β-环糊精修饰金电极的制备及其在电化学分析中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超分子化学在电化学方面的研究在近几年已开始兴起,并成为电化学分析研究的前沿课题之一。环糊精作为第二代超分子的构筑体,其内腔疏水而外部亲水,可以与许多有机、无机和生物分子形成包合物,从而成为超分子化学工作者感兴趣的研究对象。目前,在研究环糊精在电极表面的自组装行为、利用环糊精构造超分子器件等方面都取得了较好的进展。本论文围绕环糊精超分子体系在电化学分析方面的研究,作了以下研究工作:
     (1)用紫外-可见光谱分析了环糊精能与偶氮苯形成包合物。制备了磺酰化-β-环糊精修饰金电极,利用环糊精的超分子特性研究了该修饰电极在痕量测量中的应用。结果表明该电极灵敏性较高,且对环境无污染。
     (2)用光谱法研究了环糊精与对苯醌和蒽醌的相互作用,结果表明在自由状态下两种醌都能和环糊精形成包结物,但对苯醌与环糊精的包结比为1:1,蒽醌与其包结比为1:2,为进一步试验做好了准备。
     (3)研究了一种制备环糊精修饰金电极的新途径。该方法操作较简单,原料价格较便宜,周期较短。修饰电极上的环糊精能与偶氮苯发生包合反应,表明该修饰电极可进一步用做环糊精自组装膜传感器的研究与应用。
     (4)运用第四章所制备的环糊精修饰金电极,讨论了环糊精修饰金电极作为分子尺寸选择性传感器的可能性,说明只有尺寸小于环糊精空腔尺寸的分子,才能够检测出来,所以该修饰电极可用于构筑分子尺寸选择性传感器。
The chemists in electroanalysis had attached the importance to supramolecular chemistry recently. Cyclodextrins with interior hydrophobic and exterior hydrophilic environment can accommodate organic, inorganic and biological molecules, therefore they have been paid much attention by the researchers of supramolecular chemistry. At present, there are developments in the study on the CD self-assembly behavior on the electrode surface and the construction of supramolecular devices with CDs. In this thesis, following researches are carried out in electroanalysis of CD supramolecular chemistry:
     (1) The interaction betweenβ-cyclodextrin and azobenzene was researched by Uv-vis spectroscopy, then fabricated the 6-OTs-β- cyclodextrin modified Au electrode and employed it to detect low concentration azobenzene. The results suggested that the detection sensitivity was high enough, and it was nonpoisonous.
     (2) From Uv-vis spectroscopy it can be seen that both benzoquinone and anthraquinone could be included by freeβ-cyclodextrin, but twoβ-cyclodextrin molecules only can included one anthraquinone molecules.
     (3) A new method for fabrication ofβ-cyclodextrin modified Au electrode was found. This method was easy, inexpensive and time saving. The cyclodextrin mondified on Au electrode could included azobenzene, so the modified Au electrode may be used as self-assembled monolayer sensors.
     (4) MCT-β-cyclodextrin modified Au electrode was used to investigate the solution of benzoquinone and anthraquinone, the results suggested that only proper size could be included by immobilizedβ-cyclodextrin, Soβ-cyclodextrin modified Au electrode has the probability to be used in fabrication of molecular size selective sensors.
引文
[1] Lehn J M. Supramolecular chemistry-scope and perspectives mole- cules, supramolecules, and molecular devices [J]. Angewandte Chemie International Edition, 1988, 27(1): 89~112.
    [2] Lehn J M. Inclusion Phenomena and Molecular Recognition in Chemistry[J]. Phys.Chem.B, 1988, 6:351~362.
    [3] Vortle F.超分子化学(张希,林志宏,高蒨)[M].长春,吉林大学出版社, 1995:119~130.
    [4] Liu L, Guo Q X. Novel prediction for the priving force and guest orientation in the complexation ofα- andβ-cyclodextrin with benzene derivatives[J]. J.Phys.Chem.,B, 1999, 103(17):3461~3467.
    [5]孙小强,孟启,阎海波编.超分子化学导论[M].第一版,中国石油化学出版社,1997,104~109.
    [6] Lee J Y, Park S M. Electrochemistry of Guest Molecules in Thiolated Cyclodextrin Self-Assembled Monolayers: An Implication for Size-Selective Sensors[J]. Phys.Chem.B, 1998,102:9940~9947.
    [7]郭忠先,沈含熙.卟啉及其类似物超分子功能的分析应用[J].分析化学,1998,26(2):226~230.
    [8] Ammann D, Lauter F. Ion-selective Microelectrodes and Their Use in Excitable Tissues[M]. Lenum Press, New York, London, 1981, 341~346.
    [9] Kessler M, Clark K C,Lubbers J D W, et al. Ion and Enzyme electrodes in Biology and Medicine[C]. Urban and Schwarzenberg, Munich. Berlin, Vienna,1976, 116~123.
    [10] Kataky R, Pauls S, David P, et al Functionalizedα-cyclodextrins as Potenctiometric chiral sensors[J]. Analyst, 1992, 117: 1313~1321.
    [11] Kutner W. Condensiationα-CD Polymer membrame with Covalently Immobilied Glucose Oxidase and Molecularly Included Mediator for Amperometric Glucose Biosensors[J]. Electroanalysis, 1994, 6(11/12):934~941.
    [12] Cram D J. The design of molecular hosts, guests and their complexes [J]. Science, 1988,240: 760~765.
    [13] Liu L, Guo Q X. Novel prediction for the priving force and guest orientation inthe complexation ofα- andβ-cyclodextrin with benzene derivatives[J]. J.Phys.Chem.B, 1999, 103(17): 3461~3469.
    [14] Jean M J.超分子化学——概念与展望[M].北京.北京大学出版社, 2002, 1~17.
    [15] Bortolus P, Marconi G, Monti S, et al. Chiral discrimination of camphor quinoneen antiomers by cyclodextrins: a spectroscopic and photophysical study[J]. The Journal of Physical Chemistry A, 2002, 106(9): 1686~1693.
    [16] Fanali S. Identification of chiral drug isomers by capillary electrophoresis[J].Journal of Chromatography A, 1996, 735(1-2): 77~121.
    [17] Wang J J, Zheng G J, Yang L, et al. Enantioselective separation of epoxides by capillary electrophoresis employing sulfatedβ-cyclodextrin as chiral selector[J].The Analyst, 2001, 126(4): 438~440.
    [18] Tetsuo K, Kazuyo S, Hiroki N. Host-Guest Complexation Affected by pH and Length of Spacer for Hydroxyazobenzene-Modified Cyclodextrins[J]. J. Phys. Chem. A, 2006, 110: 13521~13538.
    [19] Valerian T, Souza D, Kenny B L. Cyclodextrins: Introduction [C]. Chemical Reviews, 1998,98(5):1741~1748.
    [20] Maribel A, Katrin G, George M. Effect of Peracylation of a-Cyclodextrin on the Molecular Structure and on the Formation of Inclusion Complexes: An X-ray Study[J]. J. Am. Chem. Soc. 2001, 123, 11854~11863.
    [21]杨郁.基于环糊精衍生物的新型超分子化学传感器的研究[D].长沙:湖南大学化学化工学院分析化学系,2005.
    [22] Chen E T Y, Pardue H L. Kinetic method for the quantitative resolution of structural isomers based on the catalytic properties ofβ-cyclodextrin[J]. Analytical Chemistry, 1994, 66(20): 3318~3325.
    [23] Brochsztain S, Rodrigues M A, Politi M J. Inclusion complexes of naphtha-limide derivatives with cyclodextrins[J]. Journal of Photochemistry and Photob-iology A: Chemistry,1997,107(1-3): 195~200.
    [24] Hamada F, Ishikawa K, Tamura I, et al. Molecular-recognition and sensory system ofβ-cyclodextrin capped by sodium anthranilate[J]. Analytical Science,1995, 11(6): 935~940.
    [25] Samal S, Geckeler K E. Cyclodextrin-fullerenes: a new class of water-soluble fullerenes[J]. Chemical Communications, 2000, 13: 1101~1102.
    [26] Berthod A, Chang S S C, Kullman J P S, et al. Practice and mechanism ofHPLC oligosaccharide separation with a cyclodextrin bonded phase[J]. Talanta, 1998, 47(4): 1001~1012.
    [27] Rusa C C, Rusa M, Gomez M, et al. Nanostructuring high molecular weight isotactic polyolefins via processing withγ-cyclodextrin inclusion compounds. formation and characterization of polyolefin-γ-cyclodextrin inclusion compounds[J]. Macromolecules, 2004, 37(21): 7992~7999.
    [28] Zhu X, Chen L, Yan D, et al. Supramolecular self-assembly of inclusion complexes of a multiarm hyperbranched polyether with cyclodextrins[J].Langmuir, 2004, 20(2): 484~490.
    [29] Okumura H, Kawaguchi Y, Harada A. Preparation and characterization of inclusion complexes of poly(dimethylsiloxane)s with cyclodextrins[J]. Macromolecules, 2001, 34(18):6338~6343.
    [30] Huang L, Allen E, Tonelli A E. Study of the inclusion compounds formed betweenα-cyclodextrin and high molecular weight poly(ethylene oxide) and poly(ε-caprolactone)[J]. Polymer, 1998, 39(20): 4857~4865.
    [31] Valero M, Carrillo C. Effect of binary and ternary polyethyleneglycol and/or cyclodextrin complexes on the photochemical and photosensitizing properties of naproxen[J]. Journal of Photochemistry and Photobiology B: Biology, 2004,74(2-3): 151~160.
    [32] Escandar G M, Boldrini M A. Room-temperature phosphorescence of 6-bromo-2-naphthol included inβ-cyclodextrin in the presence of cyclohexane[J]. Talanta, 2001, 53(4): 851~856.
    [33] Yang H, Bohne C. Effect of amino acid coinclusion on the complexation of pyrene withβ-cyclodextrin[J]. Journal of Physical Chemistry, 1996, 100(34):14533~14539.
    [34] Li J S, Xiao H N. An efficient synthetic-route to prepare [(2,3,6-tri-O-2-bromo-2-methylpropionyl)-β-cyclodextrin][J]. Tetrahedron Letters, 2005, 46(13): 2227~2229.
    [35] Carofiglio T, Fornasier R, Lucchini V. Very strong binding and mode of complexation of water-soluble porphyrins with a permethylatedβ-cyclodextrin[J]. Tetrahedron Letters, 1996, 37(44): 8019~8022.
    [36] Liu Y, Yang E C, Yang Y W, et al. Thermodynamics of the molecular and chiral recognition of cycloalkanols and camphor by modifiedβ-cyclodextrins possessing simple aromatic tethers[J]. Journal of Organic Chemistry, 2004,69(1):173~180.
    [37] Nishi H. Enantiomer separation of drugs by electrokinetic chromatography[J]. Journal of Chromatography A, 1996, 735(1-2): 57~76.
    [38] Crini G. Studies on adsorption of dyes on beta-cyclodextrin polymer[J]. Bioresource Technology, 2003, 90(2): 193~198.
    [39] Krieg H M, Breytenbach J C, Keizer K. Chiral resolution byβ-cyclodextrin polymer-impregnated ceramic membranes[J]. Journal of Membrane Science, 2000,164(1-2): 177~185.
    [40] Tsai H A, Syu M J. Synthesis of creatinine-imprinted poly(β-cyclodextrin) for the specific binding of creatinine[J]. Biomaterials, 2005, 26(15): 2759~2766.
    [41] Egawa Y, Shimura Y, Nowatari Y, et al. Preparation of molecularly imprinted cyclodextrin microspheres[J]. International Journal of Pharmaceutics, 2005,293(1-2): 165~170.
    [42] Matsushita A, Kuwabara T, Nakamura A, et al. Guest-induced colour changes and molecule-sensing abilities of p-nitrophenol-modified cyclodextrins[J]. Journal of Chemical Society, Perkin Transactions 2, 1997, 9: 1705~1710.
    [43] Kuwabara T, Takamura M, Matsushita A, et al. Phenolphthalein- modified-β-cyclodextrin as a molecule-responsive colorless-to-color change indicator[J]. The Journal of Organic Chemistry, 1998, 63(24): 8729~8735.
    [44] Alarie J P, Vo-Dinh T. A fiber-optic cyclodextrin-based sensor[J]. Talanta, 1991,38(5): 529~534.
    [45] Pierre M. Bersier, Jacques Bersier and Berned Klingert. Electrochemistry of Cyclodextrin Inclusion Complexes[J]. Electroanalysis, 1991,3:443~455.
    [46]董绍俊,张东波.环糊精包络物的循环伏安法研究[J].化学学报,1988,46:335~339.
    [47] Kataky R, Paul S, David P. Functionalizedα-cyclo- dextrins as Potentiometric Chiral Sensors[J]. Analyst, 1992,117:1313~1317.
    [48]吴宝璋、吴辉煌.环糊精聚合物与对苯醌的分子包合作用及其在酶电极中的应用[J].化学学报,1998,56:364~370.
    [49] Kutner W. Condensationα-CD polymer membrane with covalently immobilized glucose oxidase and molecularly included mediator for amperometric glucose biosensor[J]. Electroanalysis, 1994,6:934~944.
    [50]吴宝璋、吴辉煌.环糊精聚合物的分子包合作用及其在酶电极中的应用[J].电化学,1998,4(2): 210~216.
    [51] Ng S C, Sun T, Chan H S O. Chiral discrimination of enantiomers with a self-assembled monolayer of functionalizedβ-cyclodextrins on Au surfaces[J]. Tetrahedron Lett, 2002, 43(15): 2863~2866.
    [52] Almiral E, Fragoso A, Cao R. Molecular recognition of a self- assembled monolayer of a polydithiocarbamate derivative ofβ-cyclodextrin on silver. Electrochem[J]. Commun., 1999, 1(1):10~13.
    [53] Li M X, Li N Q, Gu Z N, et al. Electrocatalysis of cytochrome c at a C60-γ-cyclodextrin and Nafion chemically modified electrode[J]. Talanta, 1998,46(5): 993~997.
    [54] He P G, Ye J N, Fang Y Z, et al. Voltammetric responsive sensors for organic compounds based on organized self-assembled lipoyl-β-cyclodextrin derivative monolayer on a gold electrode[J]. Anal. Chim. Acta., 1997, 337(2): 217~223.
    [55] Wang Y, Kaifer A. Interfacial molecular recognition binding of ferrocene carboxylate toβ-aminocyclodextrin hosts electrostatically immobilized on a thioctic acid monolayer[J]. J. Phys. Chem. B, 1998, 102(49): 9922~9927.
    [56] Souza D, Hsieh Y Y, Wickman H, et al. New sensor for dissolved dioxygen: a gold electrode modified with a condensation polymer film ofβ-cyclodextrin hosting cobalt tetraphenyl porphyrin[J]. Chemical Communications, 1997, 13:1191~1192.
    [57] Chen Q, Pamidi P V A, Wang J, et al.β-cyclodextrin cation exchange polymer membrane for improved second-generation glucose biosensors[J]. Anal. Chim. Acta,1995, 306(2-3): 201~208.
    [58] Kataky R, Toth K, Palmer S, et al. A study of the effect of proteins and endogenous cations on a lipophilicβ-cyclodextrin-based potentiometric lidocaine sensor using discrete solution and flow-injection analysis[J]. Talanta,1999, 50(5): 939~946.
    [59] Gafni A, Cohen Y, Kataky R, et al. Enantiomer discrimination using lipophilic cyclodextrins studied by electrode response, pulsed-gradient spin-echo(PGSE)NMR and relaxation rate measurements[J]. Journal of Chemical Society, Perkin Transactions 2, 1998, 1: 19~24.
    [60] Parker D, Kataky R, Kelly P M, et al. Selectivity in the binding and detection of charge diffuse ions[J]. Pure and Applied Chemistry, 1996, 68(6): 1219~1223.
    [60] Kataky R, Palmer S, Parker D, et al. Alkylated cyclodextrin based potentiometric and amperometric electrodes applied to the measurement of ricyclic antidepressants[J]. Electroanalysis, 1997, 9(16): 1267~1272.
    [61] Kataky R, Parker D. Sensitive and specific electrochemical sensors for charge-diffuse cations: use of lipophilic cyclodextrins and an enzyme relay for the determination of acetylcholine[J]. The Analyst, 1996, 121(12): 1829~1834.
    [62] Won M S, Shim Y B. Determination of derivatives of phenol with a modified electrode containingβ-cyclodextrin[J]. Bulletin of the Korean Chemical Society, 1996, 17(4): 342~344.
    [63] Ferancova A, Korgova E, Miko R, et al. Determination of tricyclic antidepressants using a carbon paste electrode modified withβ-cyclodextrin[J]. Journal of Electroanalytical Chemistry, 2000, 492(1): 74~77.
    [64]彭清静.致癌燃料-芳香胺的致癌机理[J].染整技术,1996,18(2): 30~32.
    [65] EPA S. Solid Waste and Emergency Response. Environmental fact sheet-hazardous waste listing determination for two dye and pigment wastes(R). EPA530-F-99-037,1999.
    [66] Krause M S. Theory of square wave voltammetry[J]. Anal. Chem. , 1969, 11: 1362~1365.
    [67]欧阳玉祝,彭清静,邹晓勇,等.修饰环境对β-环糊精磺酸酯合成的影响[J].精细化工, 2000, 17(1):23~26.
    [68] Xu G, John J, Louise A, et al. Adsorptive square wave stripping voltammetry for determination of azobenzene at trace levels[J]. Anal. Chem. 1994, 66(6):808~812.
    [69]孙德志,于东,魏凤燕,等.相溶解法研究β-环糊精和偶氮苯的主-客体配合作用[J].淄博学院学报(自然科学与工程版), 2000, 2(3):58~60.
    [70] Harata K. The structure of the cyclodextrin complex [J]. Bull Chem Soc Jpn, 1988, 61(6): 1939~1946.
    [71] Nakajima A. Study of the system of pyrene andβ-Cyclodextrin in aqueous solution utilizing the intensity enhancement of phenomenon[J]. Spectrochimica Acta, 1983, 3(10):913~921.
    [72]韦寿莲,邓光辉,江云宝,等.超分子体系中醌类光还原的研究[J].分析科学学报, 2002,18(8):284~189.
    [73]吴迪,吴健.金—键自组装生物分子膜[J].化学通报,2004(2):132~137.
    [74]鲁彬,童汝亭,邧南,等.自组装巯基环肽单层膜修饰金电极电化学行为的研究[J].河北师范大学学报(自然科学版),2003,27(5):484~487.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700