO_3)_3(H_2L_1)_2]·0.2CH_3OH [Ln=Ce (11) and Pr (12)]和零维的二聚结构[Ln(NO_3)_3(H_2L_1)_2]_2·CH_2Cl_2·CH_3OH [Ln=Nd (13), Sm (14), Eu (15), Tb (16) and Yb (17)];结构分析表明稀土离子的半径(镧系收缩)对1,3-丙二胺缩水杨醛稀土配合物的结构影响较大,导致了双链和零维双核两类结构,而对1,3-丙二胺缩邻香兰素稀土配合物的结构影响较小,仍为同构的同双核结构。荧光及能级跃迁数据研究表明1,3-丙二胺缩邻香兰素三重态能级与稀土离子的激发态能级匹配较好,能够有效地将能量传递给稀土离子,配合物显示稀土离子的特征发光,而配体1,3-丙二胺缩水杨醛三重态能级与稀土离子的激发态能级匹配不好,配合物显示稀土离子和配体的共发光。
     3、合成系列1,3--丙二胺类Salen镝(Ⅲ)稀土配合物[Dy(H_2L)(OAc)_2]_2(PF_6)_2·4CH_2Cl_2(18),[Dy(H_2L)(NO_3)_3]_2·CH_3OH (19),[Dy(H_2L)_2(NO_3)]_2(PF_6)_4·4H_2O·2CH_2Cl_2(20),[Dy(NO_3)_3(H_2L_1)_2]_2·CH_2Cl_2·CH_3OH (21)。结构分析表明四个配合物分别为配体桥连和离子桥连的双核配合物;直流磁化率研究表明由离子桥连的配合物自旋的相互作用抵消了斯塔克能级的热灭绝现象,存在铁磁性的相互作用,而由两个配体桥连的配合物却呈现反铁磁性的相互作用。交流磁化率曲线表明配合物19–21表现出具有慢弛豫现象的单分子磁体(SMMs)的特性,其中配合物19,21有一种弛豫模式,而配合物20其Dy(Ⅲ)离子不同的配位环境和相互作用而有两种弛豫模式。利用阿列纽斯方程计算了配合物的弛豫时间和能垒,由结构和磁性的对比表明,通过缩短双核Dy(Ⅲ)之间的距离,增强Dy(Ⅲ)配位构型的轴对称性,引入吸电子基团等手段均能够提高能垒,改变Dy(Ⅲ)离子的单分子磁性。
The design and synthesis of novel salen type lanthanide complexes with uniqueproperties and study on the correlation between the structure and properties still remainchallenge, which play a crucial role on preparing molecular materials with potentialapplication value. A series of seven-types and twenty-one salen type polynuclearlanthanide complexes have been synthesized and designed by reactions of lanthanideand salen type ligand. All the complexes were have been characterized by a number ofanalytical techniques. Luminescence and magnetic properties of these polynuclearcomplexes were investigated and discussed.
     Structure and NIR luminescence of ytterbium complexes modulated by anions. Aseries of ytterbium complexes, namely,[Yb(H_2L)_2(CH_3OH)](ClO_4)_3(1),[Yb(H_2L)(NO_3)_3]_2·CH_2Cl_2(2),[Yb(H_2L)_2(NO_3)]_2(PF_6)_4·4H_2O·2CH_2Cl_2(3),[Yb(H_2L)(OAc)_2]_2(PF_6)_2·4CH_2Cl_2(4),[Yb_3L′_3(OH)_2Cl(H_2O)5]Cl_3·4H_2O (5)(HL′=2-hydroxy-3-methoxybenzaldehyde), have been synthesized by reactions ofN,N′-bis(2-hydroxy-3-methoxybenzylidene)-1,3-propanediamine (H_2L) withmultifarious Yb(Ⅲ) salts. The anions dominate the final structures of1–5. For example,counterion (PF_6~–, ClO_4~–)does not involve in the coordination to lanthanide ions. Incontrast, the (NO_3~–, OAc~–) anion is of strong coordination ability so that it is hard tobe displaced by other anions. However, when the Cl–anion was employed, salen typeligand was decomposed. It should be noticed that PF_6~–counterion plays uncanny roleson constructing novel salen type lanthanide complexes with diverse structures. Allcomplexes1–5exhibit NIR luminescence, which can be rationalized on the basis ofdifferent structural effects. The correlation between the structure and lunminscence isconducted.
     Systematic study on the structures of salen type lanthanide complexes tuned bylanthanide contraction and corresponding luminescence. A family of five N,N′-bis(2-hydroxy-3-methoxybenzylidene)-1,3-propanediamine (H_2L) lanthanidecomplexes, viz.[Ln(H_2L)(OAc)_2]_2(PF_6)_2·2CH_2Cl_2[Ln=Nd (6), Eu (8) and Tb (10)],[Ln(H_2L)(OAc)_2]_2(PF_6)_2·4CH_2Cl_2[Ln=Sm (7)],[Ln(H_2L)(OAc)_2]_2(PF_6)_2·8H_2O [Ln=Gd (9)] have been isolated by reactions of H_2L with Ln(OAc)_3·6H_2O. X-raycrystallographic analyses reveal that6–10are isostructural exhibiting a discretedinuclear structure with different crystalline solvent molecules. Two types ofN,N′-bis(salicylidene)-1,3-propanediamine (H_2L_1) lanthanide complexes, viz.[Ln(NO_3)_3(H_2L)_2]·0.2CH_3OH [Ln=Ce (11) and Pr (12)] and[Ln(NO_3)_3(H_2L)_2]_2·CH_2Cl_2·CH_3OH [Ln=Nd (13), Sm (14), Eu (15), Tb (16) and Yb(17)], have been isolated by reactions of H_2L with Ln(NO_3)_3·6H_2O. X-raycrystallographic reveal that11–12are isomorphic possessing a novel one-dimensional(1D) ladder-like double-chain structure. Complexes13–17are isostructural exhibiting adiscrete dinuclear structure. the lanthanide contract play essential roles on dominatingthe structures of complexes11–17. The energy gap analysis suggest that theluminescence of Ln(Ⅲ) ion in complexes7,8and10in solid state are dominated by theenergy match between the triplet state of H_2L and the resonance energy level ofcorresponding Ln(Ⅲ) ion. Further, the co-luminescence of Ln(Ⅲ) ion and ligand incomplexes14,15and16in solid state are dominated by the poor energy match betweenthe triplet state of H_2L_1and the resonance energy level of corresponding Ln(Ⅲ) ion.
     Systematic study on the structures of dinuclear Dy2complexes and correspondingmagneric.[Dy(H_2L)(OAc)_2]_2(PF_6)_2·4CH_2Cl_2(18),[Dy(H_2L)(NO_3)_3]_2·CH_3OH (19),[Dy(H_2L)_2(NO_3)]_2(PF_6)_4·4H_2O·2CH_2Cl_2(20) and [Dy(NO_3)_3(H_2L_1)_2]_2·CH_2Cl_2·CH_3OH(21) have been isolated by reactions of salen type ligands (H_2L) and (H_2L_1)withDy(OAc)_3·6H_2O and Dy(NO_3)_3·6H_2O. Magneric studies indicate the ferromagneticcoupling between Dy(Ⅲ) ions in complexes18and20linked by NO_3–and OAc–anions, the interaction is strong enough to compensate the decrease of χMT resultedfrom the depopulated Stark states. The anferromagnetic coupling between Dy(Ⅲ) ions in complexes19and21linked by ligands, the interaction is not strong enough tocompensate the decrease of χMT resulted from the depopulated Stark states. Allcomplexes19–21exhibit different magneric properties, There are two relaxationprocesses in complexes20. The thermally induced relaxation can be fit using theArrhenius law yielding diffirent energy barriers and relaxation time. To some extend,the present research results have oponed up a pathway to achive adustabe SMMS viashorten the distance between both Dy(Ⅲ) ions, Electron-withdrawing effets andaxiality of the Dy(Ⅲ).
引文
[1] S. V. Eliseeva, J. C. G. Bünzli. Rare earths: jewels for functional materials of thefuture [J]. New J. Chem.,2011,35:11651176.
    [2] J. C. G. Bünzli, S. V. Eliseeva. Lanthanide NIR luminescence fortelecommunications, bioanalyses and solar energy conversion [J]. J. Rare Earths,2010,28:824842.
    [3] S. V. Eliseeva, J. C. G. Bünzli. Lanthanide luminescence for functional materialsand bio-sciences [J]. Chem. Soc. Rev.,2010,39:189227.
    [4] J. C. G. Bünzli. Lanthanide luminescence for biomedical analyses and imaging [J].Chem. Rev.,2010,110:27292755.
    [5] M. A. Katkova, M. N. Bochkarev. New trends in design of electroluminescent rareearth metallo-complexes for oleds [J]. Dalton Trans.,2010,39:65996612.
    [6] M. Y. Berezin, S. Achilefu. Fluorescence lifetime measurements and biologicalimaging [J]. Chem. Rev.,2010,110:26412684.
    [7] Z. Liu, W. He, Z. Guo. Metal coordination in photoluminescent sensing [J]. Chem.Soc. Rev.,2013,42:15681600.
    [8] M. Nakano, H. Oshio. Magnetic anisotropies in paramagnetic polynuclear metalcomplexes [J]. Chem. Soc. Rev.,2011,40:32393248.
    [9] Y. N. Guo, G. F. Xu, Y. Guo, J. Tang. Relaxation dynamics of dysprosium(III)single molecule magnets [J]. Dalton Trans.,2011,40:99539963.
    [10] M. Mannini, F. Pineider, C. Danieli, F. Totti, L. Sorace, P. Sainctavit, M. A. Arrio,E. Otero, L. Joly, J. C. Cezar. Quantum tunnelling of the magnetization in amonolayer of oriented single-molecule magnets [J]. Nature,2010,468:417421.
    [11] D. N. Woodruff, R. E. P. Winpenny, R. A. Layfield. Lanthanide single-moleculemagnets [J]. Chem. Rev.,2013,113(7),51105148.
    [12] C. Jahier, M. F. Coustou, M. Cantuel, N. D. McClenaghan, T. Buffeteau, D.Cavagnat, M. Carraro, S. Nlate. Optically active tripodal dendriticpolyoxometalates: synthesis, characterization and their use in asymmetric sulfideoxidation with hydrogen peroxide [J]. Eur. J. Org. Chem.,2011,727738.
    [13] C. Monnereau, J. N. Rebilly, O. Reinaud. Synthesis and first studies of thehost–guest and substrate recognition properties of a porphyrin-tethered calix [6]arene ditopic ligand [J]. Eur. J. Org. Chem.,2011,166175.
    [14] M. O. Senge. Stirring the porphyrin alphabet soup–functionalization reactions forporphyrins [J]. Chem Comm.,2011,47:19431960.
    [15] D. D. Nolting, J. C. Gore, W. Pham. Near-infrared dyes: probe development andapplications in optical molecular imaging [J]. Curr. Org. Syn.,2011,8:521534.
    [16] G. Qian, Z. Y. Wang. Near-infrared organic compounds and emerging applications[J]. Chem. Asian J.,2010,5:10061029.
    [17] V. J. Pansare, S. Hejazi, W. J. Faenza, R. K. Prud’homme. Review oflong-wavelength optical and NIR imaging materials: contrast agents, fluorophores,and multifunctional nano carriers [J]. Chem Mater.,2012,24:812827.
    [18] J. F. Zhang, Y. Zhou, J. Yoon, J. S. Kim. Recent progress in fluorescent andcolorimetric chemosensors for detection of precious metal ions (silver, gold andplatinum ions)[J]. Chem. Rev.,2011,40:34163429.
    [19] H. N. Kim, W. X. Ren, J. S. Kim, J. Yoon. Fluorescent and colorimetric sensors fordetection of lead, cadmium, and mercury ions [J]. Chem. Soc. Rev.,2012,41:32103244.
    [20] P. A. Vigato, S. Tamburini. The challenge of cyclic and acyclic schiff bases andrelated derivatives [J]. Coord. Chem. Rev.,2004,248:17172128.
    [21] J. Rocha, L. D. Carlos, F. A. A. Paz, A. Duarte. Luminescent multifunctionallanthanides-based metal organic frameworks [J]. Chem. Soc. Rev.,2011,40:926940.
    [22] Y. Ma, Y. Wang. Recent advances in the sensitized luminescence of organiceuropium complexes [J]. Coord. Chem. Rev.,2010,254:972990.
    [23] C. A. Dalla, B. P. De, G. Forte, F. Y. Mihan. Metal salophen-based receptors foranions [J]. Chem. Soc. Rev.,2010,39:38633874.
    [24] F. F. Chen, Z. Q. Chen, Z. Q. Bian, C. H. Huang. Sensitized luminescence fromlanthanides in d f bimetallic complexes [J]. Coord. Chem. Rev.,2010,254:9911010.
    [25] S. Swavey, R. Swavey. Dinuclear and polynuclear lanthanide coordinationcomplexes containing polyazine ligands: synthesis and luminescent properties [J].Coord. Chem. Rev.,2009,253:26272638.
    [26] E. G. Moore, A. P. S. Samuel, K. N. Raymond. From antenna to assay: lessonslearned in lanthanide luminescence [J]. Acc. Chem. Res.,2009,42:542552.
    [27] N. K. Dutt, K. Nag. Chemistry of lanthanons bis-salicylaldehyde ethylene-diamineand bis-salicylaldehyde-phenylenediamine complexes of rare-earth [J]. Inorg. Nucl.Chem.,1968,30:24932499.
    [28] S. Tanase, J. Reedijk. Chemistry and magnetism of cyanido-bridged d–f assemblies[J]. Coord. Chem. Rev.,2006,250:2501–2510.
    [29] G. A. Crosby, R. E. Whan, R. M. Alire. Intramolecular energy transfer in rare earthchelates [J]. J. Chem. Phys.,1961,34:743–748.
    [30] G. A. Crosby, R. E. Whan, J. J. Freeman. Spectroscopic studies of rare earthchelates [J]. J. Phys. Chem.,1962,66:2493–2499.
    [31] R. E. Whan, G. A. Crosby. Luminescence studies of rare earth complexes:benzoylacetonate and dibenzoylmethide chelates [J]. J. Mol. Spectrosc.,1962,8:315–327.
    [32] G. A. Hebbink, D. N. Reinhoudt, F. C. J. M. Vanveggel. Increased luminescentlifetimes of near-infrared emitting Ln3+complexes by deuteration [J]. Eur. J. Org.Chem.,2001,4101–4106.
    [33] P. B. Glover, A. P. Bassett, P. Nockemann, B. M. Kariuki, R. V. Deun, Z.Pikramenou. Fully fluorinated imidodiphosphinate shells for visible andNIR-emitting lanthanides: hitherto unexpected effects of sensitizer fluorination onlanthanide emission properties [J]. Chem. Eur. J.,2007,13:6308–6320.
    [34] M. Romanelli, G. A. Kumar, T. J. Emge, R. E. Riman, J. G. Brennan. Intensenear-IR emission from nanoscale lanthanoid fluoride clusters [J]. Angew. Chem.,Int. Ed.,2008,47:6049–6051.
    [35] W. Dou, J. N. Yao, W. S. Liu, Y. W. Wang, J. R. Zheng, D. Q. Wang. Crystalstructure and luminescent properties of new rare earth complexes with a flexiblesalen-type ligand [J]. Inorg. Chem. Commun.2007,10:105-108.
    [36] T.Gao, G. M. Li, N,N-Ethylene-bis(3-methoxysalicylideneimine) mononuclear (4f)and heterodinuclear (3d–4f) metal complexes: Synthesis, crystal structure andluminescent properties[J]. Inorg. Chim. Acta,2008,361:2051–2058.
    [37]张茜.环己二胺缩邻香兰素单稀土配合物的合成、结构及性能研究[D].硕士论文,黑龙江大学,2011.
    [38]陈涵.邻苯二胺缩邻香兰素金属配合物的合成、结构及性能研究[D].硕士论文,黑龙江大学,2010.
    [39]杨帆.邻苯二胺缩邻香兰素多核稀土配合物的合成、结构及性能研究[D].硕士论文,黑龙江大学,2013.
    [40] B. Gao, Q. Zhang, P. F. Yan, G. F. Hou, G. M. Li. Crystal engineering of salen typecerium complexes tuned by various cerium counterions [J]. CrystEngComm,2013,15(20),4167–4175.
    [41] X. P. Yang, R. A. Jones. Anion dependent self-Assembly of “tetra-decker” and“triple-decker” luminescent Tb(III) salen complexes. J. Am. Chem. Soc.2005,127,7686-7687.
    [42] X. P. Yang, R. A. Jones, M. M. Oye, A. L. Holmes, W. K. Wong. Near infraredluminescence and supramolecular structure of a helical triple-decker Yb(III) schiffbase cluster [J]. Cryst. Growth Des.,2006,6:2122–2125.
    [43] W. Feng, Y. Zhang, X. Lü, Y. Hui, G. Shi, D. Zou, J. Song, D. Fan, W. K.Wong, R.A. Jones. Near-infrared (NIR) luminescent homoleptic lanthanide salen complexesLn4(salen)4(Ln=Nd, Yb or Er)[J]. CrystEngComm,2012,14:3456–3463.
    [44] P. Chen, H. Chen, P. F. Yan, Y. Wang, G. M. Li. Effect of lanthanide contraction andrigid ligand on the structure of salen-type lanthanide complexes [J].CrystEngComm,2011,13:6237–6242.
    [45] X. P. Yang, R. A. Jones, W. K. Wong. Pentanuclear tetra-decker luminescentlanthanide schiff base complexes [J]. Dalton Trans.,2008,1676–1678.
    [46] S. Liao, X. P. Yang, R. A. Jones. Self-assembly of luminescent hexanuclearlanthanide salen complexes [J]. Cryst. Growth Des.,2012,12:970–974.
    [47] X. P. Yang, B. P. Hahn, R. A. Jones, W. K. Wong, K. J. Stevenson. Synthesis of anoctanuclear Eu(III) cage from Eu42+: chloride anion encapsulation, luminescenceand reversible MeOH adsorption via a porous supramolecular architecture [J].Inorg. Chem.,2007,46:7050–7054.
    [48]陈川.邻苯二胺缩邻香兰素同核稀土配合物以及Cu-主族金属配合物的合成、结构及性能研究[D].硕士论文,黑龙江大学,2013.
    [49] L. Bogani, W. Wernsdorfer. Molecular spintronics using single-molecule magnets[J]. Nat. Mater.,2008,7:179–186.
    [50] H. J. Eppley, H. L. Tsai, N. devries, K. Folting, G. Christou, D. N. Hendrickson.High-spin molecules: unusual magnetic susceptibility relaxation effects in
    [Mn12O12(O2CEt)16(H2O)3](S=9) and the one-electron reduction product(PPh4)[Mn12O12(O2CEt)16(H2O)4](S=19/2)[J]. J. Am. Chem. Soc.,1995,117:301–317.
    [51] J. D. Rinehart, M. Fang, W. J. Evans, J. R. Long. Strong exchange and magneticblocking in N23–radical-bridged lanthanide complexes [J]. Nat. Chem.,2011,3:538–542.
    [52] G. A. Timco, S. Carretta, F. Troiani, F. Tuna. R. J. Pritchard, C. A. Muryn, E. J. L.Mclnnes, A. Ghirri, A. Candini, P. Santini, G. Amoretti, M. Affronte, R. E. P.Winpenny. Engineering the coupling between molecular spin qubits bycoordination chemistry [J]. Nat. Nanotechnol.,2009,4:173–178.
    [53] R. Sessoli, A. K. Powell. Magnetothermal studies of a series of coordinationclusters built from ferromagnetically coupled {MnII4MnIII6} supertetrahedral unit[J]. Coord. Chem. Rev.,2009,253:2328–2341.
    [54] S. M. J. Aubin, S. Spagna, H. J. Eppley, R. E. Sager, G. Christou, D. N.Hendrickson. Resonant magnetization tunnelling in the half-integer-spinsingle-molecule magnet [PPh4][Mn12O12(O2CEt)16(H2O)4][J]. Chem. Commun.,1998,803–804.
    [55]张旭红,王淑萍.3d-4f单分子磁体[J].化学进展,2010,22(09):1709–1719.
    [56] N. Ishikawa, M. Sugita, T. Ishikawa, S. Koshihara, Y. Kaizu. Lanthanidedouble-decker complexes functioning as magnets at the single-molecular level [J].J. Am. Chem. Soc.,2003,125:8694–8695.
    [57] J. Long, F. Habib, P. H. Lin, I. Korobkov, G. Enright, L. Ungur, W. Wernsdorfer, L.F. Chibotaru, M. Murugesu. Single-molecule magnet behavior for anantiferromagnetically superexchange-coupled dinuclear dysprosium (III) complex[J]. J. Am. Chem. Soc.,2011,133:5319–5328.
    [58] L. Zhang, P. Zhang, L. Zhao, S.Y. Lin, S.Y., Xue, J. Tang, Z. Liu. Two locallychiral dysprosium compounds with salen-type ligands that show slow magneticrelaxation behavior [J]. Eur. J. Org. Chem.,2013,13511357.
    [59] J. Tang, I. Hewitt, N. T. Madhu, G. Chastanet, W. Wernsdorfer, C. E. Anson, C.Benelli, R. Sessoli, A. K. Powell. Dysprosium triangles showing single-moleculemagnet behavior of thermally excited spin states [J]. Angew. Chem., Int. Ed.,2006,45:1729–1733.
    [60] I. J. Hewitt, Y. Lan, C. E. Anson, J. Luzon, R. Sessoli, A. K. Powell. Opening up adysprosium triangle by ligand oximation [J]. Chem. Commun.,2009,6765–6767.
    [61] F. Yang, P. F Yan, Q. Li, P. Chen, G. M. Li. Salen type triple-decker trinuclear Dy3complexes showing slow magnetic relaxation behavior [J]. Eur. J. Inorg. Chem.,2012,4287–4293.
    [62] Y. N. Guo, G. F. Xu, P. Gamez, L. Zhao, S. Y. Lin, R. Deng, J. Tang, H. J. Zhang.Two-step relaxation in a linear tetranuclear dysprosium (III) aggregate showingsingle-molecule magnet behavior [J]. J. Am. Chem. Soc.,2010,132:8538–8539.
    [63] B. Hussain, D. Savard, T. J. Burchell, W. Wernsdorfer, M. Murugesu. Linking highanisotropy Dy3triangles to create a Dy6single-molecule magnet [J]. Chem.Commun.,2009,1100–1102.
    [64] H. Ke, G. F. Xu, L. Zhao, J. Tang, X. Y. Zhang, H. J. Zhang. A Dy10Clusterincorporates two sets of vertex-sharing Dy3triangles [J]. Chem. Eur. J.,2009,15:10335–10338.
    [65] X. P. Yang, R. A. Jones, W.-K. Wong. Anion dependant self-assembly and the firstX-ray structure of a neutral homoleptic lanthanide salen complex Tb4(salen)6[J].Chem. Commun.,2008,3266–3268.
    [66] P. F. Yan, S. Chen. P. Chen, J. W. Zhang, G. M. Li. Novel quadridentate salen typetriple-decker sandwich ytterbium complexes with near infrared luminescence [J].CrystEngComm,2011,13:3639.
    [67]李权.邻苯二胺缩邻香兰素多核稀土配合物的合成、结构及性能研究[D].硕士论文,黑龙江大学,2013.
    [68] W. H. Xie, M. J. Heeg, P. G. Wang. Formation and crystal structure of a polymericLa(H2salen) complex [J]. Inorg. Chem.,1999,38:2541–2543.
    [69] P. F. Yan, W. B. Sun, G. M. Li, C. H. Nie, T. Gao, Z. Y. Yue. Synthesis,characterization and fluorescence of lanthanide Schiff base complexes [J]. J. Coord.Chem.,2007,60:1973–1982.
    [70] W. R, Paryzek, I. P. Markiewicz, M. Kubicki. Self-assembled two-dimensionalsalicylaldimine lanthanum(III) nitrate coordination polymer [J]. Inorg. Chim. Acta,2007,360:488–496.
    [71] W. B. Sun, P. F. Yan, G. M. Li, H. Xu, J. W. Zhang. N, N-bis(salicylidene)propane-1,2-diamine lanthanide(III) coordination polymers: synthesis, crystalstructure and luminescence properties [J]. J. Solid State Chem.,2009,182:381–388.
    [72] T. Gao, G. M. Li, P. F. Yan, J. W. Zhang, W. B. Sun, M. Suda, Y. Einaga.Two-dimensional lanthanide-containing coordination frameworks: sructure,magnetic and luminescence properties [J]. Z. Anorg. Allg. Chem.,2010,636:624–628.
    [73] P. H. Lin, W. B. Sun, M. F. Yu, G. M. Li, P. F. Yan, M. Murugesu. Anunsymmetrical coordination environment leading to two slow relaxation modes ina Dy2single-molecule magnet [J]. Chem. Commun.,2011,47:1099310995.
    [74] J. Long, F. Habib, P. H. Lin, I. Korobkov, G. Enright, L. Ungur, W. Wernsdorfer, L.F. Chibotaru, M. Murugesu. Single-molecule magnet behavior for anantiferromagnetically superexchange-coupled dinuclear dysprosium (III) complex[J]. J. Am. Chem. Soc.,2011,133:5319–5328.
    [75] J. Zhu, H. F. Song, P. F. Yan, G. F. Hou, G. M. Li. Slow relaxation processes ofsalen type Dy2complex and1D ionic spiral Dyncoordination polymer [J].CrystEngComm,2013,15:17471752.
    [76] Y. N. Guo, G. F. Xu, P. Gamez, L. Zhao, S. Y. Lin, R. Deng, J. Tang, H. J. Zhang.Two-step relaxation in a linear tetranuclear dysprosium (III) aggregate showingsingle-molecule magnet behavior [J]. J. Am. Chem. Soc.,2010,132:8538–8539.
    [77] P. H. Lin, T. J. Burchell, L. Ungur, L. F. Chibotaru, W. Wernsdorfer, M. Murugesu.A polynuclear lanthanide single-molecule magnet with a record anisotropic barrier[J]. Angew. Chem., Int. Ed.,2009,48:9489–9492.
    [78] B. H. Koo, K. S. Lim, D.W. Ryu, W. R. Lee, E. K. Koh, C. S. Hong. Synthesis,structures and magnetic characterizations of isostructural tetranuclear Ln4clusters(Ln=Dy, Ho and Eu)[J]. Dalton Trans.,2013,42:72047209.
    [79] B. H. Koo, K. S. Lim, D. W. Ryu, W. R. Lee, E. K. Koh, C. S. Hong. A uniquetetranuclear Er3+4cluster exhibiting field-induced single-molecule magnetism [J].Chem. Commun.,2012,48:2519–2521.
    [80] SMART and SAINT software package, Siemens Analytical X-ray Instruments,Madison, WI,1996.
    [81] G. M. Sheldrick, SHELXL-97, Program for X-ray Crystal Structure Refinement,University of G ttingen: G ttingen, Germany,1997.
    [82] G. M. Sheldrick, Acta Crystallographica Section A.2008,64,112–122.
    [83] B. Moulton, M. J. Zaworotko. From molecules to crystal engineering:supramolecular isomerism and polymorphism in network solids [J]. Chem. Rev.,2001,101:1629–1658.
    [84] M. Eddaoudi, D. B. Moler, H. Li, B. Chen, T. M. Reineke, M. O'Keeffe, O. M.Yaghi. Modular chemistry: secondary building units as a basis for the design ofhighly porous and robust metal-organic carboxylate frameworks [J]. Acc. Chem.Res.,2001,34:319–330.
    [85] M. W. Cooke, G. S. Hanan. Luminescent polynuclear assemblies [J]. Chem. Soc.Rev.,2007,36:1466–1476.
    [86] X. J. Zhu, W. K. Wong, W. Y. Wong, X. P. Yang. Design and synthesis ofnear-infrared emissive lanthanide complexes based on macrocyclic ligands [J].Eur. J. Inorg. Chem.,2011,4651–4674.
    [87] X. P. Yang, R. A. Jones, J. H. Rivers, W. K. Wong. Syntheses, structures andphotoluminescence of1D lanthanide coordination polymers [J]. Dalton Trans.,2009,47:10505–10510.
    [88] X. P. Yang, D. Lam, C. Chan, J. M. Stanley, R. A. Jones, B. J. Holliday, W. K.Wong. Construction of1-D4f and3d–4f coordination polymers with flexibleschiff base ligands [J]. Dalton Trans.,2011,40:9795–9801.
    [89] W. K. Lo, W. K. Wong, J. P. Guo. Synthesis, Structures and LuminescentProperties of New Heterobimetallic Zn-4f Schiff Base Complexes [J]. Inorg. Chim.Acta,2004,357:4510–4521.
    [90] J. Gottfriedsen, M. Spoida, S. Blaurock. Synthesis and structure of the Ceriumschiff-Base complexes [Ce(Salen′)2] and [(THF)2KCe(Salen′)2][J]. Z. Anorg. Allg.Chem.2008,634:514–518.
    [91] P. H. Lin, W. B. Sun, Y. M. Tian, P. F. Yan, L. Ungur, L. F. Chibotaru, M.Murugesu. Ytterbium can relax slowly too: a field-induced Yb2single-moleculemagnet [J]. Dalton Trans.,2012,41:1234912352.
    [92] J. P. Costes, F. Dahan, F. Nicodeme. A trinuclear Gadolinium complex: tructure andmagnetic properties [J]. Inorg. Chem.2001,40:5285–5287.
    [93] H. S. He, X. J. Zhu, A. X. Hou, J. P. Guo, W. K. Wong, W. Y. Wong, K. F. Li, K. W.Cheah. Reactivity of aqua coordinated monoporphyrinate lanthanide complexes:synthetic, structural and photoluminescent studies of lanthanide porphyrinatedimers [J]. Dalton Trans.,2004,4064–4073.
    [94] T. Gao, P. F. Yan, G. M. Li, G. F. Hou, J. S. Gao. Ion size dominated1D and2DSalen lanthanide coordination complexes and their luminescence [J]. Polyhedron,2007,26:5382–5388.
    [95] P. H. Lin, W. B. Sun, M. F. Yu, G. M. Li, P. F. Yan, M. Murugesu. Anunsymmetrical coordination environment leading to two slow relaxation modes ina Dy2single-molecule magnet [J]. Chem. Commun.,2011,47,10993–10995.
    [96] J. H. Wang, P. F. Yan, G. M. Li, J. W. Zhang, P. Chen, Masayuki Suda. N,N′-bis(2-hydroxy-3-methoxybenzylidene)-1,3-diamino-prop-anedimeric4f and3d–4f heterodinuclear complexes: syntheses, crystal structures and magneticproperties [J]. Inorg. Chim. Acta,2010,363:3706–3713.
    [97] Y. X. Chi, S. Y. Niu, Z. L. Wang, J. Jin. Syntheses, structures and photophysicalproperties of new heterodinuclear Cd–Ln coordination complexes (Ln=Sm, Eu, Tb,Nd, Ho, Er). Eur. J. Org. Chem.,2008,2336–2343.
    [98] H. J. Zhang, R. H. Gou, L. Yan, R. D. Yang. Synthesis, characterization andluminescence property of di(pyridine-oxide-2-yl) pyridine-2,6-dicarboxamide andcorresponding lanthanide (III) complexes. Spectrochimica Acta Part A: Molecularand Biomolecular Spectroscopy.2007,66(2):289–294.
    [99] J. Xia, B. Zhao, H. S. Wang, W. Shi, Y. Ma, H. B. Song, P. Cheng, D. Z. Liao, S.P. Yan. Two-and three-dimensional lanthanide complexes: synthesis, crystalstructures, and properties. Inorg. chem.,2007,46(9):3450–3458.
    [100] G. Crosby, R. Whan, R. Alire. Intramolecular energy transfer in rare earthchelates role of the triplet state [J]. J. Phys. Chem.,1961,34,743–744.
    [101] M. Latva, H. Takalo, V. M. Mukkala, C. Matachescu, J. C. Rodríguez-Ubis, J.Kankare. Correlation between the lowest triplet state energy level of the ligand andlanthanide (III) luminescence quantum yield [J]. J. Lumin.,1997,75(2):149-169.
    [102] G. Mancino, A. J. Ferguson, A. Beeby, N. J. Long, T. S. Jones. Dramatic increasesin the lifetime of the Er3+ion in a molecular complex using a perfluorinatedimidodiphosphinate sensitizing ligand [J]. J. Am. Chem. Soc.,2005,127:524–525.
    [103] Z. Zheng. Ligand-controlled self-assembly of polynuclear lanthanide-oxohydroxo complexes: from synthetic serendipity to rational supramolecular design[J]. Chem. Commun.,2001,2521–2529.
    [104] C. Benelli, D. Gatteschi. Magnetism of lanthanides in molecular materials withtransition-metal ions and organic radicals [J]. Chem. Rev.,2002,102:2369–2387.
    [105] J. P. Costes, J. M. Clemente-Juan, F. Dahan, F. Nicodème, M. Ver-elst. Erbiumand Gadolinium complexes: structural and magnetic studies [J]. Angew. Chem. Int.Ed.,2002,41:323–325.
    [106] G. Novitchi, W. Wernsdorfer, L. F. Chibotaru, J. P. Costes, C. E. Anson, A. K.Powell. Supramolecular “double-propeller” dimers of hexanuclear CuII/LnIIIcomplexes: a {Cu3Dy3}2single-molecule magnet [J]. Angew. Chem., Int. Ed.,2009,48:1614–1619.
    [107] S. T. Hatscher, W. Urland. Unexpected appearance of molecular ferromagnetismin the ordinary acetate [{Gd(OAc)3(H2O)2}2]·4H2O [J]. Angew. Chem., Int. Ed.,2003,42:2862–2529.
    [108] F. S. Guo, J. L. Liu, J. D. Leng, Z. S. Meng, Z. J. Lin, M. L. Tong, S. Gao, L.Ungur, L. F. Chibotaru. Pure trinuclear4f single-molecule magnets: synthesis,structures, magnetism and abinitio investigation [J]. Chem. Eur. J.,2011,17:2458–2466.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700