基于分子动力学的晶体铜纳米机械加工表层形成机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为纳米技术分支之一的纳米加工技术是在纳米尺度范围内制造物理、化学和生物等功能结构与器件的基础,已经成为衡量纳米技术发展水平的重要标志。纳米机械加工技术如金刚石刀具车削、金刚石磨粒加工以及金刚石微探针纳米刻划等可以使加工精度达到纳米量级、加工形成的结构与器件的尺寸达到纳米量级,为制造三维纳米结构与器件提供了创新的途径,是一种重要的由上而下的纳米加工技术。
     然而,纳米机械加工技术的发展目前受到加工理论、加工工艺及加工质量的测量与评定等诸多因素的制约。其中,缺乏对纳米机械加工机理特别是表层形成机理的理解是制约纳米机械加工质量提高的重要因素之一。除了实验研究外,国内外学者普遍采用分子动力学模拟来研究纳米机械加工机理,并得到了许多有价值的研究结果。然而,在前人的研究中大部分工件材料为单晶形式,而对多晶材料纳米机械加工的分子动力学模拟研究较少。纳米机械加工是一个刀具与材料高度耦合的过程,多晶材料不同于单晶材料的变形机理直接影响纳米机械加工的结果。此外,前人对纳米机械加工中引入的亚表面损伤层的实验和仿真研究主要是检测亚表面损伤层的深度及分布,而对多晶材料的亚表面损伤层的形成机理研究较少。在纳米机械加工中工件材料内部的结构和组织状态的变化是形成亚表面损伤层的一个重要原因。因此,针对上述存在的问题,本文基于摩擦磨损、晶体塑性和纳米力学等理论,使用分子动力学模拟研究了单晶铜、双晶铜和纳米晶体铜纳米机械加工表层形成机理,具体研究内容包括如下几个方面:
     建立了包含多种结构材料(单晶铜、双晶铜、纳米晶体铜)的纳米机械加工的分子动力学模型。从分子动力学基本原理角度出发选择了经典牛顿运动方程的积分方法、精确描述体系的势能函数和模拟真实环境的系综等参数,得到了分子动力学模拟的精确原子模型;结合晶体结构、重位点阵和维诺图等建立了单晶铜、双晶铜和纳米晶体铜的原子结构模型;结合晶体塑性理论和先进的晶体缺陷分析技术辨别了工件内部形成的缺陷的种类和位置。
     基于摩擦磨损、晶体塑性和纳米力学等理论,使用分子动力学模拟研究了单晶铜、双晶铜、纳米晶体铜纳米机械加工机理,包括工件材料变形、加工力变化、表层形成等。在纳米机械加工单晶铜中研究了工件材料变形机理、加工表面形成机理,以及势能函数、加工速度、晶向、刀具几何形状等参数对纳米机械加工的影响;在纳米机械加工双晶铜中研究了位错-晶界交互作用特别是位错-孪晶界交互作用对工件材料变形以及加工结果的影响;在纳米机械加工纳米晶体铜中,分别采用全三维纳米晶体铜和准三维柱状纳米晶体铜原子结构模型来揭示纳米晶体铜纳米机械加工机理。
     基于晶体铜纳米机械加工亚表面损伤层的形成机理的研究,提出了一种基于纳米压痕的亚表面损伤层深度的定量预测方法。使用前人建立的不同变形区域的原子势能变化模型实现了亚表面变形层深度的定量预测;建立了基于纳米压痕的亚表面损伤层的硬度检测模型,用来辨别亚表面损伤层中工件材料与未加工的工件材料的压痕硬度的差异,实现了亚表面损伤层深度的定量预测。
     在发现纳米机械加工亚表面损伤层产生孪晶现象的基础上,提出了一种利用孪晶变形来控制和改善亚表面损伤层的新设想。使用分子动力学模拟研究了晶粒尺寸对纳米晶体铜纳米机械加工中孪晶变形的影响;使用分子动力学模拟研究了纳米孪晶铜纳米机械加工机理,以及孪晶界间距对纳米机械加工的影响。
     为了使纳米机械加工的分子动力学模拟的结果可信、有用,分别从分子动力学模拟基本原理、材料机械性能的纳米压痕检测、纳米机械加工结果这三个方面逐级开展分子动力学模拟与实验的对比。检测了当前使用的经验势能函数描述的体系的体积模量、剪切模量和杨氏模量,并与实验测得的值进行了定量对比;基于单晶铜纳米压痕的分子动力学模拟获得的压痕深度-压痕硬度曲线求得了单晶铜的杨氏模量,并与纳米压痕实验测得的值进行了定量对比;进行了单晶铜(010)晶面和(111)晶面的纳米压痕实验,并从工件表面形貌的角度与分子动力学模拟的结果进行了定性的对比。
The nanofabrication technology is one of six branches in the nanotechnology. It provides the base for fabricating physical, chemical and bio-nanostructures with nanometer size, and has been utilized to evaluate development level of the nanotechnology. As one of the top down approaches, the nanomechanical machining technology such as diamond tool cutting, diamond abrasive lapping and diamond probe-based nanoscratching, has provided novel opportunities to fabricate three-dimensional nanostructures due to the machining accuracy and size of fabricated nanostructure can be down to nanometer regime.
     However, the development of nanomechanical machining technology is hindered by many factors, such as machining mechanism, machining process, and measurement and evaluation of machining quality. Lacking fundamental understanding of machining mechanism is one of the most important issues. In addition to experimental study, molecular dynamics (MD) simulation is widely employed to investigate nanomechanical machining process. Although valuable insights have been obtained by previous studies, there is rather limited work that deals with MD simulation of mechanical nanomachining on polycrystalline materials. Since the nanomechanical machining is a highly coupled process between tool and workpiece, the difference of deformation mechanism between single crystalline and polycrystalline materials can affect machining results significantly. In addition, previous experimental and theoretical studies of subsurface damage layer induced during mechanical nanomachining process mainly focused on measuring the depth and distribution of subsurface damaged layer, less attention is paid to the formation mechanism of subsurface damage layer, especially for polycrystalline materials. It is well known that the microstucture evolution is one of the main reasons to cause subsurface damage. Therefore, regarding above problems, we perform MD simulations to investigate the formation mechanisms of surface layer during nanomechanical machining on single crystalline, bi-crystal, and nanocrystalline (nc) copper using theories of friction and wear, nanomechanics and crystal plasticity. The research content reads as follows.
     One is setting up MD simulation model of mechanical nanomachining on different kinds of materials (single crystalline copper, bi-crystal copper and nc copper). We first select suitable integration algorithm to solve Newton’s equations of motion, empirical potentials for describing atomic interactions and ensemble. And then we construct single crystalline, bi-crytal and nc copper structures based on crystal structure, coincidence site lattice and Voronoi diagram. We also identify the type and location of defects generated using advanced defect analysis techniques.
     The second is exploring material deformation, machining force and formation of surface layer during mechanical nanomachining on single crystalline, bi-crystal and nc copper using MD simulation and theories of friction and wear, nanomechanics and crystal plasticity. For machining on single crystalline copper, we emphasize on deformation mechanism of material, formation mechanism of machined surface. We further evaluate effects of empirical potential, machining velocity, crystalline orientation and tool geometry on nanomachining process. For machining on bi-crystal copper, we focus on effect of dislocation-grain boundary (GB) interaction and dislocation-twin boundary (TB) interaction on material deformation and machining results. For machining on nanocrystalline copper, we reveal machining mechanism by full-three-dimensional nc copper and quasi-three-dimensional columnar nc copper simultaneously.
     Based on insights into the formation mechanism of subsurface damage layer, we establish a quantitative prediction method to characterize subsurface damage using nanoindentation technique. Using the criteria of determining deformation status of single atom according to its variation in potential energy, we quantitatively access the depth of subsurface deformed layer. We then set up a model of measuring hardness of materials based on nanoindentation technique, which can be employed to distinguish difference of indentation hardness between machined surface and original surface. In such a way the depth of subsurface damage layer can be quantitatively predicted.
     Based on above studies, we then propose a novel method to control and modify subsurface damage layer by deformation twinning. On the one hand we investigate effect of grain size on deformation twinning during mechanical nanomachining on nc copper; on the other hand we investigate effect of TB spacing on mechanical nanomachining on nanotwinned copper.
     In order to verify the accuracy of current MD simulation results, we conduct sequential comparisons of MD calculations with experimental results from following three aspects: fundamental principle of MD simulation, measuring mechanical property of material using nanoindentation technique, and machining result. We obtain the bulk modulus, shear modulus and Young’s modulus of simulated system through compression, shear and tensile deformation respectively, and further conduct quantitative comparison with experimental data to evaluate accuracy of empirical potential. We calculate the Young’s modulus from indentation force-indentation depth curve during MD simulation of nanoindentation on single crystal copper, and further conduct quantitative comparison with experimental values. We perform nanoindentation experiment on single crystal copper (010) surface and (111) surface, and further qualitatively compare the characteristic of surface pile up with MD simulation.
引文
[1]陈宝钦.微光刻与微/纳米加工技术[J].微纳电子技术,2011,48(1):1-5.
    [2] Jin M, Minor A M, Stach E A, et al. Direct Observation of Deformation-induced Grain Growth during the Nanoindentation of Ultrafine-grained Al at Room Temperature[J]. Acta Materialia,2004,52:5381-5387.
    [3] Meyers M A, Mishra A, Benson D J. Mechanical Properties of Nanocrystalline Materials[J]. Progress in Materials Science,2006,51:427-556.
    [4] Wen H M, Zhao Y H, Li Y, et al. High-pressure Torsion-induced Grain Growth and Detwinning in Cryomilled Cu Powders[J]. Philosophical Magazine,2010,90(34):4541-4550.
    [5]白春礼.纳米科技的内涵及其发展趋势[J].武汉理工大学学报:信息与管理工程版,2002,24(5):5-8.
    [6] Hamley I W. Nanostructure Fabrication Using Block Copolymers[J]. Nanotechnology,2003,14(10):39-54.
    [7] Wang Z L. Zinc Oxide Nanostructures: Growth, Properties and Applications[J]. Journal of Physics:Condensed Matter,2004,16:829-858.
    [8] Xie G Y, Zhang G M, Lin F, et al. The Fabrication of Subwavelength Anti-reflective Nanostructures Using a Bio-template[J]. Nanotechnology,2008,19(09):095605.
    [9] Ksar F, Ramos L, Keita B, et al. Bimetallic Palladium-Gold Nanostructures: Application in Ethanol Oxidation[J]. Chemistry of Materials,2009,21(15):3677-3683.
    [10] Morhard C, Pacholski C, Lehr D. Tailored Antireflective Biomimetic Nanostructures for UV Applications[J]. Nanotechnology,2010,21(42):425301.
    [11]崔铮.微纳米加工技术及其应用综述[J].物理,2006,35(1):34-39.
    [12] Shibata T, Fujii S, Makino E, et al. Ductile-regime Turning Mechanism of Single-crystal Silicon[J]. Precision Engineering,1996,18(2-3):129-137.
    [13] Gao W, Arakia T, Kiyonoa S, et al. Precision Nano-fabrication and Evaluation of a Large Area Sinusoidal Grid Surface for a Surface Encoder[J]. Precision Engineering,2003,27(3):289-298.
    [14] Zheng Y B, Wang S J, Huan A C H, et al. Fabrication of Tunable Nanostructure Arrays Using Ion-polishing-assisted Nanosphere Lithography[J]. Journal of Applied Physics,2006,99(03):034308.
    [15] Gao W, Takaya Y, Gao Y S, et al. Nanomechanical Properties and Nanostructure of CMG and CMP Machined Si Substrates[J]. Key Engineering Materials,2008,381-382:525-528.
    [16] Liu K, Avouris P H, Bucchignano J, et al. Simple Fabrication Scheme for Sub-10 nm Electrode Gaps Using Electron-beam Lithography[J]. Applied Physics Letter,2002,80(5):865-867.
    [17]韩伟华,樊中朝,杨富华.微纳加工技术在光电子领域的应用[J].物理,2006,35(1):51-55.
    [18] Torres C M S, Zankovycha S, Seekampa J, et al. Nanoimprint Lithography: an Alternative Nanofabrication Approach[J]. Materials Science and Engineering C,2003,23:23-31.
    [19] Hong P S, Lee H H. Pattern Uniformity Control in Room-temperature ImprintLithography[J]. Applied Physics Letters,2003,83(12):2441-2443.
    [20] Eigler D M, Schweizer E K. Positioning Single Atoms with A Scanning Tunneling Micro Scope[J]. Nature,1990,344(6266):524-526.
    [21] Quaade U J, K Stokbro, Lin R. Single-atom Reversible Recording at Room Temperature[J]. Nanotechnology,2001,12(3):265-272.
    [22] Didier S, Bernard L. Silicon Surface Nano-oxidation Using Scanning Probe Microscopy[J]. Progress in Surface Science,2006,81:112-140.
    [23]蒋洪奎,朱春耕,胡礼广.探针对AFM阳极氧化加工的影响研究[J].航空精密制造技术,2007,43(1):34-36.
    [24] Piner R D, Zhu J, Xu F, et al. "Dip-pen" Nanolithography[J]. Science,1999,283(5402):661-663.
    [25]黄真,刘之景,王克逸.“墨水笔”纳米印刷技术新进展研究[J].现代科学仪器,2005,2:39-42.
    [26] Hoeven A J, Lenssinck J M, Dijkkamp D, et al. Scanning-tunning-microscopy Study of Single-Domain Si(001) Surfaces Grown by Molecular-beam Epitaxy[J]. Physical Review Letter,1989,63:1830-1832.
    [27] Silva L A, Laitenberger P, Palmer R E. Nucleation and Growth of Ultrathin Fe and Au Films on Cu(100) Studied by Scanning Tunneling Microscopy[J]. Journal of Vacuum Science and Technology A,1992,10(4):1993-1998.
    [28] Schumacher H W. Controlled Mechanical AFM Machining of Two-dimensional Electron Systems: Fabrication of a Single-electron Transistor[J]. Physica E,2000,6(4):860-863.
    [29]蒋洪奎,范真,姚汤伟,等.扫描探针刻蚀技术的机理分析及进展[J].新技术新工艺,2006,1:86-88.
    [30]胡振江.基于AFM探针刻划可控三维微结构加工技术研究[D].哈尔滨:哈尔滨工业大学博士学位论文,2007:13-14.
    [31] Janos H F. Self-Assembled Nanostructured Materials[J]. Chemistry of Materials,1996,8:1616-1624.
    [32] Murray C B, Kagan C R, Bawendi M G. Self-Organization of CdSe Nanocrystallites into Three-Dimensional Quantum Dot Superlattices[J]. Science,1995,270:1335-1338.
    [33] Alivisatos A P, Johnsson K P, Peng X. Organization of Nanocrystal Molecules Using DNA[J]. Nature,1996,382:609-611.
    [34]余海湖,周灵德,姜德生.纳米材料与自组装技术[J].自然杂志,2002,24(4):216-218.
    [35] Draissia M, Boudemagh H, Debli M Y. Structure and Hardness of the Sputtered Al-Cu Thin Films System[J]. Physica Scripta,2004,69:348-350.
    [36] Pierson H O. Handbook of Chemical Vapor Deposition (CVD)-Principles, Technology and Applications (2nd Edition)[M]. New York:Noyes Publications,1992:108-144.
    [37] Hwang N M, Lee D K. Charged Nanoparticles in Thin Film and Nanostructure Growth by Chemical Vapour Deposition[J]. Journal of Physics D: Applied Physics,2010,43:483001.
    [38]井川直哉,岛田尚一.超精密切削加工的精度极限[J].精密工学会志,1986,52(12):2000-2004.
    [39] Takeuchi Y, Sawada K, Sata T. Ultraprecision 3D Micromachining of Glass[J]. CIRP Annals,1996,45(1):401-404.
    [40] Chen Y, Li L, Yi A Y. Fabrication of Precision 3D Microstructures by Use of a Combination of Ultraprecision Diamond Turning and Reactive Ion Rtching Process[J]. Journal of Micromechanics and Microengineering,2007,17:883-890.
    [41]巴音贺希格,高键翔,齐向东.机械刻划长焦距凹面金属光栅的研制[J].光学精密工程,2006,14(3):391-395.
    [42] Zhao X Z, Bhushan B. Material Removal Mechanisms of Single-crystal Silicon on Nanoscale and at Ultralow Loads[J]. Wear,1998,223:66-78.
    [43] Santinacci L,Zhang Y,Schmuki P. AFM Scratching and Metal Deposition Through Insulating Layers on Silicon[J]. Surface Science,2005,597(1-3):11-19.
    [44] Chambliss D D, Wilson R J, Chiang S. Nucleation and Growth of Ultrathin Fe and Au Films on Cu(100) Studied by Scanning Tunneling Microscopy[J]. Journal of Vacuum Science and Technology A,1992,10(4):1993-1998.
    [45] Malekian M, Park S S, Strathearn D, et al. Atomic Force Microscope Probe-based Nanometric Scribing[J]. Journal of Micromechanics and Microengineering,2010,20:115016.
    [46]闫永达.基于AFM的纳米加工机理及相关工艺技术研究[D].哈尔滨:哈尔滨工业大学博士学位论文,2007:84-101.
    [47] Yan Y D, Sun T, Dong S. Top-Down Nanomechanical Machining of Three-Dimensional Nanostructures by Atomic Force Microscopy[J]. Small,2010,6(6):724-728.
    [48]张鸣,张伟,华心,等. AFM制作纳米光栅技术研究.光学技术,2006,32(3):330-333.
    [49] Petch N J. The cleavage of polycrystals[J]. Journal of the Iron and Steel Institute,1953,174:25-28.
    [50] Schi?tz J, Di Tolla F D, Jacobsen K W. Softening of Nanocrystalline Metals at Very Small Grain Sizes[J]. Nature,1998,391(6667):561-563.
    [51] Schi?tz J, Jacobsen K W. A Maximum in the Strength of Nanocrystalline Copper[J]. Science,2003,301(5038):1357-1359.
    [52]陈日曜.金属切削原理(第2版)[M].北京:机械工业出版社,1993:52-53.
    [53] Lucca D A, Chou P, Hocken R J. Effect of Tool Edge Geometry on the Nanometric Cutting of Ge[J]. CIRP Annals-Manufacturing Technology,1998,47(1):475-478.
    [54] Palanikumar K. Cutting Parameters Optimization for Surface Roughness in Machining of GFRP Composites Using Taguchi's Method[J]. Journal of Reinforced Plastics and Composites,2006,25(16):1739-1751.
    [55] Kong C M, Lee W B, Cheung C F, et al. An Experimental Study of The Formation of Tool Marks Made by Facet Diamond Cutting Tools in Single-point Diamond Turning[J]. Key Engineering Materials,2008,364-366:544-549.
    [56] Demir E. A Method to Include Plastic Anisotropy to Orthogonal Micromachining of Fcc Single Crystals[J]. International Journal of Advanced Manufacturing Technology,2009,43(5-6):474-481.
    [57] Benjamin L L, Nithyanand K, Ozdoganlar O B. Effects of Crystallographic Anistropy on Orthogonal Micromachining of Single-crystal Aluminum[J]. Journal of Manufacturing Science and Eenginnering-Transactions of the ASME,2008,130(3):031116.
    [58] Ding X, Butler D L, Lim G C, et al. Machining with Micro-size Single Crystalline Diamond Tools Fabricated by a Focused Ion Beam[J]. Journal of Micromechanics and Microengineering,2009,19(2):025005.
    [59] Fang T H,Chang W J,Tsai S L. Nanomechanical Characterization of Polymer Using Atomic Force Microscopy and Nanoindentation[J]. Microelectronics Journal,2005,36(1):55-59.
    [60] Zhang Y,Balaur E,Schmuki P. Nanopatterning of An Organic Monolayer Covered Si (1 1 1) Surfaces by Atomic Force Microscope Scratching[J]. Electrochimica Acta,2006,51(18):3674-3679.
    [61] Kato Z,Sakairi M, Takahashi H. Nanopatterning on Aluminum Surfaces with AFM Probe[J]. Surface and Coatings Technology,2003,169-170:195-198.
    [62]赵清亮.基于原子力显微镜的纳米加工技术研究[D].哈尔滨:哈尔滨工业大学博士学位论文,1999:69-84.
    [63] Yan Y D, Dong S, Sun T. 3D Force Components Measurement in AFM Scratching Tests[J]. Ultramicroscopy,2005,105(1-4):62-71.
    [64] Yan Y D, Sun T, Liang Y C, Dong S. Effects of scratching directions on AFM-based abrasive abrasion process[J]. Tribology International,2009,42(1):66-70.
    [65] Yan Y D, Sun T, Dong S. Study on effects of tip geometry on AFM nanoscratching tests[J]. Wear,2007,262(3-4):477-483.
    [66] Merkle A P, Marks L D. Liquid-like tribology of gold studied by in situ TEM[J]. Wear,2008,265(11-12):1864-1869.
    [67] Minor A M, Asif S A S, Shan Z W, et al. A New View of The Onset of Plasticity During the Nanoindentation of Aluminium[J]. Nature Materials,2006,5:697-702.
    [68] Belak J, Lucca D A, Komanduri R, et al. Molecular Dynamics Simulation of the Chip Formation Process in Single Crystal Copper and Comparison With Experimental Data[C]. Proc. ASPE Annual Conference,1991,13-18:100-109.
    [69] Fang T H, Weng C I. Molecular Dynamics Simulations of Nano-lithography Process Using Atomic Force Microscopy[J]. Surface Science,2002,501(1):138-147.
    [70] Komanduri R, Chandrasekaran N, Raff L M. M.D. Simulation of Nanometric Cutting of Single Crystal Aluminum–Effect of Crystal Orientation and Direction of Cutting[J]. Wear,2000,242(1-2):60-88.
    [71] Chen K, Luo X, Ward R, et al. Modeling and Simulation of the Tool Wear in Nanometric Cutting[J]. Wear,2003,255(7-12):1427-1432.
    [72] Fang F Z, Wu H, Liu Y C. Modelling and Experimental Investigation on Nanometric Cutting of Monocrystalline Silicon[J]. International Journal of Machine Tools & Manufacture,2005,45(15):1681-1686.
    [73] Jun S, Lee Y M, Kim S Y, et al. Large-scale Molecular Dynamics Simulations of Al (111) Nanoscratching[J]. Nanotechnology,2004,15:1169-1174.
    [74] Mulliah D, Kenny S D, Smith R, et al. Molecular Dynamic Simulations of Nanoscratching of Silver (100)[J]. Nanotechnology,2004,15:243-249.
    [75] Kim Y S, Na K H, Choi S O, et al. Atomic Force Microscopy-based Nanolithography for Nano-patterning: A Molecular Dynamics Study[J]. Journal of Materials Processing Technology,2004,155:1847-1854.
    [76] Yan Y D, Sun T, Dong S, et al. Molecular Dynamics Simulation of Processing Using AFM Pin Tool[J]. Applied Surface Science,2006,252:7523-7531.
    [77] Yan Y D, Sun T, Dong S, et al. Study on Effects of the Feed on AFM-based Nano-scratching Process Using MD Simulation[J]. Computational Materials Science,2007,40:1-5.
    [78] Zhu P Z, Hu Y Z, Ma T B, et al. Study of AFM-based Nanometric Cutting Process Using Molecular Dynamics[J]. Applied Surface Science,2010,256(13):7160-7165.
    [79]陈明君,庞启龙,刘新艳. KDP晶体微纳加工表层杂质对其激光损伤阈值影响的有限元分析[J].强激光与粒子束,2008,20(7):1182-1186.
    [80] Kim J H, Kim H, Kim D K, et al. Characterization of Subsurface Damage of Explosively Indented Silicon Nitride Ceramics[J]. International Journal of Modern Physics B,2008,22(9-11):1504-1509.
    [81] Bhattacharya S, Riahi A R, Alpas A T. Indentation-induced Subsurface Damage in Silicon Particles of Al-Si Alloys[J]. Materials Science and Engineering A,2009,527(1-2):387-396.
    [82] Zhao Q L, Wang B, Dong S. Subsurface Damage Mechanisms in Diamond Grinding of BK7 on Tetraform 'C'[C]. Proceedings of the SPIE - The International Society for Optical Engineering,2006,6149:61490L-1-7.
    [83] Yan J W, Gai X H, Hirofumi H. Subsurface Damage of Single Crystalline Silicon Carbide in Nanoindentation Tests[J]. Journal of Nanoscience and Nanotechnology,2010,10(11):7808-7811.
    [84] Martin L P, Chambers D H, Thomas G H. Experimental and Simulated Ultrasonic Characterization of Complex Damage in Fused Silica[J]. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control,49(2):255-265.
    [85] Sun J G, Zhang J M, Andrews M J. Laser Scattering Characterization of Subsurface Defect/Damage in Silicon-nitride Ceramic Valves[J]. Ceramic Engineering and Science Proceedings,2004,25(4):307-12.
    [86] Ogita Y, Kobayashi K, Daio H. PCA Characterization of Residual Subsurface Damage After Silicon Wafer Mirror Polishing and its Removal[J]. Materials Research Society Symposium Proceedings,2000,566:261-266.
    [87] Wuttig A, Steinert J, Duparre A. Surface Roughness and Subsurface Damage Characterization of Fused Silica Substrates[C]. Proceedings of SPIE,1999,3739:369-376.
    [88]吴东江,曹先锁,王强国. KDP晶体加工表面的亚表面损伤检测与分析[J].光学精密工程,2007,15(11):1721-1726.
    [89]王卓,吴宇列,戴一帆.光学材料研磨亚表面损伤的快速检测及其影响规律[J].光学精密工程,2008,16(1):16-21.
    [90] Monaghan J, Brazil D. Modeling the Sub-surface Damage Associated With the Machining of A Particle Reinforced MMC[J]. Computational Materials Science,1997,9:99-107.
    [91] Dandekar C R, Shin Y C. Multi-step 3-D Finite Element Modeling of Subsurface Damage in Machining Particulate Reinforced Metal Matrix Composites[J]. Composites Part A: Applied Science and Manufacturing,2009,40(8):1231-1239.
    [92]郭晓光,郭东明,康仁科,等.原子量级条件下单晶硅磨削过程中的亚表面损伤[J].半导体学报,2007,28(9):1353-1358.
    [93] Chen J X, Liang Y C, Chen M J, et al. A Study of the Subsurface Damaged Layers in Nanoscratching[J]. International Journal of Abrasive Technology,2009,2(4):368-381.
    [94] Lu L, Sui M L, Lu K. Superplastic extensibility of nanocrystalline copper at room temperature[J]. Science,2000,287:1463-1466.
    [95] Lu L, Shen Y F, Chen X H. Ultrahigh Strength and High Electrical Conductivity in Copper[J]. Science,2004,304:422-426.
    [96] Plimpton S. Fast Parallel Algorithms for Short-Range Molecular Dynamics[J]. Journal of Computational Physics,1995,117:1-19.
    [97] Stadler J, Mikulla R, Trebin H R. IMD: A Software Package for Molecular Dynamics Studies on Parallel Computers[J]. International Journal of Modern Physics C,1997,8:1131-1140.
    [98] Humphrey W, Dalke A, Schulten K. VMD - Visual Molecular Dynamics[J]. Journal of Molecular Graphics,1996,14:33-38.
    [99] Li J. Atomeye: an efficient atomistic configuration viewer[J]. Modelling and Simulation in Materials Science and Engineering,2003,11:173-177.
    [100]Stukowski A. Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool[J]. Modelling and Simulation in Materials Science and Engineering,2010,18:015012.
    [101]王洪祥,张龙江,董申.微切削过程的分子动力学分析[J].制造技术与机床,2000,2:40-42.
    [102]Allen M P, Tildesley D J. Computer Simulation of Liquids[M]. Clarendon:Oxford University Press,1987:78-82.
    [103]Rapaport D C. The Art of Molecular Dynamics Simulation-Second Edition[M]. Cambridge University Press,2004:60-62.
    [104]Yu H L, Adams J B, Jr Louis G H. Molecular Dynamics Simulation of High-speed Nanoindentation[J]. Modelling and Simulation in Materials Science and Engineering,2002,10:319-329.
    [105]Fang T H, Weng C I, Chang J G. Molecular Dynamics Simulation of Nano-lithography Process Using Atomic Force Microscopy[J]. Surface Science,2002,501:138-147.
    [106]Ye Y Y, Biswas R, Morris J R, et al. Molecular Dynamics Simulation of Nanoscale Machining of Copper[J]. Nanotechnology,2003,14:390-396.
    [107]Cai M B, Li X P, Rahman M. Study of the mechanism of nanoscale ductile mode cutting of silicon using molecular dynamics simulation[J]. International Journal of Machine Tools & Manufacture,2007,47:75-80
    [108]Daw M S, Baskes M I. Semiempirical, Quantum Mechanical Calculation of Hydrogen Embrittlement in Metals[J]. Physical Review Letters,1983,50:1285-1288.
    [109]Daw M S, Baskes M I. Embedded-atom Method: Derivation and Application to Impurities, Surfaces, and Other Defects in Metals[J]. Physical Review B,1984,29:6443-6453.
    [110]Foiles S M, Baskes M I, Daw M S. Embedded-atom Method Functions for the Fcc Metals Cu, Ag, Au ,Ni, Pd ,Pt and Other Alloys[J]. Physical Review B,1986,33:7983-7991.
    [111]Yan Y D, Sun T, D Shen, et al. MD analysis on Tip geometry effects in AFM-based lithography process[J]. Key Engineering Materials,2007,339:228-233.
    [112]Ziegenhain G, Hartmaier A, Urbassek H M. Pair vs Many-body Potentials: Influence on Elastic and Plastic Behavior in Nanoindentation of Fcc Metals[J].Journal of the Mechanics and Physics of Solids,2009,57:1514-1526.
    [113]Frenkel, Smith.分子模拟-从算法到应用[M].汪文川等译.北京:化学工业出版社,2002:95-116.
    [114]http://isaacs.sourceforge.net/phys/pbc.html.
    [115]潘金生,健民仝,田民波.材料科学基础[M].北京:清华大学出版社,1998:264-270.
    [116]Courtney T H. Mechanical Behavior of Materials-second edition[M]. Boston:McGraw Hill Education,2000:56-60.
    [117]Randle V. The Role of the Coincidence Site Lattice in Grain Boundary Engineering[M]. London: The Institute of Materials and Mining,1996:65-89.
    [118]Tschopp M A, McDowell D L. Structures and Energies of 3 Asymmetric Tilt Grain Boundaries in Copper and Aluminium[J]. Philosophical Magazine,2007,87(22):3147-3173.
    [119]王昆林.材料工程基础[M].北京:清华大学出版社,2003:101-103.
    [120]Du D S, Hwang F. Computing in Euclidean Geometry[M]. Singapore:World Scientific Publishing,1995:229-232.
    [121]http://www.tf.uni-kiel.de/matwis/amat/def_en/index.html.
    [122]Hull D, Bacon D J. Introduction to Dislocations-Fourth Edition[M]. Butterworth-Heinemann,2001:1-61.
    [123]王亚男,陈树江,董希淳,等.位错理论及其应用[M].北京:冶金工业出版社,2007:1-74.
    [124] Weertman J, Weertman J R. Elementary Dislocation Theory[M]. Oxford University Press,1992:1-68.
    [125]Matteoli E, Mansoori G A. A simple expression for radial distribution functions of pure fluids and mixtures[J]. Journal of Chemical Physics,1995,103(11):4672-4677.
    [126]Kelchner C L, Plimpton S J, Hamilton J C. Dislocation Nucleation and Defect Structure During Surface Indentation[J]. Physical Review B,1998,58:11085.
    [127]Honeycutt J D, Andersen H C. Molecular Dynamics Study of Melting and Freezing of Small Lennard-jones Clusters[J]. Journal of Physical Chemistry,1987,91:4950-4963.
    [128]Zimmerman, J A, Kelchner C L, Klein P A, et al. Surface Step Effects on Nanoindentation[J]. Physical Review Letters,2001,87:165507.
    [129]Ackland G J, Jones A P. Applications of Local Crystal Structure Measures in Experiment and Simulation[J]. Physical Review B,2006,73:054104.
    [130]Tsuzuki H, Branicio P S, Rino J P. Structural Characterization of Deformed Crystals by Analysis of Common Atomic Neighborhood[J]. Computer Physics Communications,2007,177(6):518-523.
    [131]Werner M. Temperature and Strain-rate Dependence of the Flow Stress of Ultrapure Tantalum Single Crystals[J]. Physica Status Solidi (a),1987,104:63-78.
    [132]Pei Q X, Lu C, Fang F Z, et al. Nanometric Cutting of Copper: A Molecular Dynamics Study[J]. Computational Materials Science,2006,37(4):434-441.
    [133]Ye Y Y, Biswas R, Morris J R, et al. Molecular dynamics simulation of nanoscale machining of copper[J]. Nanotechnology,2003,14:390-396.
    [134]Pei Q X, Lu C, Lee H P. Large scale molecular dynamics study of nanometric machining of copper[J]. Computational Materials Science,2007,41(2):177-185.
    [135]Walter E C, Zach M P, Favier F, et al. Metal Nanowire Arrays by Electrodeposition[J]. Chemphyschem,2003,4:131-138.
    [136]Reches M, Gazit E. Casting Metal Nanowires Within Discrete Self-Assembled Peptide Nanotubes[J]. Science,2003,25:625-627.
    [137]Xu S, Qin Y, Xu C, et al. Self-powered nanowire devices[J]. Nature Nanotechnology,2010,5:366-373.
    [138]Pan H, Feng Y P. Semiconductor Nanowires and Nanotubes: Effects of Size and Surface-to-Volume Ratio [J]. ACS Nano,2008,2(11):2410-2414.
    [139] Wang J, Huang H C. Shockley partial dislocations to twin: Another formation mechanism and generic driving force[J]. Applied Physics Letters,2004,85:5983-5985.
    [140]黎明,温诗铸.纳米压痕技术及其应用[J].中国机械工程,2002,13(16):1437-1440.
    [141]Lucca DA, Herrmann K, Klopfstein M J. Nanoindentation: Measuring methods and applications[J]. CIRP Annals - Manufacturing Technology,2010,59(2):803-819.
    [142]Yip S. Nanocrystals: the Strongest Size[J]. Nature,1998,391:532-533.
    [143]Wolf, D, Yamakov V, Phillpot S R, et al. Deformation of Nanocrystalline Materials by Molecular-dynamics Simulation: Relationship to Experiments? Acta Materialia,2005,53:1-40.
    [144]Liao XZ, Zhao YH, Srinivasan SG, et al. Deformation Twinning in Nanocrystalline Copper at Room Temperature and Low Strain Rate. Applied Physics Letters,2004,84:592-594.
    [145]Huang C X, Wang K, Wu S D, et al. Deformation Twinning in PolycrystallineCopper at Room Temperature and Low Strain Rate[J]. Acta Materialia,2006,54:655-665.
    [146]Narayan J, Zhu Y T. Self-thickening, cross-slip deformation twinning model[J]. Applied Physics Letters,2008,92:151908.
    [147]Schi?tz J. Jacobsen K W. A Maximum in the Strength of Nanocrystalline Copper[J]. Science,2003,301:1357-1359.
    [148]Lu L, Chen X, Huang X, et al. Revealing the maximum strength in nanotwinned copper[J]. Science,2009,323:607-610.
    [149]Li X Y, Wei Y J, Lu L, et al. Dislocation Nucleation Governed Softening and Maximum Strength in Nano-twinned Metals[J]. Nature,2010,464:877-880.
    [150]Abraham F F, Walkup R, Gao H J, et al. Simulating Materials Failure by Using up to One Billion Atoms and The World’s Fastest Computer: Work-hardening[J]. Proceedings of the National Academy of Science,2002,99(9):5783-5787.
    [151]Germann T C, Kadau K. Trillion-Atom Molecular Dynamics Becomes a Reality[J]. International Journal of Modern Physics C,2008,19(9):1315-1319.
    [152]Tucherman M E, Berne B J, Rossi A. Molecular Dynamics Algorithm for Multiple Time Scales: Systems with Disparate Masses[J]. Journal of Chemical Physics,1991,94(2):1465-1469.
    [153]Wu H A, Wang X X, Liu G R. Molecular Dynamics Simulation of Timescale Effect and Lattice Transformation of Copper Nanorod Under Bending[J]. Nanotech,2003,3:203-206.
    [154]Roy J, Laughton C A. Long-timescale Molecular-dynamics Simulations of the Major Urinary Protein Provide Atomistic Interpretations of the Unusual Thermodynamics of Ligand Binging[J]. Biophysical Journal,2010,99(1):218-226.
    [155]Conrad D, Scheerschmidt K. Empirical Bond-order Potential for Semiconductors[J]. Physical Review B,1998,58(8):4538-4542.
    [156]Cawkwell M J, Nguyen-Manh D, Pettifor D G. Construction, Assessment, and Application of a Bond-order Potential for Iridium[J]. Physical Review B,2006,73:064104.
    [157]Buehler M J, van Duin A C T, Goddard W A. Multiparadigm Modeling of Dynamical Crack Propagation in Silicon Using a Reactive Force Field[J]. Physical Review Letters,2006,96:095505.
    [158]Chandross M, Lorenz D C, Stevens M J, et al. Simulations of Nanotribology with Realistic Probe Tip Models[J]. Langmuir,2008,24:1240-1246.
    [159]Overton W C Jr, Gaffney J. Temperature Variation of the Elastic Constants of Cubic Elements. I. Copper[J]. Physical Review,1995,98(4):969-977.
    [160]Chang YW, Kim NJ, Lee CS. A Characteristic of Spherical Indentation curve and its Application in Measuring Material Properties[J]. Materials Science Forum,2007,561-565:2131-2134.
    [161]Lee J W, Lee C S, Chen M C, et al. The Phenomenon of Strain Burst and Pile-up in Nanoindentation of the Single Crystal Copper[C]. Proceedings of IJTC2006, STLE/ASME International Joint Tribology Conference,San Antonio,2006,IJTC2006-12272:1385-1389.
    [162]Dub S N, Lim Y Y, Chaudhri M M. Nanohardness of High Purity Cu (111) Single Crystals: The effect of Indenter Load and Prior Plastic Sample Strain[J]. Journal of Applied Physics,2010,107:043510.
    [163]Liu Y, Varghese S, Ma J, et al. Orientation Effects in Nanoindentation of Single Crystal Copper[J]. International Journal of Plasticity,2008,24:1990-2015.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700