热带林业实验中心森林资源监测和经营效果评价研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
森林经营单位的森林资源监测能够使经营单位实时掌握资源的现状和动态,评价经营措施的效果,预测资源的变化趋势,为经营决策提供依据,同时为上一级森林资源管理单位提供森林资源信息。准确了解森林资源状况,才能有针对性的制定森林经营措施。森林经营是林业永恒的主题,对提高我国林业实力,使传统林业向现代林业转变具有重要意义,近自然森林经营充分利用森林生态系统自身内部的自然生长发育规律,从森林天然更新到逐渐发育为稳定的顶级群落这一完整的发育演替过程的时间跨度为时间单元来计划和实施各项经营措施,优化森林结构和功能,充分利用森林自然力,不断优化森林经营从而使生态与经济效益达到最优结合的一种接近自然的森林的经营模式。因此,本文利用经营单位级系统抽样监测样地,近自然经营典型林分样地及其他数据对经营单位热带林业实验中心(简称热林中心)森林资源和经营动态进行研究。
     本研究在国际统一森林资源评价指标框架内,提出针对森林经营单位级森林资源监测评价指标体系,共8个评价指标类,25个观测指标,改变了目前森林资源评价指标体系庞大,且评价范围大多为区域水平的现状。同时提出了评价指标数据获取方法即将经营单位级森林资源系统抽样监测样地分为常规样地和集约样地2个空间水平,短周期监测与长周期监测2个监测强度,既提高调查效率也满足评价需求。此外,本研究系统提出了不同层次调查数据即单木-林分-森林类型-经营单位级林分参数计算和分析方法。
     本文提出林分经营动态监测评价指标并按One-way ANOVA方差分析法分析不同经营模式下的林分各指标之间的差异显著性。近自然经营相对于轮伐期经营主要是对林分上层木和下层木生长促进效果明显,对中层木生长影响与轮伐期经营效果差异不明显。近自然经营能够有效提高保留木(目标树和一般木)的生长,培育出大径材,有效增加林分进界蓄积和林分蓄积生长量(PAI),而轮伐期经营相对于无经营林分对提高林分进界蓄积和蓄积生长量没有显著效果。近自然经营相对于轮伐期经营能有效增加马尾松与阔叶树种的蓄积生长量,因此,在提高林分生产力方面,近自然经营优于轮伐期经营。近自然经营林分树种多样性与均匀度高于轮伐期经营林分,两者树种多样性指数差异显著,近自然经营林下补植阔叶树种对天然更新幼苗具有保护作用,增加了物种多样性,改善林下环境,促进了林下幼苗幼树的生长从而进入主林层,同时改善林分垂直结构,弥补林层缺失,尤其是林分下层及更新层的缺失,使森林短期内发生正向演替,缩短演替时间,形成目标林相,即多林层异龄混交林。
     近自然经营3个处理措施类型中处理II(保留木450-600株/hm2,目标树150-75株/hm2)最有利于林下补植阔叶树的生长,存活率最高,且林分进界蓄积最大,阔叶树胸径范围最大,因此是马尾松中龄林近自然改造以目标树为导向的最优作业措施,另外,林下人工补植阔叶树种大叶栎、灰木莲生长最好,其次是红锥和香梓楠,天然更新树种安息香、鸭脚木和麻栎生长较好。
     森林发育演替阶段划分是目标树单株木经营体系的基础,便于定义和描述相应的林学措施和作业方式。经营条件下的马尾松林发育演替阶段细分为森林建群、竞争生长、质量选择、近自然林和恒续林5个阶段。利用逐步判别分析(Wilks’Lambda)对初选的13个林分指标进行筛选,马尾松年龄、平均胸径、大树蓄积比、林分胸高断面积、胸径变异系数5个指标能够较好地区分森林发育演替阶段,利用这5个指标建立Fisher判别式与Bayes判别式,2种判别方法的正判率完全一致,训练样本正判率为94%,验证样本正判率为89%。而且大树蓄积比是划分马尾松林发育演替阶段的最好指标。
     本研究根据2013年经营单位级系统抽样监测样地调查数据得到:热林中心有林地面积17048hm2,森林覆盖率74.4%。2011年至2013年马尾松纯林面积减少,针阔混交林与阔叶林增加。森林年蓄积生长量为11.9m3/hm2/yr,估计精度为85.3%,桉树林、针阔混交林、马尾松林蓄积生长量分别为19.1m3/hm2/yr,12.6m3/hm2/yr和12.1m3/hm2/yr,阔叶树种多数处于针阔混交林中的中层或下层,而在阔叶纯林中主要处在中幼林阶段,需要重点经营,进行抚育性间伐,促进阔叶树种生长。
     马尾松单木胸径生长量与期初胸径、立地指数、对象木胸径与林分平均胸径比、比对象木胸径大的所有林木胸高断面积之和成正相关,与坡度、混交度、林分胸高断面积负相关,不同坡度等级和立地指数生长量差异显著。软阔类树种(米老排、灰木莲、大叶栎、火力楠、西楠桦)与期初胸径、对象木胸径与林分平均胸径比正相关,与坡向正弦值、林分断面积负相关。在东南、南坡生长最好,东坡、北坡、西南坡次之,东北坡、西北坡、西坡最小,且三组坡向之间生长量差异显著。利用马尾松与阔叶树种单木生长模型可以预测热林中心未来森林资源数量包括蓄积、蓄积生长量。
Forest resources monitoring of forest management unit (FMU) enable FMU master thecurrent resources status and dynamics, evalute the effect of management measures and forecastchanging trend of forest resources, providing a basis for operating decision, as well as forestresources information for higher level FMU. Accurately understand the status of forestresources to formulate pointed forest management measures. Forest management is the eternaltheme in forestry, and has great significance in improving china forestry, which transform thetraditional forestry to modern forestry. Close-to-nature management is one forest managementsystem based on the stability of forest ecosystem biodiversity,multi-function and buffercapacity analysis, with the forest life cycle as the design unit of time, the tag and selectivecutting of target trees and natural regeneration as the main technical characteristics, permanentforest cover, multi-fuctional management and multi-quality products as the targets. Therefore,monitoring of forest resource and evaluation of forest management effect of ExperimentalCenter of Tropical Forestry (ECTF) were conducted based on monitoring plots of systematicalsampling at FMU level, typical plots under close-to-nature forest management and other plotsinvestigation.
     Criteria system of monitoring and evaluation of forest resources of ECTF was developed,which composed of8categories and25observation indices within the framework ofinternational uniform evaluation index of forest resource. This changed the current situationthat the evaluation index system and forest monitoring region are too large. Meanwhile the dataacquisition was proposed, the monitoring system at FMU level was divided into general plotsfor common observation indices and intensive plots for special indices, and all observationindices were divided into short cycle and long period investigation intensity, which improvedthe survey efficiency and satisfied the data demand for evaluation. Parameters calculation and analysis method of individual tree、forest and forest management unit was systematicallyproposed.
     Close-to-nature forest management (CNFM) had significantly influence on promotingthe growth of trees in upper and lower strata relative to rotation management (RM), but not fortrees in middle strata. CNFM effectively improved the growth of retained trees (target tree andcommon tree) to cultivate large timber, as well as increased the ingrowth volume and volumeperiodic annual increment (PAI), however the differences in ingrowth volume and PAI betweenrotation management and non-management stand were not statistically significant. CNFMcomparing with rotation management significantly promoted the growth of masson pine andbroadleaf species, therefore CNFM was superrior to rotation managment concerning improvingforest productivity.
     The species diversity and evenness in CNFM forest were higher than that in RM forest.the differences between them were statistically significant, broadleaf tree species replantedunderstory in CNFM forest had protective effect on natural regeneration seedlings, increasedstand biodiversity and improved growth condition, therefore facilitated the growth ofunderstory trees to enter the main story. In addition, understory replantation could speedsuccession process up to reach target forest form-multi-strata, uneven age and mingled forest.
     The measure II (retained450-450trees/hm2in which target trees150-75trees/hm2) ofthree treatments was most conducive to growth of broadleaf trees replanted understory, had thehighest survival rate, ingrowth volume and dbh range of broadleaf species. Therefore measureII was the best operation of masson pine close-to-nature transformation oriented by target tree.In addition, Castanopsis fissa and Manglietia glance grew best, secondly Castanopsis hystrixand Michelia hedyosperma among broadleaf species replanted understorey, as for naturalregeneration species, Styrax benzoin, Schefflera arboricola and Quercus acutissima grewbetter than others.
     Forest succession stage is the foundation of individual tree management based on targettree, and is easy to define and describe operation measures. Pinus massoniana forest under management were divided five forest stages, i.e. forest establishment stage, competitiondifferentiation stage, selection stage, close-to-nature stage and naturalness permanent foreststage, were presented based on previous researches. Stepwise discriminant (Wilks’Lambda)was used to select important indices among initial13stand indices. Age, average dbh ofdominate tree species, ratio of tree volume to total volume, stand basal area, and dbh variablecoefficient were selected to classify forest stage. Fisher discriminant function and Bayesdiscriminant function were established referring to the five indices mentioned above, theclassification results were94%of training samples correctly classified,89%of verificationsamples correctly classified, and ratio of tree volume to total volume is the best index toidentify forest stage.
     The forest land area is17048hectare with forest coverage74.4%based on the data ofsystematic sample at FMU level in2013. The Pinus massoniana forest area decreased, oncontrary, that of broadleaf-conifer mixed forest and broadleaf forest were increased. The forestvolume annual increment was11.9m3/hm2/yr with85.3%estimated accuracy from2011to2013year of ECTF. The volume increments of forest types of eucalyptus, broadleaf-conifermixed forest, masson pine were19.1m3/hm2/yr,12.6m3/hm2/yr,12.1m3/hm2/yr, respectively.Broadleaf specise which were in middle and low strata of broadleaf-conifer mixed forest,orwere young and middle aged trees in broadleaf forest were key management objects, neededtending thinning to facilitate their growth.
     The dbh increment of individual tree of Pinus massoniana was positive correlation withbeginning dbh, site index, the ratio of dbh of object tree to average dbh of stand, the sumbasal area of trees with larger dbh than object tree, and was negative correlation with slope,mingling, basal are of stand, and the differences in dbh growth among different slop classesand site index were statistical significant. For that of broadleaf species including Mytilarialaosensis, Manglietia glanca, Quercus griffithii, Michelia macelurei, Betula alnoides waspositive correlation with beginning dbh and the ratio of dbh of object tree to average dbh ofstand, was negative correlation with the sine of aspect and basal area of stand. the dbh growth of tree in southeast, south aspect was greatest, that in east, north, southwest was second, thennortheast and northwest aspect, and the differences among these three blocks of aspect werestatistically significant.
引文
岑巨延,李巧玉,曾伟生,李学民.2007.广西森林资源连续清查角规样地体系评价[J].中南林业调查规划,26(3):8-13.
    杜子芳.2005.抽样技术及其应用[M].北京:清华大学出版社,28–55.
    冯士雍,倪加勋,邹国华.2004.抽样调查理论与方法[M].北京:中国统计出版社,1-30.
    冯士雍,施锡铨.1994.抽样调查-理论、方法与实践[M].上海:上海科学技术出版社,1-18.
    亢新刚.2001.森林资源经营管理[M].北京:中国林业出版社,80-85.
    国家林业局.2003.中国森林保护与可持续经营国家报告[R].北京,7-19.
    国家林业局.2004.国家森林资源连续清查技术规定.
    国家林业局森林资源管理司.2010.第七次全国森林资源清查及森林资源状况[J].林业资源管理,1:1-8.
    李春明.2012.基于两层次线性混合效应模型的杉木林单木胸径生长量模型[J].林业科学,48(3):66-73.
    林国忠.2010.森林资源二类调查方法的改进及监测体系研究[D].南京:南京林业大学.
    李俊清.2006.森林生态学[M].北京:高等教育出版社,314-334.
    雷相东,洪玲霞,陆元昌,等.2008.国家级森林资源清查地面样地设计.世界林业研究,21(4):35-40.
    刘小丽.2013.东北林区经营单位级森林可持续经营监测评价[D].北京:中国林科业科学研究院.
    罗仙仙,亢新刚.2008.森林资源综合监测研究综述[J].浙江林学院学报,25(6):803-809.
    陆元昌,曾伟生,雷相东,等.2011.森林与湿地资源综合监测指标和技术体系[M].北京:中国林业出版社.
    陆元昌.2003.森林健康状态监测技术体系综述[J].世界林业研究,16(1):20-24.
    陆元昌.2006.近自然森林经营的理论与实践[M].北京:科学出版社,133-136.
    陆元昌,张守攻,雷相东,等.2009.人工林近自然化改造的理论基础和实施技术[J].世界林业研究,22(1):20-27.
    陆元昌,栾慎强,张守攻,等.2010.从法正林转向近自然林:德国多功能森林经营在国家、区域和经营单位层面的实践[J].世界林业研究,23(1):1-11.
    陆元昌,雷相东,洪玲霞,等.2010.近自然森林经理计划体系技术应用示范[J].西南林学院学报,30(2):1-6.
    陆元昌, Werner S,刘宪钊.2011.多功能目标下的近自然木林经营作业法研究[J].西南林业大学学报,31(4):1-11.
    陆元昌,张文辉,曹旭平,等.2009.黄土高原油松林近自然抚育经营技术指南[M].北京:中国林业出版社,4-49.
    陆元昌,雷相东,洪玲霞,等.2010.近自然森林经理计划技术体系研究[J].西南林学院学报,30(1):1-5.
    樊鸿康.1995.抽样调查技术[M].天津:南开大学出版社,1-23.
    孟翎冬.2012.湖北省马尾松人工林近自然经营初探[J].湖北林业科技,173:43-46.
    孟宪宇.1996.测树学[M].北京:中国林业出版社,27-34.
    宋新民,李金良.2007.抽样调查技术[M].第2版.北京:中国林业出版社,53,75,207,211.
    韦国彦.2007.对森林经营概念、作用及经营思路的分析[J].林业勘察设计,3(143):14-15.
    王小平,陆元昌,秦永胜.2008.北京近自然森林经营技术指南[M].北京:中国林业出版社,29-44.
    肖兴威.2004.中国森林资源与生态状况综合监测体系建设的战略思考[J].林业资源管理,(3)2-5.
    肖兴威.2007.中国森林资源和生态状况综合监测研究[M].北京:中国林业出版社.
    舒清态,唐守正,2005.国际森林资源监测的现状与发展趋势[J].世界林业研究,18(3):33-36.
    苏春雨.2004.我国森林经营管理的发展趋势综述[J].林业资源管理,5:11-15.
    孙玉军.2007.资源环境监测与评价[M].北京:高等教育出版社,142.
    中华人民共和国林业部.森林资源规划设计调查主要技术规定[S].2010
    曾伟生,周佑明.2003.森林资源一类和二类调查存在的主要问题与对策[J].中南林业调查规划,22(2):8-11.
    赵华,刘勇,吕瑞恒.2010.森林经营分类与森林培育的思考[J].林业资源管理,6:27-31.
    周光辉,曾伟生,陈雪峰.2006.我国森林资源和生态状况监测存在的问题与对策[J].中南林业调查规划,25(4):1-5.
    詹昭宁.2007.中国森林经理探讨[J].林业经济问题,1(27):89-96
    郑小贤.1997.德国、奥地利和法国的多目的森林资源监测述评[J].北京林业大学学报,19(3):79-84.
    Adame P, Hynynen J, Canellas I, et al.2008. Individual tree diameter growth model for rebollooak(Quercus pyrenacia Willd.) coppices. For Ecol Manage,255(3/4):1011-1022.
    Andreassen K, Tamter S M.2003. Basal area growth models for individual trees of Norway spruce, Scotspine, birch and other broadleaves in Norway. For Ecol Manage,180(1):11-24.
    Bi J, BLANCO J A, SEELY B, et al.2007. Yield decline in Chinese fir plantations: a simulationinvestigation with implications for model complexity[J]. Canadian Journal of Forest Research,37:1615-1630.
    Belcher D W, Holdaway M R, Brand G J.1982. A description of STEMS—the stand and tree evaluation andmodeling system. Gen. Tech. Rep. NC-79, USDA Forest Service.
    Borders B E, Bailey R L, Clutter M L.1987. Forest growth models: parameter estimation using real growthseries. In: Ek A R, Shifley S R, Burk T E (Eds.). Forest growth modeling and prediction. USDA. For.Serv. Gen. Tech. Rep. NC-120,pp.660–667.
    Budhathoki C B, Lynch T B, Guldin J M.2008. Nonlinear mixed modeling of basal are growth ofr shortleafpine. For. Ecol. Manage,255:3440-3446.
    Calama R, Barbeito I, Pardos M, et al.2008. Adapting a model for even-agedPinus pineaL. stands tocomplex multi-aged structures. For. Ecol.Manage.256,1390–1399.
    Fabian C U, William W O.2008. Individual tree diameter increment model for managed even-aged stands ofponderosa pine throughout the western United States using a multilevel linear mixed effects model[J].Forest Ecology and Management,256:438-445.
    Foody G M, Palubinskas G, Lucas R M, et al.1996. Identifying terrestrial carbon sinks: classification ofsuccessional stages in regeneration tropical forest from landsat TM data [J]. Remote Sensing ofEnvironment,55:205-216.
    Florian W, Jochen S, Juan C M, et al.2006. Tree species composition and diversity gradients in white-waterforests across the Amazon Basin. Journal of Biogeography:1-14.
    Hornibrook E M.1939. A Modified Tree Classification for Use in Growth Studies and Timber Marking inBlack Hills Ponderosa Pine[J]. Journal of Forestry,37:483-488.
    Huang S.1997. Development of a subregion-based compatible height-site index-age model for black sprucein Alberta. Forest Management Research Note No.5, Pub. No. T/352, Edmonton, Alberta, p.55.
    Koak A.1997. Effects of multicollinearity and autocorrelation on the variable-exponent taper functions. Can.J. For. Res.27(5):619–629.
    Lei X D, Lu Y C, Peng C H, et al.2007. Growth and structure development of semi-natural larch-spruce-fir(Larix olgensis-Picea jezoensis-Abies nephrolepis) forests in northeast china:12-year results afterthinning. Forest Ecology and Management,240:165-177.
    Lhotka J M, Loewenstein E F.2011. An individual-tree diameter growth model for managed uneven-agedoak-shortleaf pine stands in the Ozark Highlands of Missouri, USA[J]. Forest Ecology andManagement,261:770-778.
    Li C Y, Zhou X F.2000. Status and future trends in plantation silviculture in China[J]. AMBIO,29(6):354–355.
    Li Y, Moran E F, Bondizio E S, et al.1994. Discrimination between advanced secondary succession andmature moist forest near Altamira, Brazil using Landsat TM data[C]. In: Proceedings of the AmericanSociety for Photogrammetry and Remote Sensing and Annual Meeting of ASPRS, Reno,350-365.
    Lo Y H, LIN Y C, Blanco J A, et al.2012. Moving from ecological conservation to restoration: an examplefrom central Taiwan, Asia [C]. In: BLANCO J A, LO Y H.(Eds.), Forest Ecosystems: More Than JustTrees. InTech, Rijeka,Croatia,339–354.
    Lucas R M, Honzak M, Foody G M, et al.1993. Characterizing tropical secondary forests usingmultitemporal Landsat sensor imagery[J]. International Journal of Remote Sensing,14:3061-3067.
    Lu D S, Mausel P, Brondizio E S, et al.2002. Change detection of successional and mature forests based onforest stand characteristics using multi-temporal TM data in the Altamira, Brazil[C]. In: ACSM-ASPRSAnnual Conference Proceedings (CD-ROM) and XXII FIG International Congress. Washington, DC,USA.
    Lu D S, Paul M, Brondizio E, et al.2003. Classification of successional forest stages in the BrazilianAmazon basin[J]. Forest Ecology and Management,181:301-312.
    Lu D S.2001. Estimation of forest stand parameters and application in classification and change detection offorest cover types in the Brazilian Amazon basin[D]. Indiana State University, Terre Haute, Indiana,USA,25-59
    Lu Y C, Lei X D.2009. Close-to-nature forest management in China: technical framework and models inpractice[C]. In: XIII World Forestry Congress, Buenos Aires, Argentina,1-6.
    Lynch T B, Huebschmannn M M, Murphy P A.1999. An individual-tree growth and yield prediction systemfor even-aged natural shortleaf pine forests[J]. South. J. Appl. For.23:203-211.
    Mausel P, Wu Y, Li Y, et al.1993. Spectral indentification of succession stages following deforestation in theAmazon [J]. Geocarto International,8:61-72.
    Moran E F, Brondizio E, Tucker J M, et al.2000b. effects of soil fertility and land use on forest succession inAmazonia[J]. Forest Ecology and Manage,139:93-108.
    Moran E F, Bronizio E S.1998. Land-use change after deforestation in Amazonia[C]. In: People and Pixels:Linking Remote Sensing and Social Science. Washington, DC: National Academy Press,94-120.
    Moran E F, Bronizio E S, TuckerJ M, et al.2000a. Strategies for Amazonian forest restoration: evidence forafforestation in five regions of the Brazilian Amazon[C]. In: Hall, A.(Ed.), Amazonia at the Crossroads:The challenge of Sustainable Development. Institute for Latin American Studies, University of London,London,129-149.
    Monserud R A, Sterba H.1996. A basal area increment model for individual trees growing in even-anduneven-aged forest stands in Austria. For. Ecol. Manage.80:57–80.
    Monserud R A, Sterba H.1999. Modeling individual tree mortality for Austrian forest species. For. Ecol.Manag.65:109–123.
    Saldarriaga J G, West D C, Tharp M L, et al.1988. Long term chronosequence of forest succession in theUpper Rio Negro of Colombia and Venezuela[J]. Journal of Ecology,76:938-958.
    Schroder J, Soalleiro R R, Alonso G V.2002. An age-independent basal area increment model for maritimepine trees in northwestern Spain[J]. Forest Ecology and Management,157:55-64.
    Spurr S H, Barnes B V.1980. Forest Ecology [M]. New York: Wiley&Sons,1-26.
    Subedi N, Sharma M.2011. Individual-tree diameter growth models for black spruce and jack pineplantation in northern Ontario[J]. Forest Ecology and Management,261:2140-2148.
    Taylor R F.1937. A Tree Classification for Lodgepole Pine in Colorado and Wyoming[J]. Journal of Forestry,35:868-875.
    Tucker J M, Brondizio E S, Moran E F.1998. Rates of forest regrowth in Eastern Amazonia: a comparisonof Altamira and Bragantina regions, Para State, Brazil[J]. Interciencia,23:64-73.
    Uhl C, Buschbacher R, Serraoe A S.1988. Abandoned pastures in eastern Amazonia. I. Patterns of plantsuccession[J]. Journal of Ecology,76:663-681.
    Vanclay J k.1994. Modelling forest growth and yield, applications to mixed tropical forests. CBAInternational, Oxon, UK,312.
    Wykoff W R, Crookston N L, Stage A R.1982. User’s guide to the Stand Prognosis Model. USDA For. Serv.Gen. Tech.Rep. INT-133, p.112.
    Wykoff W R.1990. A basal area increment model for individual conifers in the Northern Rocky Mountains.For. Sci.36(4):1044–1077.
    Yang Y, Titus S J, Huang S.2003. Modeling individual tree mortality for white spruce in Alberta. Ecol.Model.163:209–222.
    Zhao D H, Borbers B, Wilson M.2004.Individual-tree diameter growth and mortality models for bottomlandmixed-species hardwood stands in the lower Mississippi alluvial valley[J]. Forest Ecology andManagement,199:307-322.
    Zhang L, Peng C, Dang Q.2004. Individual–tree basal area growth models for jack pine and black spruce innorthern Ontario. For. Chron,80:366-374.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700