变性核糖核酸酶在疏水表面置换吸附焓的微量热研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文利用高精密度的MicroDSC-Ⅲ生物微热量计测定25℃不同变性剂浓度变性核糖核酸酶A(RNase A)在疏水表面的置换吸附焓变(△H),按液/固吸附计量置换理论(SDT-A)对置换吸附焓变进行细分,同时结合摇床法测得的相应条件下吸附等温线数据,探讨各部分在吸附过程中的热力学贡献。同时配合傅立叶变换红外光谱(FTIR)、和Sapphire差示扫描量热(DSC)方法对相应条件下在疏水表面上吸附态RNase A进行的热扫描结果,综合分析RNase A在PEG-600表面疏水吸附折叠规律。
     同溶液中蛋白相比,吸附到PEG-600疏水表面后的吸附态RNase A稳定性降低。同一变性条件下的吸附态RNase A,较高表面覆盖度时的稳定性较高。表面覆盖度相同时,变性剂浓度越大,其吸附态的热稳定性越好。在天然和低变性剂浓度下,蛋白可能发生二级结构的丢失。
     随着盐酸胍浓度的增加,△H值先增大后减小。我们认为天然RNase A的放热效应是由于构象丢失过程伴随的水合作用所致,也就是ΔΗmh放热效应在总焓变ΔΗ中起主要作用;然而,RNase A在0.3 mol·L~(-1) GuHCl时表现为较大的吸热效应则是由构象丢失的诱导所致,也就是ΔΗml吸热效应在总焓变?Η中起主要作用;同一GuHCl浓度下,不同初始蛋白浓度时△H值的测定表明,天然RNase A的吸附是一个放热过程,这是因为天然吸附态蛋白发生了一些有序结构丢失,是构象丢失过程中伴随的水合作用ΔΗ_(mh)对吸附热效应起主导作用,同时天然蛋白吸附量都为负值,说明此条件下水合作用明显,溶液中的水分子以水合的形式结合到蛋白分子和填料的表面,这也与△H〈0相吻合;经0.3 mol·L~(-1) GuHCl变性的RNase A的置换吸附热效应△H在实验条件下均为正值,并随蛋白浓度的增加而降低,表明构象丢失和去水合作用(均为吸热)强于吸附亲和作用和构象丢失过程所伴随的水合作用(均为放热)。
The MicroDSC-Ⅲcalorimeter was used to measure the displacement adsorption enthalpy of Ribonuclease A (RNase A) which originally had been denatured by various concentrations of guanidine hydrochloride (GuHCl) mixing with moderately hydrophobic PEG packings in 1.5 mol.L-1 ammonium sulfate ((NH4)2SO4) salt solutions at 25℃. According to the△H which was divided into four enthalpy fractions by stoichiometric displacement theory (SDT) and adsorption isotherm data, the thermodynamic contribution of enthalpy fractions was discussed. The adsorption folding law also was analyzed by CD、FTIR and DSC.
     The thermal stability of adsorbed RNase A was decreased comparing with in the solution and adsorbed RNase A was more stable in higher surface coverage or higher GuHCl concentrations when the other factor is fixed. Conformational loss may occurred on adsorbed RNase A at zero and lower concentrations of GuHCl.
     The△H values increase first and then decrease with the increment of GuHCl concentration whether the concentrations of adsorbed RNase A was 0.4、0.7 or 1.0 mg.ml~(-1). An exothermic effect for native RNase A is mainly attributed mainly to hydration associated with conformational loss, based on the thermal analysis of enthalpy fractions of protein adsorption, it was expressed asΔΗmh in the enthalpy fractions, while a great endothermic effect for 0.3 mol/L GuHCl is induced by conformational structure loss which was denotedΔΗml in the enthalpy fractions.
     The measured△H values of RNase A in the same GuHCl concentrations and various RNase A concentrations showed that the adsorption process of native RNase A is exothermic. That’s because conformational loss occurred on adsorbed native protein and hydration associated with conformational loss (ΔΗ_(mh)) were predominant for the endothermic effect. The adsorbed amount is negative under this condition, so the water molecules were obviously combined with the protein molecules and packings on the surface, which was identical with the negative△H. The△H values of denatured RNase A by 0.3 mol/L GuHCl are all positive and decrease with increase of surface coverage, indicating that conformational loss and dehydration may be prior to adsorption affinity and hydration associated with conformational loss.
引文
[1]. 耿信笃,白泉,王超展编.蛋白折叠液相色谱法[M]. 北京:科学出版社,2006,p70
    [2]. 耿信笃,常建华,李华儒等.用制备型高效疏水色谱对复性和预分离重组人干扰素-gamma[J].高技术通讯,1991,7:1-8.
    [3]. 刘彤.蛋白复性及同时纯化理论、装置及应用. 西北大学,博士学位论文[D],1999,47-59.
    [4]. 张耀东,张丽华,耿信笃.人干扰素-r基因工程大肠杆菌的培养及其产物的纯化与复性[J].生物工程学报, 1999, 15(2): 240-243.
    [5]. Xindu Geng,Quan Bai,Yangjun Zhang,Xiang Li,Dan Wu .Refolding and purification of interferon-gamma in industry by hydrophobic interaction chromatography[J].Biotechnology, 2004, 113:137-149.
    [6]. 白泉,孔宁等. 还原型牛胰岛素在疏水界面上的折叠[J],西北大学学报, 2000, 30(2):127-130.
    [7]. 黄亚渝,童卫,郭立安,耿信笃. 还原变性核糖核酸酶的高效液相色谱复性[J]. 第四军医大学学报.2005,26 (15):1423-1426.
    [8]. Li-Xu Wang, Yuqing Wu.Filip Meersman. Two-dimensional correlation infrared spectroscopic study on the conformational changes occurring in the thermally induced pretransition of ribonuclease A[J]. Journal of Molecular Structure.2006.
    [9]. 萨楚尔夫 , 罗辽复. 蛋白质变性的渐变模型[J]. 内蒙古师范大学学报自然科学(汉文) 版.2002,31(1):26-30.
    [10]. 张静. 溶质自由能分量和蛋白在液/固界面上折叠自由能的测定[D]. 西北大学博士论文,1999.
    [11]. 白泉. 生物大分子在反相液相色谱保留过程中的热力学及变性蛋白折叠的研究[D].西北大学博士论文,1997.
    [12]. 杨芳 , 梁毅 , 杨芳 ( 小 ). 脲和盐酸胍诱导溶菌酶去折叠的荧光相图法研究 [J]. 化学学报,2003,6,803~807.
    [13]. 张会芳. 胍变溶菌酶在疏水色谱表面折叠焓变的微量热研究[D].西安工程科技学院, 硕士论文,2004.
    [14]. Larsericsdotter H., Oscarsson S., Buijs J.. Thermodynamic analysis of lysozyme adsorbed to silica[J]. J.Colloid Interface Sci., 2004,276:261.
    [15]. Vermonden T., Giacomelli C.E., Norde W.. Reversibility of structural rearrangements in Bovine serum albumin during homomolecular exchange from AgI particles[J]. Langmuir, 2001,17:3734
    [16]. Vermeer A.W.P.,Norde,W.. Influnce of the binding of low molecular weight surfactants on the thermal stabilities and secondary structure of IgG[J]. Colloids and Surfaces A,2000,1611:139.
    [17]. Galistteo F.,Norde W.,Adsorption of lysozyme and -lactalbumin on poly (styrensulphonate)lattices 1.Adsorption and desorption behaviour[J].Collids and Surfaces B:Biointerfaes,1995,4:375-387.
    [18]. Helen L.,Sven O.,Jos B.,Thermodynamic analysis of lysozyme adsorbed to to silica[J].Collid and Interface Science. 2004, 276: 261-268.
    [19]. Huang H.M.,Lin F.Y.,Chen W.Y.,et al.. Isothermal Titration Microcalorimetric Studies of the Effect of Temperature on Hydrophobic Interaction between Proteins and Hydrophobic Adsorbents[J]. J.Colloid Interface Sci.2000,229:600
    [20]. Tsai Y.S.,Lin F.Y.,Chen W.Y.,et al.. Isothermal titration microcalorimetric studies of the effect of salt concentrations in the interaction between proteins and hydrophobic adsorbents[J]. Colloids and Surfaces A, 2002,197:111.
    [21]. 边六交,耿信笃.疏水界面上标准蛋白质吸附等温线的研究[J].高等学校化学学报.1995,16:201-205.
    [22]. Geng X.P., Zhang H.F., Wang B.H.,et al.. Calorimetic Determination of Enthalpies of Lysozyme Folding at a Liquid-Solid Interface[J]. J. Therm. Anal. & Calor.,2005,82 (1):193
    [23]. Geng Xin-peng,Zhang Hui-fang,Wang Bao-huai, et al. Microcalorimetric determination of displacement adsorption enthalpies of protein refolding on hydrophobic surface at 308K[J]. J. Therm. Anal. and Calor.2006.85(3):601-608.
    [24]. Geng Xin-peng,Wu Ya-ni,Song Ji-rong,et al.Effect of salt concentrations on the displacement adsorption enthalpies of denatured protein folding at hydrophobic surface[J]. J. Therm. Anal. and Calor. 2006, 85(3): 593-600.
    [25]. X.P Geng, M.R Zheng, Y.N Wu,Z.M Lei and X.D Geng. Study on Thermal Stability of Lysozyme Adsorption on Hydrophobic Packing Surface[C].19th International Conference on Chemical Thermodynamics(ICCT), 2006, P36.
    [26]. 雷祖猛, 耿信鹏, 戴丽, 耿信笃.疏水表面上吸附态溶菌酶的 DSC 研究[C].第十三届全国化学热力学和热分析学术会议.河南, 2006,p167.
    [27]. 耿信鹏, 郑美荣, 王保怀,耿信笃,刘爱玲.天然溶菌酶在疏水表面置换吸附焓的盐浓度影响研究[C]. 第十三届全国化学热力学和热分析学术会议.河南,2006,p209.
    [28]. Geng X P, Zheng M R, Wang B H, Dai L, Geng X D. Thermodynamics of Denatured Lysozyme Adsorbed onto Hydrophobic Surface[C]. 12th IACIS International Conference on Surface and Colloid Science. October 15-20, 2006,Beijing, China.
    [29]. Geng X P, Zheng M R, Wang B H, Liu A L, Lei Z M, Geng X D. Fractions of Thermodynamic Functions of Native Lysozyme Adsorbed onto Hydrophobic Surface[C]. 12th IACIS International Conference on Surface and Colloid Science. October 15-20, 2006,Beijing, China.
    [30]. 吴雅妮.盐浓度和温度对变性溶菌酶在液固界面置换吸附焓的影响研究[D].西安工程大学, 硕士论文,2005.
    [31]. 吴雅妮,耿信鹏,陈立成,耿信笃,邢建伟. 溶菌酶在疏水表面的吸附研究[J].纺织高校基础科学学报,2005,19(1):1-6.
    [32]. 张 颖 李伟军. 核糖核酸酶特殊生物学功能及药理作用研究新进展[J]. 生物医学工程学杂志. 2001; 18 (3) ∶456-460.
    [33]. 阎隆飞 ,孙之荣. 蛋白质分子结构[M],北京:清华大学出版社,1999.
    [34]. 卡尔.布兰登, 约翰.图兹著. 王克夷, 龚祖埙译. 蛋白质质结构导论[M]. 上海:上海科学技术出版社,2007.
    [35]. Linderstrom-Lang, K. U. . The Lane Medical Lectures[M]. Stanford University Press.1952, 58-65.
    [36]. Huang Yan-zhao , Xiao Yi. Nonlinear dynamics approach to the correlation analysis of protein sequences[J]. Chinese Physics Letters. 2002,19(3):434-436.
    [37]. Yanzhao Huang, Yi Xiao. Nonlinear deterministic structures and the randomness of protein sequence Chaos[J]. Solitons & Fractals,2003,17:895-900.
    [38]. 宗小红,铜离子和 pH 对再生丝素蛋白二级结构的影响[D]. 复旦大学. 博士学位论文,2004.
    [39]. 黄汉昌,姜招峰,朱宏吉. 紫外圆二色光谱预测蛋白质结构的研究方法[J].化学通报. 2007, 7: 501-506
    [40]. 郭大东,高雪芹,韩金祥. 人巨细胞病毒融合蛋白pp150/MDBP二级结构及其抗原表位预测[J]. 生物医学工程学杂志. 2007, 24 (5) ∶1123-1127
    [41]. Gronemeyer H, Garnier J M, Turcotte B, et al. The chicken progesterone receptor: sequence, expression and functional analysis[J].EMBO Journal,1987, 6:3985-94.
    [42]. 李明峰. 蛋白质序列和结构关系研究[D]. 华中科技大学,硕士学位论文,2005
    [43]. 钱敏,李关荣,鲁成.核糖核酸酶研究进展[J].蚕业科学.2004 ,30 (2):185-190.
    [44]. J. Pous, G. M. Fernández, R. Peracaula. et al..Three-dimensional structure of human RNase 1 N7 at 1.9 ? resolution[J]. Acta Crystallographica Section D,2001 ,57 : (4) :498.
    [45]. 李敏,杨晓慧,耿信笃.高效疏水色谱法对还原变性核糖核酸酶的折叠研究[J]. 西安文理学院学报:自然科学版,2006,9(2):18-21.
    [46]. 谭培生.核糖核酸酶 A 的体外重折叠过程研究[D].浙江大学,硕士学位论文,2006.
    [47]. Chung-Yi Hsu, Hung-Yin Lin , James L. Thomas, Bo-Tan Wu , Tse-Chuan Chou. Incorporation of styrene enhances recognition of ribonuclease A by molecularly imprinted polymers[J]. Biosensors and Bioelectronics 22 (2006) 355-363.
    [48]. Anfinsen C B, Scheraga H A. Experimental and theoretical aspects of protein folding[J]. Adv. Protien Chem., 1975,29:1823.
    [49]. Levinthal C. Are there pathways for protein folding? [J]. J. Chim. Phys., 1968, 65:44.
    [50]. 潘继承,精氨酸激酶的折叠及其部分结构的研究[D]. 清华大学,博士学位论文,2004.
    [51]. 刘玲玉,蛋白质折叠得研究进展[J].内蒙古农业科技.2003(S2):50-54.
    [52]. X. P. Geng, M. R. Zheng, B. H. Wang, Z. M. Lei and X. D. Geng. Fractions of Thermodynamic Functions for Native Lysozyme Adsorption onto Moderately Hydrophobic Surface[J]. Journal of Thermal Analysis and Calorimetry. 2008.(印刷中)
    [53]. X.D. Geng, Y.L. Shi. A stoichiometric displacement model of solute adsorption in liquid-solid system. [J].Sci.China(Series B)32(1989)11.
    [54]. 陈禹银,耿信笃.液-固吸附体系中计量置换吸附模型的热力学研究[J].高等学校化学学报,14, (1993), 10,1432-1436.
    [55]. X.P. Geng, Y.N. Wu, J.R. Song, X.D. Geng, J.W. Xing and Z.M. Lei. Effect of salt concentrations on the displacement adsorption enthalpies of denatured protein folding at hydrophobic surface [J]. J.Therm. Anal.Cal., 85(2006)593.
    [56]. X.P. Geng, Y.N. Wu, B.H Wang, H.F. Zhang, X.D. Geng, J.W.Xing. Microcalorimetric determination of displacement adsorption enthalpies of protein refolding on hydrophobic surface at 35℃[J]. J.Therm.Anal.Cal., 85(2006)601.
    [57]. 郑美荣. 天然溶菌酶在疏水表面置换吸附焓变的微量热研究[D]. 西安工程大学,硕士学位论文,2007.
    [58]. 雷祖猛. 盐浓度对溶菌酶在疏水表面折叠吸附的影响研究[D]. 西安工程大学,本科毕业论文,2005
    [59]. 雷祖猛,耿信鹏,戴丽,耿信笃. 疏水表面上吸附态溶菌酶的 DSC 和 FTIR 研究.光谱学与光谱分析,2008 (印刷中).
    [60]. 黄汉昌,姜招峰,朱宏吉. 紫外圆二色光谱预测蛋白质结构的研究方法[J].化学通报. 2007, 7: 501
    [61]. Haynes C.A., Sliwinsky E., Norde W.. Structural and electrostatic properties of globular proteins at a polystyrene–water interface [J]. J. Colloid Inter. Sci., 1994,164:394
    [62]. Haynes C.A., Norde W. . Structures and Stabilities of Adsorbed Proteins [J]. J.Colloid Inter. Sci., 1995,169: 313
    [63]. 傅亚珍. 水合溶菌酶肽链伸展的 DSC 研究 [J]. 科学通报.1994,39(15): 1420
    [64]. Sane S.U., Cramer S.M., Przybycien T. M. Protein structure perturbation on chromatographic surfaces[J].N.Y.USA, Journal of Chromatography A, 849, (1999), 149~159.
    [65]. 雷祖猛,耿信鹏,高环,仇英伟,刘爱玲.牛胰核糖核酸酶 A 在疏水表面的吸附等温线及 DSC和 FTIR 分析[C]. 第十一届胶体与界面化学学术会议.2007,福州.
    [66]. 王建华,卫亚丽,文宗河,何建川. 蛋白质结构的FT- IR 研究进展[J]. 化学通报. 2004, 7: 482
    [67]. 王斌,王靖,余江,刘会洲. FT-Raman光谱对蛋白质二级结构的定量分析[J]. 光谱学与光谱分析,1999,19 (4): 535
    [68]. Zu-meng Lei, Xin-peng Geng , Huan Gao, Ying-wei Qiu, Ai-ling Liu. Differential scanning calorimetry and FTIR Analysis on RNase A Adsorbed at a Moderately Hydrophobic Surface[C]. Conference of the European Colloid and Interface Society(ECIS). 2007, Geneva, Switzerland.
    [69]. Xin-peng Geng, Zu-meng Lei, Li Dai, Huan Gao,Xin-du Geng. Effect of Denaturant Concentrations and Coverage on Displacement Adsorption Enthalpies of RNase A Adsorption onto a Moderately Hydrophobic Surface[C]. Conference of the European Colloid and Interface Society(ECIS). 2007, Geneva, Switzerland.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700