林分空间结构参数二元分布的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
空间结构对于描述林分及其状态的改变有特别重要的意义。量化不同林分之间的结构关系可以帮助简化测量、了解和管理森林结构的整个过程。林分尺度上可量化的结构要素很多,各要素之间常常保持着紧密的联系。许多描述林分结构的指标或多或少都与相邻木有关,它们中的一些指标描述的是林分空间结构,而另一些指标描述的却是非空间结构,并且各指标之间的理论基础和表达方式不同,缺乏必然联系。这些方法的共同特征是它们只能刻画单方面或整体的结构特征(宏观结构),而无法同时提供两个或多个方面的林分结构信息。为了解决这一难题,本研究提出一种新的基于最近4株相邻木空间结构关系的微观结构分析方法——结构参数二元分布分析,它包含3种不同形式的结构组合,即混交度和大小比数的二元分布、混交度和角尺度的二元分布以及大小比数和角尺度的二元分布。
     为检验这种新方法分析不同水平层次林木结构的能力以及它在森林经营中的可能应用,在中国东北地区典型的植被类型红松阔叶林建立了6块面积大小均为100m×100m的标准固定样地,其中3块(a、b、c)作为结构化森林经营示范,另外3块(d、e、f)作为对照样地。同时在西北秦岭北坡的天然松栎混交林中建立了2块面积均为70m×70m的标准固定样地(h、i),1块作为结构化森林经营示范(h),而另1块则作为照样地(i)。采用结构参数二元分布分析了红松阔叶林林分、种群以及种群内不同直径林木的空间结构特征,还分析了两类经营林分中第一次经营时获得的采伐木的空间结构特征。此外,还将它扩展应用到结构化经营中采伐木的优先性选择中。主要结果如下:
     (1)林分水平上,天然红松阔叶林的大部分林木同时处于强度混交和随机分布状态;不同优劣态势的林木多数与其他树种伴生;随机分布的林木其周围一般都是其他树种;中庸状态的林木在林分中的分布格局为随机分布。
     (2)种群水平上,水核林的3个主要种群水曲柳(Fraxinus mandshurica Rupr.)、核桃楸(Juglans mandshurica Maxim.)和暴马丁香(Syringa amurensis Rupr.)多数个体同时处于高度混交和随机分布状态,只有少数处于团状或均匀分布;同一种群中,处于团状或均匀分布的林木数量基本相等,并且具有相似的混交度和优劣态势;暴马丁香种群在林分中处于中庸或劣势状态,而大部分水曲柳和核桃楸处于优势状态,但核桃楸的优势更明显。
     (3)种群内,水曲柳的小树和大树常被其他树种包围,小树多为随机分布的非优势木,而大树为偏规则分布的优势木;核桃楸的小树和大树的周围通常是其他树种并且这些相邻木随机地围绕在它们的周围,但小树多为亚优势木,而大树呈典型的优势木;暴马丁香的小树和大树也常被其他树种包围,它的小树为随机分布的劣势木,而大树中仅有少部分为优势木且整体偏向规则分布。
     (4)红松阔叶林的采伐木广泛地分布在林分各空间层次中,既有被压木、中庸木,也有优势木,但整体属于中小径木,多数个体同时处于高度混交和随机分布状态。相对而言,松栎混交林的采伐木分布较为集中,几乎均匀地分布在各径阶中,多数采伐木属于高度混交或随机分布的优势木;伐后两类林分的结构特征向原始林更加靠近。
     (5) M–U疏伐优先性指数表明样地a中优先采伐的是不同混交的劣势木和绝对劣势木,样地b中优先采伐的是高度混交的优势木和劣势木,样地c中优先采伐的是不同优势的高混交林木,而样地h中优先采伐的是中度混交的亚优势木和高度混交的优势木;M–W疏伐优先性指数表明4块经营样地中优先采伐的是同时处于高度混交和随机分布状态的林木;U–W疏伐优先性指数表明样地a中优先采伐的是处于随机分布的劣势木,样地c中优先采伐的主要对象是不同优势的随机分布林木,而样地b和h中优先采伐的是随机分布的优势木和亚优势木。
     结构参数二元分布充分利用了角尺度、混交度和大小比数在表达结构上的频率优势,同时从两方面刻画不同水平层次林木的空间结构特征,进一步细化了它们的空间结构特征,可提供比结构参数一元分布或传统单一指标更加丰富、直观的有效信息。这些信息可能对恒续林经营中择伐木的选择和林分模拟与重建具有指导作用,亦可能有利于生物多样性的发掘和保护。
Spatial structure is important in describing forest stand structure and change. Quantifyingrelationships among different forst structures simplifies the process of measuring,understanding, and managing forest structure. At the stand scale, there are a great number ofstructural elements that often maintain close links to each other can be quantified. Manystructural indicators described forest stand are more or less related to the adjacent wood, someof them describe the spatial attributes of forest stand, while the others depict the non-spatialcharacteristics. Commonly, there is no necessary connection among such indexes that aretypically built on variously theoretical backgrouds and have different expression ways at thesame time. The common feature of these methods is that they can only be portrayed unilateralor whole characteristic of tree structure (i.e, macroscopic structure). That is to say, they cannotsimultaneously provide any information about two or more aspects of stand structures. In orderto solve such difficult problem, this contribution proposed a mircroscopic structure analysismethod based on the spatial structural relationships of the nearest four adjacent woods—theanalysis of bivariate distribution of structural parameters. It contained three different forms ofstructural combination, i.e., bivariate distribution of mingling-dominance, bivariate distributionof mingling-uniform angle index and bivariate distribution of dominane-uniform angle index.
     In order to examine its ability in analyzing different levels of tree structure and itspossible application in forest manangement, six permanent fixed standard plots with length100m×100m were established in Northeast China PR where are commonly covered by thezonal climax vegetation the Korean pine broad-leaved forest. Each plot was only lettered by aArbica character. Three of them (a, b, c) have been treated as the demonstration ofStructure-based forest management (a advanced kind of near to natural forest management)after the plots being built, while the residual (d, e, f) was treated as control. During the sameperiod, two fixed standard samples (h, i) whose areas are70×70m2were also set up in the natural oak-pine mixed forest on northern face of Qinling Mountains, Northwest China PR. Asthe way of plots (a-f) treated in the Korean pine broad-leaved forest, one of them (h) was alsotreated as the demonstration of Structure-based forest management in Qingling area, the otherone (i) was treated as still (CK). With the purpose to exame the ability of the bivariatedistribution of the structural parameters in analyzing forest structure on different levels, i.e.,individual, population and stand (community), the spatial characteristics of the Korean pinebroad-leaved forest stands (a-f) were explored. The spatial attributes of the harvested trees inthe four managed stands which were operated for the first time were also disclosed by thismethod. What is more, the bivariate distribution of the structural parameters was extended tothe priority selection of wood harvesting in natural forests. The main results are as follows:
     (1) On the stand level, most trees in the natural Korean pine broad-leaved forest werehighly mixed by species and randomly distributed. Trees with different advantages weretypically surrounded by other species; trees within stochastic distribution patterns were usuallysurrounded by different species; and medium-sized trees were randomly distributed.
     (2) On the population level, three major populations Manchurian ash (Fraxinusmandshurica Rupr.), Manchurian walnut (Juglans mandshurica Maxim.) and Syringa reticulataHong (Syringa amurensis Rupr.) in the mixed forest of Manchurian ash and Manchurianwalnut were usually mixed with other species and distributed randomly. Only a few individualwas in clump or uniform distribution. Trees in clump or regular distribution had a similarnumber of individuals when they belonged to the same species, and they also had a very closemixture or dominance. Normally, Syringa reticulata population were in medium or inferiorstatus, however, most of Manchurian ash and Manchurian walnut had a dominant state whileManchurian walnut population won more obvious advantages thant that of Manchurian ash.
     (3) Intraspecies, both small (23cm     (4) The harvested woods were widely distributed on different vertical levels of the Koreanpine broad-leaved forest, including trees in the state of compression, medium and dominance.Most of them belonged to the small diameter category and were highly mixed and randomlydistributed, simultaneously. On the contrary, trees harvested in the oak-pine mixed forestdisplayed a relatively single characteristic. They had a attribute of even distribution among theall diameter classes. Most of them were dominant, and were in the status of high mixture orrandom distribution pattern. After managed, both of natural forests were closer to originalforest in spatial structural features.
     (5) Even depicting the same plot, different thinning priority indexes may exhibit acompletely different tendency of frequency distribution on the5×5=25combinations. M-Uthinning priority index suggested that trees preferred to be cut in plot a were the ones haddifferent degrees of mixture and in the state of disadvantage or completely disadvantage; Inplot b, the woods cut firstly were highly mixed and suppressed by their nearest neighbors orwere completely dominanct; Trees with different advantages and high mixtures werepreferentially cut in plot c; Nevertheless, plants in plot h had high value of thinning prioritywere the ones in the status of dominance. Some of them had a medium mixture, and otherswere highly mixed by other plant species. M-W thinning priority index indicated that fouroperated samples had a similar frequency distribution on different conbinations. That is to say,most trees preferred to be cut were highly mixed and randomly distributed at the same time. Inplot a, U-W thinning priority index revealed that most trees cut were dominant and were inrandom distribution pattern; In plot c, those different dominant trees that were randomly surrounded by their nearest four neighbors were liked to be cut firstly; But in plot b and h,dominant woods that were random surrounded by their nearest four neighbors in the structuregroup of five were become the selective hotspot of harvesting.
     The bivariate distribution of the structural parameters takes full advantage of thefrequency distribution of species mingling, uniform angel index and dominance when they areused to express the spatial characters of forest stand. They simultaneously quantify two aspectsof stand structures from different points of view. As a result, it further refines the spatialstructure of the stand, and provide more direct and useful information about the heterogeneityof spatial structure than can univariate distributions or other conventional stand descriptors.This could be helpful for selective thinning in continuous cover forest management and inmodelling and restoring forests. It may also be conducive to the excavation and protection ofbiodiversity.
引文
Aguirre O, Hui G, Gadow K v, Jiménez J,2003. An analysis of spatial forest structure usingneighborhood-based variables. Forest Ecology and Management,183:37~145
    Albert M,1999. Analyse der eingriffsbedingten Strukturver nderung und Durchforstungsmodellierung inMischbest nden. Dissertation, Fak. f. Forstwiss. u. Wald kologie d. Univ. G ttingen. Hainholz-Verlag,Band6:201S
    Albert M, Gadow K v,1998. Assessing biodiversity with new neighborhood-based parameters. In:Proceedings of the International Conference on Data Management and Modelling Using RemoteSensing and GIS for Tropical Forest Land Inventory. Jakarta, Indonesia, Oct.26–29
    Aldrich P R, Parker G R, Romero-Severson J, Michler C H,2005. Confirmation of Oak Recruitment Failurein Indiana Old-Growth Forest:75Years of Data. Forest Science,51(5):406~416
    Bhuyan P, Khan M L, Tripathi R S,2003. Tree diversity and population structure in undisturbed andhuman-impacted stands of tropical wet evergreen forest in Arunachal Pradesh, Eastern Himalayas, India.Biodiversity and Conservation,12:1753~1773
    Biging G, Dobbertin M,1992. A comparison of distance-dependent competition measures for height andbasal area growth of individual conifer tree. Forest Science,38(3):695–720
    Biolley H,1980. Oeuvre écrite. Supplement to the Zeitschrift des Schweizerischen Forstvereins, No.66, p458
    Boncina A,2000. Comparison of structure and biodiversity in the Rajhenav virgin forest remnant andmanaged forest in the Dinaric region of Slovenia. Global Ecology&Biodiversity,9:201~211
    Bonet J A, de-Miguel S, Martinez de Aragon J, Pukkala T, Palahi M,2012. Immediate effect of thinning onthe yield of Lactarius group deliciosus in Pinus|>pinaster forests in Northeastern Spain. Forest Ecologyand Management,265:211~217
    Breitenbach F v,1974. Southern Cape Forests and trees. The Government Printer, Pretoria, p328
    Buongiorno J, Mitchie B R,1980. A matrix model of uneven-aged forest management. Forest Science,26(4):609~625
    Cassidy M, Palmer G, Glencross K, Nichols J D, Smith R G B,2012. Intensity of thinning affects log sizeand value in Eucalyptus pilularis. Forest Ecology and Management,264:220~227
    Cassie R M,1962. Frequency distribution models in the ecology plankton and other organisms. Journal ofAnimal Ecology,31:65~92
    Chen H Y H, Klinka K, Mathey A H, Wang X, Varga P, Chourmouzis C,2003. Are mixed-species standsmore productive than single-species stands: an empirical test of three forest types in British Columbiaand Alberta. Canadian Journal of Forestry Research,33:1227~1237
    Chen J, Colombo S J, Ter-Mikaelian M T, Heath L S,2008. Future carbon storage in harvested woodproducts from Ontario‘s Crown forests. Canadian Journal of Forest Research,38:1947~1958
    Clark P J, Evans F C,1954. Distance to nearest neighbor as measure of spatial relationships in populations.Ecology,35:445~453
    Cogliastro A, Paquette A,2012. Thinning effect on light regime and growth of underplanted red oak andblack cherry in post-agricultural forests of south-eastern Canada. New Forests,43(5-6):941–954
    Condit R, Ashton P S, Baker P, Bunyavejchewin S, Gunatilleke S, Gunatilleke N, Hubbell S P, Foster R B,Itoh A, LaFrankie J V, Lee H S, Losos E, Manokaran N, Sukumar R, Yamakura T,2000. Spatial patternsin the distribution of tropical tree species. Science,288:1414~1418
    Costanza R, d'Arge R, Groot R d, Farber S, Grasso M, Hannon B, Limburg K, Naeem S, O'Neill R V,Paruelo J, Raskin R G, Sutton P, Belt M V D,1987. The Value of the World's Ecosystem Services andNatural Capital. Nature,387:253~260
    Cram D S, Baker T T, Fermald A G, Madrid A, Rummer B,2007, Mechanical thinning impacts on runoff,infiltration, and sediment yield following fuel reduction treatments in a southwestern dry mixed coniferforest. Journal of Soil and Water Conservation,62(5):359~366
    Daume S,1995. Durchforstungssimulation in einem Buchen-Edellaubholz-Mischbestand. Diploarbeit,Forstliche Fakult t, Universit t G ttingen
    David F N, Moor P G,1954. Notes on contagious distribution in plant populations. Annals of Botany,18:47~53
    Dias A C, Louro M, Arroja L, Capela I,2007. Carbon estimation in harvested wood products using acountry-specific method: Portugal as a case study. Environmental Science&Policy,10(3):250~259
    Dong J, Kaufmann K R, Myneni R B, Tucker C J, Kauppi P E, Liske J, Buermann W, Alexeyev V, Hughes MK,2003. Remote sensing estimates of boreal and temperate forest woody biomass: carbon pools,sources, and sinks. Remote Sensing of Environment,84:393~410
    Donnelly K,1978. Simulation to determine the variance and edge-effect of total nearest neighbour distance.S.91–95. In: Simulation methods in archaeology. Hodder I R.(Hrsg.). Cambridge University Press,London
    Dung B X, Gomi T, Miyata S, Sidle RC, Kosugi K,2012. Runoff responses to forest thinning at plot andcatchment scales in a headwater catchment draining Japanese cypress forest. Journal of Hydrology(Amsterdam),444/445:51~62
    Fajardo A, McIntire E J B,2007. Distinguishing microsite and competition processes in tree growthdynamics: an a priori spatial modeling approach. American Naturalist,169:647~661
    Forrester D I, Smith R G B,2012. Faster growth of Eucalyptus grandis and Eucalyptus pilularis inmixed-species stands than monocultures. Forest Ecology and Management,286:81~86
    Franklin A B, Anderson D R, Gutiérrez J R, Burnham K P,2000. Climate, Habitat quality, and fitness innorthern spotted Owl population in northwestern California. Ecological Monographs,70(4):539~590
    Franklin J F, Pelt R V,2004. Spatial aspects of structural complexity in old-growth forests. Journal offorestry,102:22~28
    Franklin J F, Spies T A, Robert V P, Carey A B, Thornburgh D A, David D R B, Lindenmayer B, Harmon ME, Keeton W S, Shaw D C, Bible K, Chen J,2002. Disturbances and structural development of naturalforest ecosystems with silvicultural implications, using Douglas-fir forests as an example. ForestEcology and Management,155:399~423
    Franklin S E, Wulder MA, Gerylo G R,2001. Texture analysis of IKONOS panchromatic data forDouglas-fir forest age class separability in British Columbia. International Journal of Remote Sensing,22(13):2627~2632
    Füldner K,1995. Strukturbeschreibung von Buchen-Edellaubholz-Mischw ldern. Ph.D. dissertation,University of G ttingen, Cuvillier Verlag, G ttingen,128
    Gadow K v,1993. Zur Bestandesbeschreibung in der Forsteinrichtung. Forst und Holz.48,602~606
    Gadow K v,2005. Foresteinrichtung-Analyse und Entwurf der Waldentwichlung. Universit tsdrucke,G ttingen, p106
    Gadow K v, Fueldner K,1992. Zur Methoik der Bestandesbeschreibung. Vortrag anlaesslich derJahrestagung der A G Forsteinrichtung in Kliekenb. Dessau
    Gadow K v, Hui G,1998. Modelling forest development. Kluwer Academic, Dordecht, The Netherlands
    Gadow K v, Hui G,2002. Characterizing forest spatial structure and diversity."Sustainable Forestry inTemperate Regions", Proceedings of the SUFOR International Workshop, University of Lund, Sweden:7~9
    Gadow K v, Hui G, Albert M,1998. Das Winkelmaβ-ein Strukturparameter zur Beschreibung derIndividualverteilung in Waldbest nden. Centralblatt für das gesamte Forstwesen.115:1~10.
    Gadow K v, Hui G, Chen B, Albert M,2003. Beziehungen zwischen Winkelass und Baumabst nden. Forstw.Cbl.122:127~137
    Gadow K v, Zhang C, Wehenkel C, Pommerening A, Corral-Rivas J, Korol M, Myklush S, Hui G, Kiviste A,Zhao X,2012. Forest structure and diversity. Springer, Germany
    Gadow K v,1997. Strukturentwicklung eines Buchen-Fichten-Mischbestandes. Allgemeine Forst-UndJagdzeitung,168:103~106
    Getzin S, Dean C, He F, Trofymow J A, Wiegand K, Wiegand T,2006. Spatial patterns and competition oftree species in a Douglas-fir chronosequence on Vancouver Island. Ecography,29:671~682
    Grayson S F, Buckley D S, Henning J G, Schweitzer C J, Gottschalk K W,2012. Understory light regimesfollowing silvicSultural treatments in central hardwood forests in Kentucky, USA. Forest Ecology andManagement,279:66~76
    Graz F P,2004. The behavior of the species mingling index Msp in relation to species dominance anddispersion. European Journal of Forest Research,123:87~92
    Graz F P,2006. Spatial diversity of dry savanna woodlands—assessing the spatial diversity of a dry savannawoodland stand in northern Namibia using neighborhood–based measures. Biodiversity andConservation,15:1143~1157
    Graz F P,2008. The behavior of the measure of surround in relation to the diameter and spatial structure of aforest stand. European Journal of Forest Research,127:165~171
    Greig-Smith P,1952. The use of random and contiguous quadrat in the study of the structure of plantcommunities. Annals botany,16:293~316
    Hafley W L, Schreuder H T,1977. Statistical distributions for fitting diameter and height data in even-agedstands. Canadian Journal of Forest Research,7:481~487
    Hansen G D,1987. Effects of diameter distribution on the growth of simulated uneven-aged sugar maplestands. Canadian Journal of Forest Research,17(1):1~8
    Hao Z, Zhang J, Song B, Ye J, Li B,2007. Vertical structure and spatial associations of dominant tree speciesin an old-growth temperate forest. Forest Ecology and Management,252:1~11
    Hart J L, Grissino-Mayer H D,2008. Vegetation patterns and dendroecology of a mixed hardwood forest onthe Cumberland Plateau: Implication for stand development. Forest ecology and management,255:1960~1975
    Hart J L, van de Gevel S L, Grissino-Mayer H D,2008. Forest Dynamics in a Natural Area of the SouthernRidge and Valley, Tennessee. Natural Areas Journal,28(3):275~289
    Hegyi F,1974. A simulation model for managing jack pine stands. In Growth models for tree and standsimulation. Edited by J. Fries. Royal College of Forestry, Stockholm, Sweden. p74~90
    Holdridge L R,1967. Life zone ecology. Tropical Science Center, San José, Costa Rica
    Houghton R A,2005. Aboveground Forest Biomass and the Global Carbon Balance. Global Change Biology,11:945~958
    http://course.cug.edu.cn/cugFirst/statistics/neirong/zhang141.htm.
    Hui G, Albert M,2004. Stichprobensimulationen zur Sch tzung nachbarschaftsbezogener Strukturparameterin Waldbest nden. Allgemeine Forst-Und Jagdzeitung,175,199–209.
    Hui G, Albert M, Gadow K v,1998. Das Umgebungsmaβ als parameter zur Nachbildung vonbestandesstrukturen. Forstw. Cbl.117:258~266
    Hui G, Gadow K v,2002. Das Winkelmass-Theoretische überlegungen zum optimalen Standardwinkel.Allgemeine Forst-Und Jagdzeitung,173:173~177
    Hui G, Zhao X, Zhao Z, Gadow K v,2011. Evaluating tree species diversity based on neighborhoodrelationships. Forest Science,57(4):292~299
    Ingerson A,2011. Carbon storage potential of harvested wood: summary and policy implications. MitigAdapt Strateg Glob Change,16:307~323
    Jaehne S, Dohrenbusch A,1997. Ein Verfahren zur Beurteilung der Bestandesdiversitaet (A method toevaluate forest stand diversity) Forstwissenschaftliches Centralblat,116:333~345
    Jiang G, Tang H, Yu M, Dong M,1999. Response of photosynthesis of different plant functional types toenvironmental changes along Northeast China Transect. Trees,14:72~82
    Johnson N L,1949a. Systems of frequency curves generated by methods of translation. Biometrika.36:149~176
    Johnson N L,1949b. Bivariate distributions based on simple translation systems. Biometrika,36:297~304
    Kelty M J,2006. The role of species mixtures in plantation forestry. Forest Ecology and Management,233:195~204
    Keylock C J,2005. Simpson diversity and the Shannon–Wiener index as special cases of a generalizedentropy. Oikos,109:203~207
    Kint V,2005. Structural development in ageing temperate Scots pine stands. Forest Ecology andManagement,214:237~250
    Kint V, Lust N, Ferris R, Olsthoorn A F M,2000. Quantification of forest stand structure applied to Scotspine (Pinus sylvestris L) forests. Investigación Agraria: Sistemas y Recursos Forestales, Fuera deserie,1:147~163
    Kint V, Meirvenne M V, Nachtergale L, Geuden G, Lust N,2003. Spatial methods for quantifying foreststand structure development: A comparison between nearest-neighbor indices and variogram analysis.Forest Science,49:36~49
    Knoebel B R, Burkhart H E,1991. A bivariate distribution approach to modeling forest diameterdistributions at two points in time. Biometrics,47(1):241~253
    Knoke T, Seifert T,2008. Integrating selected ecological effects of mixed European beech-Norway sprucestands in bioeconomic modeling. Ecological Modeling,210:487~498
    Kuuluvainen T,2002. Natural variability of forests as a reference for restoring and managing biologicaldiversity in boreal Fennoscandia. Silva Fennica,36:97~125
    Kuuluvainen T, Aapala K, Ahlroth P, Kuusinen M, Lindholm T, Sallantaus T, Siitonen J, Tukia H,2002.Principles of Ecological Restoration of Boreal Forested Ecosystems: Finland as an Example. SilvaFennica,36:409~422
    Kuuluvainen T, Penttinen A, Leinonen K, Nygren M,1996. Statistical opportunities for comparing standstructural heterogeneity in managed and primeval forests: An example from boreal spruce forests inSouthern Finland. Silva Fennica,30:315~328
    Laarmann D, Korjus H, Sims A, Stanturf J A, Kiviste A, K ster K,2009. Analysis of forest naturalness andtree mortality patterns in Estonia. Forest Ecology and Management,258:187~195
    L hde E, Laiho O, Norokorpi Y, Saksa T,1999. Stand structure as the basis of diversity index. ForestEcology and Management,115:213~220
    Laughton F S,1937. The silviculture of the indigenous forests of the Union of South Africa with specialreference to the forests of the Knysna region. Sci. Bull.157, Forestry Series7, Government Printer,Pretoria, p169
    Lexer d N L, Eid T,2006. An evaluation of different diameter diversity indices based on criteria related toforest management planning. Forest Ecology and Management,222:17~28
    Li Y, Hui G, Zhao Z, Hu Y,2012. The bivariate distribution characteristics of spatial structure in naturalKorean pine broad-leaved forest. Journal of Vegetation Science,2012,23(6):1180~1190
    Liang J, Buongiorno J, Monserud R A, Kruger E L, Zhou M,2007. Effects of diversity of tree species andsize on forest basal area growth, recruitment, and mortality. Forest Ecology and Management,243:116~127
    Lloyd M,1967. Mean Crowding. Journal of Animal Ecology,36:1~30
    Lyons K G, Brigham C A, Traut B H, Schwartz, M W.,2004. Rare Species and Ecosystem Functioning.Conservation Biology,1019~1024
    MacArthur R H,1965. Pattern in species diversity. Biological Reviews,40:510~533
    Madsen K,2002. The Burning West: After a Series of Tragic Fires, Loggers Go on the Offensive. TheEnvironmental Magazine,13(5):23~25
    Maekinen H, Hynynen J,2012. Predicting wood and tracheid properties of Scots pine. Forest Ecology andManagement,297:11~20
    Magurran A E,2004. Measuring Biological Diversity. Blackwell Science, Oxford.
    M kinen M kinen H, Isom ki A,2004. Thinning intensity and long-term changes in increment and stemform of Scots pine trees. Forest Ecology and Management,203:21~34
    Man R, Lieffers V J,1999. Are mixtures of aspen and white spruce more productive than single speciesstands? The Forestry Chronicle,75(3):505~513
    Margalef R,1957. La teoría de la información en ecología. Memorias de la Real Academia de Ciencias yArtes Barcelona,32(13):373~449
    Mason W L, Connolly T, Pommerening A, Edwards C,2007. Spatial structure of semi-natural and plantationstands of Scots pine (Pinus sylvestris L.) in northern Scotland. Forestry,80(5),567~586
    McIntire E J B, Fajardo A,2009. Beyond description: the active and effective way to infer processes fromspatial patterns. Ecology,90:46~56
    McIntosh R P,1967. An index of diversity and the relation of certain concepts to diversity. Ecology,48(3):329~404
    McNaughton S J,1977. Diversity and stability of ecological communities: a comment on the role ofempiricism in ecology. American Naturalist,111:515~525
    Mills L S, Soulé M E, Doak D F,1993. The keystone-species concept in ecology and conservation.Bioscience,43(4):219~224
    M lder A, R mermann M B, Schmidt W,2008. Herb-layer diversity in deciduous forests: Raised by treerichness or beaten by beech? Forest Ecology and Management,256:272~281
    Morisita M,1954. Estimation of population density by spacing method. Mem. Memoirs of the Faculty ofScience Kyushu University, Series E, Biology,1:187~197
    Motz K, Sterba H, Pommerening A,2010. Sampling measures of tree diversity. Forest Ecology andManagement,206:1985~1996
    Mynei R B, Dong J, Tucker C J, Kaufmann R K, Kauppi P E, Liske J, Zhou L, Alexeyev V, Hughes M K,2001. A large carbon sink in the woody biomass of Northern forests. Proceedings of the NationalAcademy of Sciences of the United States of America,98(26):14784~14789
    Nanami S, Kawaguchi H, Yamakura T,2005. Sex ratio and gender-dependent neighboring effects inPodocarpus nagi, a dioecious tree. Plant Ecology,177:209~222
    Neumann M, Starlinger F,2001. The significance of different indices for stand structure and diversity inforests. Forest Ecology and Management,145,91~106
    Newton P F, LeMay V M, Groot A, Marshall P, Meades W, O‘Hara K, Sharma M, Ter-Mikaelian M,2007.Complex Stand Structures and Associated Dynamics: Measurement Indices and Modelling Approaches.July29-August, Sault Ste. Marie, Ontario, Canada.[Forest Research Information Paper No.167
    O‘hara K L,1998. Silviculture for structural diversity: a new look at multiaged systems. Journal of Forestry,96(7):4~10
    O‘Hara K L,2001. The silviculture of transformation—a commentary. Forest Ecology and Management,151:81~86
    O‘Hara K L,2007. Integrating dynamics into management of complex forests: seeking balance in anunbalanced world. Conference: Complex Stand Structures and Associated Dynamics: MeasurementIndices and Modelling Approaches,2007, Sault Ste. Marie, Ontario, Canada. p20
    Oheimb G V, Westphal C, Tempel H, H rdtle,2005. Structural pattern of a near-natural beech forest (Fagussylvatica)(Serrahn, North-east Germany). Forest Ecology and Management,212:253~263
    Payandeh B,1970. Comparison of methods for assessing spatial distribution of trees. Forest Science,16:312~317
    Petrauskas E, Rup ys P,2010. Age-varying bivariate distribution models for growth prediction. MMES‘10Proceedings of the2010international conference on Mathematical models for engineering science,250~255
    Petritan A M, Biris I A, Merce O, Turcu D, Petritan I C,2012. Structure and diversity of a natural temperatesessile oak (Quercus petraea L.)-European Beach (Fagus sylvatica L.) forest. Forest Ecology andManagement,280:140~149
    Pfister O, Wallentin C, Nilsson U, Ek P M,2007. Effects of wide spacing and thinning strategies on woodquality in Norway spruce (Picea abies) stands in southern Sweden, Scandinavian Journal of ForestResearch,22(4):333~343
    Pielou E C,1961. Segregation and semytry in two-species populations as studies by nearest neighbourrelation, Ecology,49(2):255~269
    Pielou E C,1977. Mathematical Ecology. Wiley, New York, p358
    Piovesan G, Di Filippo A, Alessandrini A, Biondi F, Schirone B,2005. Structure, dynamics anddendroecology of an old-growth Fagus forest in the Apennines. Journal of Vegetation Science16:13~28
    Podlaski R,2008. Characterization of diameter distribution data in near-natural forests using theBirnbaum-Saunders distribution. Canadian Journal of Forestry Research,38:518~527
    Polyakov M, Majumdar I, Teeter L,2008. Spatial and temporal analysis of the anthropogenic effects on localdiversity of forest trees. Forest Ecology and Management,255:1379~1387
    Pommerening A,2002. Approaches to quantifying forest structures. Forestry,75:305~324
    Pommerening A,2006. Evaluating structural indices by reversing forest structural analysis. Forest Ecologyand Management,224:266~277
    Pommerening A, Goncalves C A, Rodríguez-Soalleiro,2011. Species mingling and diameter differentiationas second-order characteristics. Allgemeine Forst-Und Jagdzeitung,182(7/8):115~129
    Pommerening A, Stoyan D,2008. Reconstructing spatial tree point patterns from nearest neighbor summarystatistics measured in small subwindows. Canadian Journal of Forest Research,38:1110~1122
    Pretzsch H,1997. Analysis and modeling of spatial stand structures. Methodological considerations based onmixed beech-larch stands in Lower Saxony. Forest Ecology and Management,97:237~253
    Prévost M, Gauthier M M,2012. Precommercial thinning increases growth of overstory aspen andunderstory balsam fir in a boreal mixedwood stand. Forest Ecology and Management,278:27~26
    Pukkala T, L hde E, Laiho O,2009. Growth and yield models for uneven-sized forest stands in Finland.Forest Ecology and Management,258(30):207~216
    Rasingam L, Parathasarathy M,2009. Tree species diversity and population structure across major forestformations and disturbance categories in Little Andaman Island, India. Tropical Ecology,50(1):89~102
    Rennolls K, Wang M,2005. A new parameterization of Johnson‘s SBdistribution with application to fittingforest tree diameter data. Canadian Journal of Forest Research,35:575~579
    Ripley B D,1977. Modeling spatial patterns. Journal of Royal Statistic Society, Series B,39:172~179
    Rubin J, Helfand G, Loomis J,1991. A benefit-cost analysis of the northern Spotted Owl. Journal of Forestry,89(12):25~30
    Ruprecht H, Dhar A, Aigner B, Oitzinger G, Klumpp R, Vacik H,2010. Structural diversity of English yew(Taxus baccata L.) populations. European Journal of Forest Research,129:189~198
    Sahoo U K, Roy S, Vanlalhriatpuia K, Vanalalhluna P C,2009. Community compostion and tree populationstructure in undisturbed and disturberd tropical semi-evergreen forest stands of North-east Idia. Appliedecogloy and environmental research,7(4):303~318
    Schumann K, Wittig R, Thiombiano A, Becker U, Hahn K,2010. Impact of land-use type and bark-andleaf-harvesting on population structure and fruit production of the baobab tree (Adansonia digitata L.)in a semi-arid savanna, West Africa. Forest Ecology and Management260:2035~2044
    Schurr F M, Bossdorf B, Milton S J, Schumacher J,2004. Spatial pattern formation in semi-arid shrubland: apriori predicted versus observed pattern characteristics. Plant Ecology,3:271~282
    Schütz J-P,1994. Geschichtlicher Hergang und aktuelle Bedeutung der Plenterung in Europa. AllgemeineForst-Und Jagdzeitung,165(5-6):106~114
    Seydack A H W, Vermeulen W J, Heyns H E, Durrheim G P, Vermeulen C, Willems D, Ferguson M A,Huisamen J, Roth J,1995. An unconventional approach to timber yield regulation for multi-aged,multispecies forests. II. Application to a South African forest. Forest Ecology and Management,77:155~168
    Shao G, Peter S, Weishampel J F,1994. Dynamic simulations of mixed broadleaved-Pinus koraiensis forestsin the Changbaishan Biosphere Reserve of China. Forest Ecology and Management,70:169~181
    Shuttleworth C M, Lurz Peter W W, Geddes N, Browne J,2012. Integrating red squirrel (Sciurus vulgaris)habitat requirements with the management of pathogenic tree disease in commercial forests in the UK.Forest Ecology and Management,279:167~175
    Simard S W, Blenner-Hassett T, Cameron I R,2004. Pre-commercial thinning effects on growth yield andmortality in even-aged paper birch stands in British Columbia. Forest Ecology and Management,190:163~178
    Simpson E H,1949. Measurement of diversity. Nature,163:688
    Skog K E, Pingoud K, Smith J E,2004. A method countries can use to estimate changes in carbon stored inharvested wood products and the uncertainty of such estimates, Environmental management,33(1):65~73
    Sokal R R, Rohlf F J,1981. Biometry. W.H. Freeman, New York, p859
    Spellerberg I F, Fedor P J,2003. A tribute to Claude Shannon (1916–2001) and plea for more rigorous use ofspecies richness, species diversity and the Shannon-Wiener‘index. Global Ecology and Biodiversity,12:177~179
    Spies T A,1998. Forest Structure: A Key to the Ecosystem. Northwest Science,72:34~36
    Stapanian M A, Cassell D L, Cline S P,1997. Regional patterns of local diversity of trees: associations withanthropogenic disturbance. Forest Ecology and Management,93(1/2):33~44
    Sterba H,2004. Equilibrium curves and growth models to deal with forests in transition to uneven-agedstructure——Application in Two Sample Stands. Silva Fennica,38(4):413~423
    Sterba H,2008. Diversity indices based on angle count sampling and their interrelationships when used inforest inventories. Forestry,81:587~597
    Sterba H, Zingg A,2006. Abstandsabh ngige und abstandsunabh ngige Bestandesstrukturbeschreibung.Allgemeine Forst-Und Jagdzeitung,177:169~176
    Swamy P S, Sundarapandian SM, Chandrasekar P, Chandrasekaran S,2000. Plant species diversity and treepopulation structure of a humid tropical forest in Tamil Nadu, India. Biodiversity and conservation,9(12):1643~1669
    Tayor,1978. Hypothalam-pitaitary axis function during cardiopulmonary bypass J. Thorac Cardiovasc Surg,75:392~399
    Tewari V P, Gadow K v,1999. Modelling the relationship between tree diameters and heights using SBBdistribution. Forest Ecology and Management,119:171~176
    Travaini A, Delibes M, Ferreras P, Palomares F,1997. Diversity, abundance or rare species as a target for theconservation of mammalian carnivores: a case study in Southern Spain. Biodiversity and Conservation,6:529~535
    Trepl L,1994. Competition and coexistence-on the historial background in ecology and the influence ofeconomy and social science. Ecological Modelling,75/76:99~110
    Vensson JS, Jeglum JK, Structure and dynamics of an undisturbed old-growth Norway spruce forest on therising Bothnian coastline. Forest Ecology and Management,2001,151:67~79
    Virgilietti P, Buongiorno J,1997. Modeling forest growth with management data: A matrix approach for theItalian Alps. Silva Fennica,31(1):27~42
    Wang G, Liu F,2011. The influence of gap creation on the regeneration of Pinus tabuliformis planted forestand its role in the near-natural cultivation strategy for planted forest management. Forest Ecology andManagement,262:413~423
    Wang M, Rennolls K, Tang S,2008. Bivariate Distribution Modeling of Tree Diameters and Heights:Dependency Modeling Using Copulas. Forest Science,54:284~293
    Wang M L, Rennolls K,2007. Bivariate distribution modeling with tree diameter and height data. ForestScience,53:16~24
    Weiskittle A R, Kenefic L S, Li R, Brissette J,2011. Stand structure and composition32years afterprecommercial Thinning treatments in a mixed northern conifer stand in central Maine. NorthernJournal of Applied Forestry,28:92~96
    Westphal C, Tremer N, Oheimb G v, Hansen J, Gadow K v. H rdtle W,2006. Is the reverse J-shapeddiameter distribution universally applicable in European virgin beech forests?, Forest Ecology andManagement,223:75~83
    Whittaker R H,1972. Evaluation and measurement of species diversity. Taxon,21:213~251
    Wiegand K, Jeltsch F, Ward D,2000. Do spatial effects play a role in the spatial distribution ofdesert-dwelling Acacia raddiana? Journal of Vegetation Science,11:473~484
    Wiegand T, Gunatilleke S, Gunatilleke N,2007. Species associations in a Heterogeneous Sri LanKanDipterocarp Forest, The American Naturalist,170:77~95
    Wiegand T, Moloney K A,2004. Rings, circles, and null-models for point pattern analysis in ecology. Oikos,104:209~229
    Yang L, Wang P, Kong C,2010. Effect of larch (Larix gmelini Rupr.) root exudates on Manchurian walnut(Juglans mandshurica Maxim.) growth and soil juglone in a mixed-species plantation. Plant and Soil,329:249~258
    Zenner E K, Hibbs D E,2000. A new method for modeling the heterogeneity of forest structure. ForestEcology and Management,129:75~87W
    Zhang C, Zhao X,2007. Soil properties in forest gaps and under canopy in broad-leaved Pinus koraiensisforests in Changbai mountainous Region, China. Frontiers of Forestry in China,2:61~65
    Zhang C, Zhao X, Gao L, Gadow K v,2009. Gender, neighboring competition and habitat effects on thestem growth in dioecious Fraxinus mandshurica trees in a northern temperate forest. Annals of ForestScience,66(8):812
    Zucchini W, Schmidt M, Gadow K v,2001. A model for the diameter-height distribution in an uneven-agedbeech forest and a method to access the fit of such models. Silva Fennica,35:169~183
    安慧君,惠刚盈,郑小贤等.不同发育阶段阔叶红松林空间结构的初步研究.内蒙古大学学报(自然科学版),2005,36(6):714~718
    戴小华,余世孝,练琚蒲.海南岛霸王岭热带雨林的种间分离.植物生态学报,2003,27(3):380~387
    郭利平,姬兰柱,王珍等.长白山红松阔叶林不同演替阶段优势种的变化.应用生态学报,2011,22(4):866~872
    韩有志,王政权.天然次生林中水曲柳种子的扩散格局.植物生态学报,2002,26(1):51~57
    郝占庆,赵士洞,陶大立等.长白山北坡椴树红松林高等植物物种多样性.生态学杂志,1993,12(6):1~5
    郝占庆,赵士洞,陶大立.长白山北坡阔叶红松林草本植物物种多样性及其季节动态.生物多样性,1994,2(3):125~132
    胡艳波,惠刚盈,戚继忠等.吉林蛟河天然红松阔叶林的空间结构分析.林业科学研究,2003,16(5):523~530
    胡艳波,惠刚盈.优化林分空间结构的森林经营方法探讨.林业科学研究,2006,19(1):1~8
    惠刚盈, Gadow K v, Albert M.角尺度——一个描述林木个体分布格局的结构参数.林业科学,1999,35(1):37~42
    惠刚盈, Gadow K v,胡艳波等.林木分布格局类型的角尺度均值分析方法.生态学报,2004,24(6):1225~1229
    惠刚盈, Gadow, K v,胡艳波等.结构化森林经营.北京:中国林业出版社,2007
    惠刚盈,胡艳波,赵中华.再论―结构化森林经营‖.世界林业研究,2009,22(1):14~19
    惠刚盈,胡艳波.混交林树种空间隔离程度表达方式的研究.林业科学研究,2001,14(1):23~27
    惠刚盈,克劳斯冯佳多.德国现代森林经营技术.北京:中国科学技术出版社,2001
    惠刚盈,克劳斯冯佳多.森林空间结构量化方法.北京:中国科学技术出版社,2003
    惠刚盈,赵中华,胡艳波.结构化森林经营技术指南.北京:中国林业出版社,2010
    亢新刚.森林经理学.北京:中国林业出版社(第4版),2011, p342
    李俊清,李景文.中国东北小兴安岭阔叶红松林更新及其恢复研究.生态学报,2003,23(7):1268~1277
    李俊清.阔叶红松林中红松的分布格局及其动态.东北林业大学学报.1986,14(l),34~37
    李丽,惠淑荣,惠刚盈等.不同起测径对判定林木空间分布格局影响的研究.林业科学研究,2007,20(3):334~337
    李远发,赵中华,胡艳波等.天然林经营效果评价方法及其应用.林业科学研究,2012,25(2):123~129
    林大影,鲜冬娅,邢韶华等.北京雾灵山自然保护区核桃楸群落的优势种种间联结分析.北京林业大学学报,2008,30(9):154~158
    陆元昌,张守攻,雷相东等.人工林近自然化改造的理论基础和实施技术.世界林业研究,2009,22(1):20~27
    陆元昌.近自然森林经营的理论与实践.北京:科学出版社,2006
    马克平.中国重点地区与类型生态系统多样性.杭州:浙江科学技术出版社,1999,103~108
    马万里,荆涛, Joni Kujansuu等.长白山地区胡桃楸种群的种子雨和种子库动态.北京林业大学学报,2001,23(3):70~72
    马万里,荆涛,罗菊春等.长白山林区核桃楸种群分布格局研究.内蒙古师范大学学报(自然科学汉文版),2008,37(2):233~236
    马万里,罗菊春,荆涛等.长白山林区核桃楸种群数量动态变化的研究.植物研究,2007,27(2):249~253
    桑卫国,陈灵芝,于顺利等.蒙古栎红松林物种组成和结构动态的研究.植物生态学报,2000,24(2):231~237
    沈国舫,翟明普.森林培育学.北京:中国林业出版社(第2版),2011, p11
    盛骤,谢式千,潘承毅.概率论与数理统计.北京:高等教育出版社(第4版), p30~120
    孙一荣,朱教君,于立忠等.不同光强下核桃楸、水曲柳和黄菠萝的光合生理特征.林业科学,2009,45(9):29~35
    索安宁,巨天珍,张俊华等.甘肃小陇山锐齿栎群落生物多样性特征分析.西北植物学报,2004,24(10):1877~1881
    王蕾,张春雨,赵秀海.长白山阔叶红松林的空间分布格局.林业科学,2009,45(5):54~59
    王勤花,巨天珍,常成虎等.甘肃小陇山锐齿栎种群结构分析.广西植物,2006,26(1):38~42
    王业蘧.阔叶红松林.哈尔滨:东北林业大学,1995
    谢小魁,刘正纲,苏东凯等.长白山阔叶红松林径级结构动态模拟和优化经营.生态学杂志,2011,30(2):384~388
    谢小魁,苏东凯,刘正纲等.长白山原始阔叶红松林径级结构模拟.生态学杂志,2010,29(8):1477~1481
    徐海,惠刚盈,胡艳波等.天然红松阔叶林林木分布格局研究的最小样本量.林业科学研究,2007,20(2):160~164
    徐海,惠刚盈,胡艳波等.天然红松阔叶林不同径阶林木的空间分布特征分析.林业科学研究,2006,19(6):687~691
    阳含熙,伍叶钢.长白山自然保护区阔叶红松林林木种属组成、年龄结构和更新策略的研究.林业科学,1988,24(1):18~27
    臧润国,井学辉,刘华等.北疆森林植被生态特征.北京:现代教育出版社,2011, p158~169
    张春雨,魏彦波,王德胜等.水曲柳种群性比及空间分布.林业科学,2010,46(10):167~172
    张会儒,唐守正.东北天然林可持续经营技术研究.北京:中国林业出版社,2012, p14~19
    张家城,陈力,郭泉水等.演替顶极阶段森林群落优势树种分布的变动趋势研究.植物生态学报,1999,23(3),256~268
    赵中华,惠刚盈,袁士云等.小陇山锐齿栎天然林空间结构特征.林业科学,2009,45(3):1~6
    赵中华.基于林分状态特征的森林自然度评价研究.中国林业科学研究院(博)士学位论文,2009
    周国法,徐汝梅.生物地理统计——生物种群时空分析方法及其应用.北京:科学出版社,1998
    周红敏,惠刚盈,赵中华等.林分空间结构分析中样地边界木的处理方法.林业科学,2009,45(2):1~5

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700