Cu-Ti(-Zr)系统中玻璃转变及马氏体相变的分子动力学模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自从1960年在Au-Si系统中首次通过液态熔融淬火得到金属玻璃(或非晶态合金)以来,人们对该领域的一个重要科学问题,即玻璃形成能力,开展了很多实验和理论研究。对一个特定的系统,玻璃形成能力可以用很多经验参数来表征,如约化温度Trg,稳定因子S和Tl-Tg。实际上玻璃形成能力的定量表征方法是非晶形成成分范围。在理论研究中,柳百新课题组提出了从原子作用势出发,通过分子动力学模拟方法来计算二元系统的非晶形成范围。本论文中,我们采用同样的方法研究了Cu-Ti二元系统和Cu-Zr-Ti三元系统非晶形成范围。首先构建了Cu-Ti和Cu-Zr-Ti系统的紧束缚(TB-SAM)多体势,然后用分子动力学模拟研究了玻璃转变、非晶形成范围及Cu-Ti系统中的hcp-to-fco马氏体相变。
     基于固溶体模型,分子动力学模拟研究表明:
     Cu-Ti系统的非晶形成范围为22at.%~71at.%Cu,与实验结果相符。配位数和公共近邻分析揭示了固溶体和非晶相能量差异的物理机制:与固溶体相比,随着溶质原子增加,非晶相的配位数和异类键数目变化更快,致使非晶相的能量下降更快,使其与固溶体能量曲线相交。这些结果表明固溶体和同成分的非晶相的相对稳定性与它们的微观结构有密切的联系。
     Cu-Zr-Ti系统的非晶形成范围是一个变形的四边形,四个顶点的成分分别为:Cu22Zr78Ti0,Cu24Zr0Ti76,Cu56Zr0Ti44和Cu72Zr28Ti0。位于该四边形内的成分点,非晶相比固溶体更稳定。模拟结果也与Egima玻璃形成经验规则和柳百新的结构差异规则相符。
     在Cu-Ti系统的富Ti一端不断地溶入Cu原子,观察到了hcp-to-fco马氏体相变。公共近邻分析表明fco相是一个类bcc的结构。通过对fco新相的不同相貌的分析,我们提出了一个简单合理的相变机制,即hcp晶体沿<100>密排方向伸长,(001)密排面之间有轻微的收缩,且相邻密排面之间沿<120>晶向的相对滑移,伴随点阵的调整,从而形成了新的fco相。
Metallic glass (or amorphous alloy) was first obtained in the Au-Si system by liquid melt quenching (LMQ) in 1960 and since then a number of experiments and theoretical studies have been carried out to investigate one of the basic issues in the field, i.e. glass-forming ability (GFA). For a specific alloy, the GFA is commonly estimated by a number of empirical parameters, such as the reduced temperature Trg, stability parameter S and Tl-Tg. Practically, a quantitative measure of the GFA is glass-forming composition range (GFR), within which amorphous alloy can be obtained via some glass-producing technique. In theoretical studies, Liu et al. have proposed an atomistic method to determine the GFR of a binary metal system directly from the interatomic potential of the system through molecular dynamics (MD) simulations. In this thesis, we first study the GFRs of the Cu-Ti binary system with Liu’s method, and then extend the same idea to the Cu-Zr-Ti ternary system. The tight binding (TB-SMA) many-body potentials for the Cu-Ti and Cu-Zr-Ti systems were constructed and applied in MD simulations to study crystalline-to-amorphous transition and GFR in both binary and ternary systems, as well as an hcp-to-fco martensitic transformation in the Cu-Ti system.
     Based on solid solution models, the MD simulations using the constructed potentials show:
     The GFR of the Cu-Ti system is predicted to be 22at.%~71at.%Cu, in good agreement with experimental results. Coordination number and common-neighbor analyses clarified the physical mechanism responsible for the energy difference between solid solution and amorphous phase as follows: with increasing the solute atom content, the coordination number and unlike bond of amorphous phases increase greatly than those of solid solutions, leading to a cross-over point between their energy curves because of a fast energy drop of amorphous phases than the solid solutions. These results show that the relative stability between solid solution and amorphous phase is correlated to their microstructure.
     The GFR of Cu-Zr-Ti system is located in an approximate distorted quadrilateral region, and the compositions of the four vertexes of the quadrilateral are Cu22Zr78Ti0, Cu24Zr0Ti76, Cu56Zr0Ti44 and Cu72Zr28Ti0, respectively. In addition, the simulation results are in accordance with Egami’s glass-forming and Liu’s structural difference empirical rules.
     An hcp-to-fco martensitic transformation was observed in Ti lattice, upon dissolution of Cu atoms. Common-neighbor analysis showed that the new formed fco phase features bcc-like structure. Based on the detailed analysis of different manifestations observed in simulations, the hcp-to-fco phase transformation mechanism is proposed as follows: the hcp lattice elongates along the <100> close-packed directions and slightly shrinks along [001] direction, accompanying with a relative movement (or slide) along <120> directions between the adjacent close-packed planes and the lattice constants adjustment to form the new fco phase.
引文
[1] Luborsky F E. in Amorphous Metallic Alloys. ed. F.E. Luborsky. London: Butterworths, 1983, 4
    [2]王一禾,杨乵善编.非晶态合金.北京:冶金出版社, 1988, 346
    [3] Clement W, Willens R H, Duwez P. Nature, Non-Crystalline Structure in Solidified Gold-Silicon Alloys. 1960, 187: 869~870
    [4] Kavesh S. Metallic Glasses. ASM International, Metals, Park, OH, 19878 (Chapter 2)
    [5] Johnson W L. Thermodynamic and Kinetic Aspects of the Crystal to Glass Transformation in Metallic Materials. Prog. Mater. Sci., 1986, 30: 81~134
    [6] Chen H S. Thermodynamic Conskderations on Formation and Stability of Metallic Glasses. ConActa. Metall., 1974, 22: 1505~1511
    [7] Inoue A. Stabilization of Metallic Supercooled Liquid and Bulk Amorphous Alloys Acta. Mater., 2000, 48: 279~306
    [8] Peker A, Johnson W L. A Highly Processable Metallic-Glasses Zr41.2Ti13.8Cu12.5Ni10.0Be22.5. Appl. Phys. Lett., 1993, 63: 2342~2344
    [9] Busch R. The Thermophysical Properties of Bulk Metallic Glass-Forming Liquids. JOM, 2000, 52: 39~42
    [10] Inoue A, Nishiyama N. Extrenely Low Critical Cooling Rates of New Pd-Cu-P Based Amorphous Alloys. Mater. Sci. Eng. A, 1997, 226: 401~405
    [11] Inoue A, Shen B L, Koshiba H, et al. Ultra-High Strenth above 5000 MPa and Soft Magnetc Properties of Co-Fe-Ta-B Bulk Glassy Alloy. Acta Mater., 2004, 52: 1631-1637
    [12] Lu Z P, Liu C T, Thompson J R, Porter W D. Structural Amorphous Steel. Phys. Rev. Lett., 2004, 92: 245503~245506
    [13] Shen J, Chen Q J, Sun J F, Fan H B, Wang G. Exceptionally High Glass-Forming Ability of an FeCoCrMoCBY Alloy. Appl. Phys. Lett. 2005, 86: 151907~151920
    [14] Schroers J, Johnson W L. Ductile Bulk Metallic Glass. Phys. Rev. Lett., 2004, 93: 255506~255509
    [15] Ma H, Shi L L, et al. Discovering Inch-Diameter Metallic Glasses in Three-Dimensional Composition Space. Appl. Phys. Lett., 2005, 87: 181915~181917
    [16]潘金生,仝健民,田民波.材料科学基础.北京:清华大学出版社, 2004, 626
    [17] Otsuka K and Ren X. Physical Metallurgy of Ti-Ni-Based Shape Memory Alloys. Prog. Mater. Sci., 2005, 50(5): 511~678
    [18] Morris E F, Meshii M and Wayman C M. Martensitic Transformation. New York:Academic, 1978
    [19] Milstein F. Mechanical Stability of Crystal Lattices With Two-Body Interactions. Phys. Rev. B, 1970, 2(2): 512~518
    [20] Li J H, Guo H B, Liu B X. Cystallographic and Lattice Point Correlations of a New hcp-to-fco Matensitic Transformation Observed in the Ni-Hf system. Acta Mater., 2005, 53: 743~748
    [21] Li J H, Liu B X. Structural Phase Transformation in the Ni-Hf and Ni-Ti Systems Studied by Molecular Dynamics Simulation. J. Phys. Soc. Jpn., 2005, 70; 2699~2702
    [22] Haasen P. Physical Metallurgy. Cambridge: GB, 1996
    [23] Palmer R E. Electron-Molecule Dynamics at Surfaces. Prog. Surf. Sci., 1992, 41(1): 51~108
    [24] Lai W S, Liu B X, Molecular-dynamics simulation of amorphization process in Ni-Zr multilayers upon annealing at medium temperatures. J. Phys. Condens. Matter, 1997, 9: L483~L490
    [25] Erkoc S. Empirical Many-Body Potential Energy Functions Used in Computer Simulations of Condensed Matter Properties. Phys. Rep.-Rev. Sec. Phys. Lett., 1997, 278(2): 80~105
    [26] Halicioglu T, Pamuk H O, Erkoc S. Multilayer Relaxation Calculations for Low Index Planes of an FCC Crystal. Surf. Sci., 1984, 143(2-3): 601~608
    [27] Halicilglu T, Pamuk H O, Erkoc S. Emprical n-body potential. Surf. Sci. 1984, 143: 601
    [28] Bernades B. Theory of Solid Ne, Ar, Kr and Xe at 0 K. Phys. Rev., 1958, 112: 1534-1539
    [29] Bruesch P. Phonons: Theory and Experiments I. Berlin: Springer-Verlag, 1982
    [30] Morse P M. Diatomic molecules according to the wave mechanics. II. Vibrational levels. Phys. Rev, 1929, 34(1): 57~64
    [31] Girifalco L A, Weizer V G. Application of the Morse Potential Function to Cubic Metals. Phys. Rev. 1959, 114(3): 687~690
    [32] Ashcroft N W, Mermn N D. Solid State Physics. New York: Holt, Rinehart and Winston, 1976
    [33] Vollmayr K, Kob W, Binder K. How Do the Properties of a Glass Depend on the Cooling Rate? A Computer Simulation Study of a Lennard-Jones System. J. Chem. Phy. 1996, 105(11): 4714~4728
    [34] Girifalco L A, Weizer V G. Application of the Morse Potential Function to Cubic Metals. Phys. Rev., 1959, 114(3): 687~690
    [35] Ashcroft N W, Mermn N D. Solid State Physics. New York: Holt, Rinehart and Winston, 1976
    [36] Nye J F. Physical Properties of Crystals: Their Representation by Tensors and Matrices. New York: Oxford University Press, 1984
    [37]吴兴惠,项金钟.现代材料计算与设计教程.北京:电子工业出版社, 2002
    [38] Daw M S, Baskes M I. Semiempirical, Quantum Mechanical Calculation of Hydrogen Embrittlement in Metals. Phys. Rev. Lett., 1983, 50(17): 1285~1288
    [39] Daw M S, Foiles S M, Baskes M I. The Embedded-Atom Method: A review of Theory and Application. North-Holland: Material Science Reports, 1993, (9): 251~310
    [40] Finnis M W, Sinclair J E. A Simple Empirical N-body Potential for Transition Metals. PHILOS. MAG. A, 1984, 50(1): 45~55
    [41] Rosato V, Massimo C, Legrand B. Thermodynamical and Structural Properties of Fcc Transition Metals Using a Simple Tight-Binding Model. PHILOS. MAG. A, 1989, 59(2): 321~336
    [42] Johnson R A, Oh D J. Analytic Embedded Atom Method Model for Bcc Metals. J. Mater. Res., 1989, 4: 1195~1201
    [43] Zhong W, Cai Y, Tomanek D. Mechanical Stability of PD-H System- A Molecular Dynamics Study. Phys. Rev. B., 1992, 46: 8099~8108
    [44] Johnson R A. Phase Stability of Fcc Alloys with the Embedded-Atom Method. Phys. Rev. B, 2005, 41(14): 9717~9720
    [45] Cai J and Ye Y Y. Simple Analytical Embedded-Atom-Potential Model Including a Long-range Force for Fcc Metals and Their Alloys. Phys. Rev. B, 1997, 54: 8398~8410
    [46] Banerjea A, Smith J R. Origins of the Universal Binding-Energy Relation. Phys. Rev. B, 1988, 37(12): 6632~6645
    [47] Doyama M, Kogure Y. Embedded Atom Potentials in Fcc and Bcc Metals. Computer. Mater. Sci., 1999, 14: 80~83
    [48] Foiles S M, Daw M S. Calculation of the Thermal Expansion of Metals Using the Embedded-atom Method. Phys. Rev. B., 1988, 38(17): 12643~12644
    [49] Foiles S M. Evaluation of Harmonic Methods for Calculating the Free-Energy of Defects in Solids. Phys. Rev. B, 1994, 49(21): 14930~14938
    [50] Hwang R Q, Hamilton J C, Stevens J L and Foiles S M. Near-Surface Buckling in Strained Metal Overlayer Systems. Phys. Rev. Lett., 1995, 75(23): 4242~4245
    [51] Hoagland R G, Voter A F, Foiles S M. Self-Diffusion Within the Cores of a Dissociated Glide Dislocation in an FCC Solid. Scripta. Materialia., 1998, 39(4-5): 589~596
    [52] Pasianot R, Savino E J. Embedded-Atom-Method Interatomic Potentials for Hcp Metals. Phys. Rev. B, 1992, 45(22): 12704~12710
    [53] Zhang R F, Shen Y X, Yan H F, Liu B X. Formation of Amorphous Alloys by Ion BeamMixing and Its Multi-scale Theoretical Modeling in the Equilibrium Immiscible Sc-W System. J. Phys. Chem. B, 2005, 109(10): 4391~ 4397
    [54] Pohlong S S, Ram P N. Analytic Embedded Atom Method Potentials for Fcc Metals. J. Mater. Res., 1998, 13(7): 1919~1927
    [55] Angelo J E, Baskes M I. Interfacial Studies Using the EAM and MEAM. Interface Science, 1996, 4(1-2): 47~63
    [56]曾谨言.量子力学.第三版.科学出版社. 2000. 594
    [57] Landa A,Wynblatt P, Girshick A, Viek V, Ruban A, Skriver H. Development of Finnis-Sinclair Type Potentials for the Pb-Bi-Ni System II: Application to Surface Co-segregation. Acta. Mater., 1999, 7(8): 2477~2484
    [58] Zhang Q, Lai W S, Liu B X. Construction of an N-body Potential and Molecular -dynamics Study of Interfacial Reaction in the Ni/Mo Bilayer. Europhysics Letters, 1998, 43(15): 416~421
    [59] Sutton A P, Chen J. Long-range Finnis-Sinclair Potentials. Philos. Mag. Lett., 1990, 61(3): 139~146
    [60] Cagin T, Dereli G, Uludogan M, Tomak M. Thermal and Mechanical Properties of Some Fcc Transition Metals. Phys. Rev. B, 1999, 59(5): 3468~3473
    [61] Lai W S, Liu B X. Lattice Stability of Some Ni-Ti Alloy Phases verse Their Chemical Composition and Disordering. J. Phys.: Comdens Matter. 2000, 12: 53~60
    [62] Qi Y, Cagin T, Kimura Y, Goddard W. A. Molecular-Dynamics Simulations of Glass Formation and Crystallization in Binary Liquid Metals: Cu-Ag and Cu-Ni. Phys. Rev. B, 1999, 59(5): 3527~3533
    [63] Kirchhoff F, Mehl M J, Papanicolaou N I, Papaconstantopoulos D A, Khan F S. Dynamical Properties of Au from Tight-Binding Mmolecular-dynamics Simulations. Phys. Rev. B, 2001, 6319(19): 195101~195107
    [64] Daw M S, Baskes M I. Embedded-atom Moethod: Derivation and Application to Impurties, Surfaces, and other Defects in Metals. Phys. Rev. B, 1984, 39(12): 6443~6453
    [65] Willaime F, Massobrio C. Developement of an N-body Interatomic Potential for Hcp and Bcc Zirconium. Phys. Rev. B, 1991, 43(14): 11653~11665
    [66] Landau L D, Lifshitz E M. Mechnics. Pergamon: Oxford, (1): 3
    [67] Parrinello M, Rahman A. Cystal-Structure and Pair Potentials–A Molecular Dymamics Study. Phys. Rev. Lett. 1980, 45(14): 1196~1199
    [68] Parrinello M, Rahman A. Polymorphic Transitions in Single Crystals: A New Molecular Dynamics Method. J. Appl. Phys., 1981, 52(12): 7182~7190
    [69] Mason D R. Faster Neighbour List Generation Using a Novel Lattice Vector Representation. Comput. Phys. Commun., A 2005, 170: 31~41
    [70] Allen M P, Tildesley D J. Computer Simulation of Liquids. Oxford: Clarendon, 1989
    [71]吴江淘.分子动力学模拟中不同短程作用力计算方法的效率研究.西安交通大学学报, 2002, 36(5): 477~481
    [72] Allen M P, Tildesley D J. Computer Simulation of Liquids. Oxford: 1987
    [73]陈光进.相平衡和径向分布函数(II):计算径向分布函数的微相平衡法.化工学报, 1995, 46(4): 398~401
    [74] Cheng Y Q, Ma E. Configurational Dependence of Elastic Modulus of Metallic Glass. Phys. Rev. B, 2009, 80: 064104~064109
    [75] Lai W S, Zhao X S. Strain-induced Elastic Moduli Softning and Associated fcc-bcc Transition in Iron. Appl. Phys. Lett., 2004, 85(19): 4340~4342
    [76] Faken D, Jónsson H. Systematic Analysis of Local Atomic Structure Combined with 3D Computer Graphics. Comput. Mater. Sci., 1994, 2: 279~286
    [77] de Boer F R, Boom R, Miedema A R, Niessen A K. Cohesion in Metals: Transition Metal Alloys. Amsterdam: North-Holland, 1989
    [78] Mehta N, Singh K, Saxena N S. Comparative Analysis of Thermal Crystallization in Cu50Ti50 and Cu50Zr50 Metallic Glasses. Phys. B, 2008, 403: 3928~3931
    [79] Jain R, Saxena N S, Bhandari D, Rao K V R, et al. Crystallization Kinetics of CuxTi100-x (x = 43, 50 and 53) glasses. Phys. B, 2001, 301: 341~348
    [80] Colinet C, Pasurel A, Buschow K H J. Enthapies of Formation of Ti-Cu Intermetallic and Amorphous Phase. J. Alloy. Compd., 1997, 247: 15~19
    [81] Delogu F, Cocco G. Compositional Effecs on the Mechanochemical Synthesis of Fe-Ti and Cu-Ti Amorphous Alloy by Mechanical Alloying. J. Alloy. Compd., 2003, 352: 92~98
    [82] Ruhl R C, Giessen B C, Cohen M, Grant N J. New Microcrystalline Phase in Nb-Ni and Ta-Ni System. Acta. Metall., 1967, 15(11): 1693~1702
    [83] Poon S J, Carter W L. Amorphous Superconductors Based on the 4D Series. Solid. State. Commun., 1980, 35(3): 249~251
    [84] Lu Z P, Tan H, Li Y, Ng S C. The Correlation between Reduced Glass Transition Temperature and Glass Forming Ability of Bulk Metallic Glasses. Scripta. Mater., 2000, 42(7): 667~673
    [85] Li Y, Ng S C, Ong C K, Hng H H, Goh T T. Glass Forming Ability of Bulk Glass Forming Alloys. Scripta Mater 1997, 36(7): 783~787
    [86] Alonso J A, Simozar S. Prediction of Amorphous Alloy Formation by Ion Beam Mixing. Solid. State. Commun., 1983, 48: 765~767
    [87] Liu B X, Huang L J, et al. Thin Films-interfaces and Phenomena. Mat. Res. Soc., Symp. Proc. 1986, 54(215)
    [88] Li Z F, Lai W S, Liu B X. Proposed Interpretation for Possible Solid-State Amorphous in Some Cu-Based Binary Metal Systems. Appl. Phys. Lett., 2000, 77: 3290~3922
    [89] Liu B X, Li Z C, Gong H R. Thermodynamic and Atomistic Modeling of Irradiation-Induced Amorphization in Nano-Sized Metal-metal Multilayers. Surf. Coat. Tech., 2005, 196(1-3): 2~9
    [90] Zhang Q, Li Z C, Lin C, Liu B X. Glass-forming Range of the Ni-Mo System Derived from Molecular Dynamics Simulation and Generalized Lindemann Criterion. J. Appl. Phys., 2000, 87: 4147~4152
    [91] Lai W S, Liu B X. Glass-forming Ability of the Ni-Zr and Ni-Ti System Determined by Interatomic Potentials. J. Mater. Res., 2001, 16: 446~450
    [92] Li J H, Kong L T, Liu B X. Structural Transition and Glass-Forming Ability of the Ni-Hf system studied by Molecular Dynamics Simulaion. J. Mater. Res., 2004, 19(12): 3547~3555
    [93] Dai X D, Li J H, Liu B X. Atomistic Modeling of Crystal-to-Amorphous Transition and Associated Kinetics in the Ni-Nb System by Molecular Dynamics Simulaitons. J. Phys. Chem. B, 2005, 109(10): 4717~4725
    [94] Gong H R, Kong L T, Lai W S Liu B X. Glass-forming Ability Determined by an N-body Potential in a Highly Immiscible Cu-W System through Molecular Dynamics Simulations. Phys. Rev. B, 2003, 68: 144201~144206
    [95] Guo H B, Liu B X. J. Structural Stability and Homogeneity of the Nonequilibrium Co-Ag Alloys. Phys. Soc. Jan., 2005, 74(1): 375~381
    [96] Ghosh G. Acta. First Principles Calculations of Structural Energetics of Cu-TM (TM = Ti, Zr, Hf) intermetallics. Mater., 2007, 55: 3347~3374
    [97] Kittel C. Introduction to Solid State Physics (New York: Willy), 1986
    [98] Simmons G, Wang H. Single Crystal Elastic Constants and Calculated Aggregated Properties: A Handbook (Cambridge, MA: MIT), 1971
    [99] Shestopal V O. Fiz Tverd Tela (Leningrad) 7:3461 (Engl Transl Sov Phys Solid State;7:421), 1966
    [100] Mendelev M I, Kramer M J, Becker C A, Asta M. Analysis of Semi-Empirical Interatomic Potentials Appropriate for Simulation of Cystalline and Liquid Al and Cu. Philos. Mag., 2008, 88: 1723~1750
    [101] Kleppa O J, Watanabe S. Thermochemistry of Alloys of Transtion-metals. 3. Copper-Silver, Copper-Titanium, Copper-Zirconium, and Copper-Hafnium at 1373K. Metall. Trans. B, 1982,13(3): 391~401
    [102] Eremenko V N, Buyanov Y I, Prima S B. Phase Diagram of the System Titanium-Copper. Powder Metallurgy and Metal Ceramics. 1966, 5: 494~502
    [103] Colinet C, Pasturel A, Buschow K H J. Enthalpies of Formation of Ti-Cu Intermetallic and Amorphous Phases. J. Alloys. Compd., 1997, 247: 15~19
    [104] Murray JL, Phase Diagrams Binary Copper Alloys. Materials Park (OH): ASM International; 1994, 447
    [105] Raub E, Walter P, Engel M. Z Metallkde, 1952, 43: 112
    [106] Basu Joysurya, Murty B S, Ranganathan S. Glass Forming Ability: Miedema Approch to (Zr, Ti, Hf)-(Cu, Ni). J. Alloy. Compd., 2008, 465:163~172
    [107] Sheng H W, Luo W K, Alamgir F M, Bai J M, Ma E. Atomic Packing and Short-to-Medium-Range Order in Metallic Glasses. Nature, 2006, 439: 419~425
    [108] Zhang Q, Lai W S, Liu B X. Strain-Induced Structural Phase Transition of a Ni Lattice through Dissolving Ta Solute Atoms. Phys. Rev. B, 2001, 63(21): 212102~212105
    [109] K Masuda-Jindo, Nishitani S R, Hung V V. Hcp-Bcc Structural Phase Transformation of Titanium: Analytic Model Calculations. Phys. Rev. B, 2004, 70(18): 184122~184131
    [110] Nishitani S R, Kawabe H, Aoki M. First-principles Calculations on Bcc-Hcp Transition of Titanium. Mater. Sci. Eng. A, 2001, 312: 77~83
    [111] Dang P, Grujicic. An Atomistic Simulation Study of the Effect of Crystal Defects on the Martensitic Transformation in Ti-V Bcc Alloys. Modelling Simual. Mater. Sci. Eng., 1996, 4: 123~136
    [112] Van de Waal B W. Static relaxation of Bcc Crystal Fragments Using a Lennard-Jones Potential: Transition to Hexagonal or Cubic Close Packing. J. Crystal. Growth, 2007, 309: 181~191
    [113] Mao H K, Bassett W A, Takahashi T. Effect of Pressure on Crystal Structure and Lattice Parameters of Iron up to 300 kbar. J. Appl. Phys., 1967, 38: 272~276
    [114]惠希东,陈国良.块体非晶合金.化学工业出版社, 2007, p1.
    [115] Chen H S, Krause J T, Coleman E. Elastic Constants, Hardness and Their Implications to Flow Properties of Metallic Glasses. J. Non-Cryst. Solid., 1975, 18: 157~172
    [116] Drehman A L, Greer A L, Turnbull D. Bulk Formaiton of a Metallic-glass-Pd40Ni40P20. Appl. Phys. Lett., 1982, 41: 716~717
    [117] Kui W H, Greer A L, Turnbull D. Formation of Bulk Metallic-Glass by Fluxing. Appl. Phys. Lett. 1984, 45: 615~616
    [118] Xu D, Lohwongwatana B, Duan G, Johnson W L, Garland C. Bulk Metallic Glass Formation in Binary Cu-rich Alloy Series Cu100-xZrx (x = 34, 36, 38.3, 40 at.%) and Mechnical Properties of Bulk Cu64Zr35 Glass. Acta Mater., 2004, 52: 2621~2624
    [119] Inoue A, Zhang W, Zhang T, Kurosaka K. High-Strength Cu-based Bulk Glassy Alloys in Cu-Zr-Ti and Cu-Hf-Ti Ternary systems. Acta Mater. 2001, 49: 2645~2652
    [120] Han X J, Teichler H. Liquid-to-glass Transition in Bulk Glass-Forming Cu60Ti20Zr20 Alloy by Molecular Dynamics Simulations. Phys. Rev. E, 2007, 75: 061501~061515
    [121] Ansara I, Pasturel A, Buschow K H J. Enthalpy Effects in Amorphous-Alloy and Intermetallic Compounds in the System Zr-Cu. Phys. Status. Solidi (a)., 1982, 69: 447~453
    [122] Nevitt M. Trans AIME 1962, 224: 195
    [123] Zeng KJ, H?m?l?inen M, Lukas H L. A New Thermodynamic Description of the Cu-Zr System. J. Phase. Equilib., 1994, 15: 577~586
    [124] Forey P, Glimois J L,. Feron J L. Structural Study of Ternary (Ni1-xCux)5Zr Alloys. J. Less-Common. Met., 1986, 124: 21~27
    [125] Sabochick M J, Lam N Q. Radiation-Induced Amorphization Ordered Intermetallic Compiunds CuTi, CuTi2, and Cu4Ti3: A Molecular-Dynamics Study. Phys. Rev. B, 1991, 43: 5243~5252
    [126] Ikehata H, Nagasako N, Furuta T, Fukumoto A, Miwa K, Saito T. First-Principle Calculations for Development of Low Elastic Modulus Ti Alloys. Phys. Rev. B, 2004, 70: 174113~174120
    [127] Concusell A, Zielinska M, et, al. Thermal Characterization of Cu60ZrxTi40-x Metallic Glasses (x = 15, 20, 22, 25, 30). Intermet. 2004, 12: 1063~1067
    [128] Men H, Pang S J, Zhang T. Glass-Forming Ability and Mechanical Properties of Cu50Zr50-xTix Alloys. Mater. Sci. Eng. A, 2005, 408: 326~329
    [129] Chou H S, Huang J C, Chang L W, Nieh T G. Structure Relaxation and Nanoindentation Response in Zr-Cu-Ti Amorphous Thin Films. Appl. Phys. Lett. 2008, 93: 191901~191903
    [130] Egami T. Atomistic Mechanism of Bulk Metallic Glass Formation. J. Non-Cryst. Solid, 2003, 317: 30~33
    [131] Liu B X, Johnson W L, Nicolet M A, Lau S S.Structural Differernce Rule for Amorphous Alloy Formation by Ion Mixing. Appl. Phys. Lett. 1983, 42: 45~47

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700