还原变性核糖核酸酶的液相色谱折叠法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文利用计量置换参数Z表征了不同变性态溶菌酶在弱阳离子交换色谱上的构象变化规律。在此基础上对还原变性核糖核酸酶在离子交换色谱(IEC),疏水色谱(HIC)及排阻色谱(SEC)中的复性进行研究。
     全文包括五个部分:
     1.文献综述:蛋白折叠的研究具有重大的理论意义和使用价值,本文对蛋白复性的基本策略,及在这些基本策略下发展出的各种复性方法及进展进行了全面地综述。
     2.以计量置换理论(stoichiometric displacement theory for retention,SDT-R)为基础,以溶菌酶(Lys)为目标蛋白,用SDT-R中的参数Z和logI对弱阳离子交换色谱(WCX)中“准天然态”和脲变还原与非还原两种变性状态Lys的分子构象变化进行了表征。发现在流动相中含有脲时,蛋白的保留仍服从SDT-R理论,可准确测定在该特定脲浓度条件下Lys的Z及logI值。结果表明,3种分子构象状态下的Z值均随脲浓度的改变呈现不连续变化;“准天然态”Lys在不同脲浓度条件下的Z值比变性状态的大,logI比变性状态的小,而非还原变性态和准天然态的Z和logI值比较接近。还对不同脲浓度条件下Lys的Z值与活性回收率之间的关系进行了研究。
     3.用WCX对还原变性的核糖核酸酶A(RNase A)的复性进行了研究。考察了流动相中脲浓度及盐种类对用WCX复性RNase A的影响,结果表明当流动相中含有1.0-2.0mol/L的脲时能提高其生物活性回收率。在此WCX柱上,天然RNase A的保留呈现离子交换和疏水双保留机理。研究了固定相对WCX复性RNase A的影响,比较了以硅胶基质,凝胶基质及聚合物基质三种WCX固定相填料对于RNase A复性的影响,其有各自的优点。发现在硅胶基质的WCX柱上,蛋白浓度高达30.00mg/mL时,可获得活性回收率达84.70%的复性效果。同时考察了流动相组成,脲浓度、pH值、流速和复性时间等对复性的影响。
     4.研究了还原变性RNase A在疏水色谱(HIC)上的复性情况。在蛋白浓度为
    
     3.omg/mL时可以达到80%以上,但在更高的蛋白浓度时其复性效率显著降低。
     还考察了流动相组成,脉浓度、pH值、流速和复性时间等对复性的影响。
    5.研究了还原变性RNaseA在尺寸排阻色谱(SEC)上的复性情况,认为SEC是一
     种较好的色谱复性方法。氧化型和还原型谷肤甘肚的加入对复性有积极作用,
     同时加入适当浓度的脉是必不可少的。脉梯度复性是一种对用SEC对蛋白复
     性法的改进,它在色谱过程中线性脱除变性剂崛,为蛋白质的再折叠提供了一
     个较温和的环境,但流速的快慢对其复性的最终效果并没有大的影响。
The stoichiometric displacement parameters Z value of Lys in different molecular states were investigated firstly and RNase A refolding by ion-exchange chromatography (IEC), hydrophobic interaction chromatography (HIC) and size-exclusion chromatography (SEC) was studied.
    The thesis includes five parts as the follows:
    1. Review: Protein folding is a subject of fundamental and practical importance. A fundamental refolding strategy was introduced. All kinds of methods and development based on the strategy were reviewed.
    2. Based on the stoichiometric displacement theory for retention (SDT-R), the parameters Z and log/ were used to characterize the molecular conformational changes of lysozyme (Lys) for different molecular conformation states (pseudo-native, urea-unfolded, urea-reduced-unfolded) under various urea concentrations in weak cation exchange chromatography (WCX). The retention of the three molecular conformations of Lys totally follow the SDT-R .The Z values of the Lys in its pseudo-native state decreased with the increasing the concentration of urea in the mobile phase and was the biggest of the three molecular conformational states, while its corresponding log/ was the least one. Both Z and log/ of the Lys in their pseudo-native and urea-unfolded states were closed with each other. The changes of Z of Lys in the three molecular conformational states with urea concentration in mobile phase were found to be
    discontinuously. The relationship between the Z value and bioactivity recovery of Lys under different urea concentrations was also investigated.
    3. Oxidative refolding of the denatured/reduced Ribonuclease A (RNase A) was investigated by using weak cation exchange chromatography (WCX) with the presence of reduced and oxidized glutathione in the mobile phase employed. Effects of urea concentration and the kind of salt on the renaturation of
    reduced/denatured RNase A were investigated. It was found that the renaturation
    
    
    
    yield was significantly related to the urea concentration, urea concentration of 1.0-2.0mol/L in the mobile phase was found to increase the bioactivity recovery. The retention mechanism of the reduced RNase A on the WCX column was proved to be a mixed mode of ion-exchange and hydrophobic interaction. With the comparison of three kinds of stationary phase of WCX with the different matrixes, such as silica, sepharose and polymer, it was found every one had its own advantage. With experimental optimization for RNase A refolding, a considerably high bioactivity yield 84.7% was obtained even though the initial concentration of RNase A was raised up to 30.0 mg/ml by using of silica matrix column. The effects of the composition of mobile phase, urea concentration, pH, flow rate and the refolding time on the RNase A refolding were investigated.
    4. Reduced /denatured RNase A was refolded by using hydrophobic interaction chromatography (HIC). The highest bioactivity yield, 86.4% was obtained from the weekly hydrophobicity of HIC column, when the loading RNase A concentration was 3.0mg/mL. The bioactivity yield decreased with the increase of the loading protein concentration. The contribution of the composition of the mobile phase, urea concentration, pH, flow rate, and refolding time to RNase A refolding were also investigated .
    5. Refolding of reduced/denatured RNase A was compared by using size exclusion chromatography (SEC). In the presence of reduced and oxidized glutathione in mobile phase is necessary. With a linear decreased urea gradient urea gradient SEC also enhanced the yield of protein refolding, it provided a suitable environment to RNase A refolding .The flow rate of mobile phase was not found to have any important effects on the bioactivity yield of RNase A.
引文
1. J K Krueger, A M Stock, C E Schutt, J B Stock, In: L.M. Gierasch and K King (eds.), Protein folding, 1990, pp, 136-142, American Association for Advances in Science, Washington
    2. F A O Marston, Biochem. J., 1986,240:1-12
    3. A Mitraki, J King, Bio/Technol.1989, 7:690-697
    4. A Mukhopadhyay, Adv. Biochem. Eng. Biotechnol., 1997, 56:61-109
    5. T Kohno, D F Carmichael, A Sommer, et al, Methods Enzymol., 1990, 185:187-195
    6. 时亚丽,马风,耿信笃.高等学校化学学报,1994,15(9):1288—1291
    7. 时亚丽,马风,耿信笃.分析化学,1994,22(7):712—715
    8. Kunitani M, Johnson D, Snyder L R. J Chromatogr, 1986, 371:313—333
    9. Lin S W, Karger B L. J Chromatogr, 1990, 499: 89—102
    10. S E Radford, C M Dobson, P A Evans, Nature, 1992, 358:302-307
    11. D A Hands, M Levitt, Trend Biotechnol., 1995, 13(1): 23-27
    12. L S Itzhaki, P A Evans, C M Dobson, et al., Biochem., 1994, 33:5212-5220
    13. 陶慰孙,李惟,姜涌明,蛋白质分子基础,北京:高等教育出版社,1995, 322.325
    14. Y Xie, D B Wetlaufer, Protein Sci., 1996, 5:517-523
    15. L Serrano, A Matouschek, A R Fersht, J. Mol. Biol., 1992, 224(3): 847-859
    16. B Robson, R H Pain, Biochem. J., 1976, 155(2): 325-330
    17. M E Goldberg, R Rudolph, R Jaenicke, Biochem., 1991, 30: 2790-2797
    18. A D Guise, S M West, J B Chaudhuri, Mol. Biotechnol., 1996, 6:53-64
    19. A Mukhopadhyay, Adv. Biochem. Eng. Biotechnol., 1997, 56: 61-109
    20. Rariy, R.V., Klibanov, A.M., Proe Natl Acad Sci USA.,1997,94:13520-13523
    21. Cleland,J.L., Randolph,T. W.,J Biol Chem.,1992,267:3147-3153
    22. Wetlaufer, D.B., Xie, Y., Protein Science., 1995,4:1535-1543
    23. Carlson, J. D., Yarmush, M. L., Bio Techology.,1992,10:86-91
    24. Ysuda, M., Murakami ,Y., Sowa, A. et al., Biochnol Prog.,1998,14:601-606
    25. Yang,H.P., Zhong,H.N., Zhou,H.M.,biochimica Biophysica Acta.,1997,1338: 147-150
    26. Buchner, J., Pastan, I., Brinkmann, U., Analytical Biochemistry., 1992, 205: 263-270
    27. Hevehan, D. L., Clark, D. B.E., Biochem bioeng.,1997,54:221-230
    28. Sparrer, H., Rutkat, K., Buchner, J., Proc Natl Acad Sci. USA., 1997,94: 1096-1098
    29. Mendoza, J. A., Rogers, E., Lorimer, G. H. et al.,J BiolChem., 1991, 266: 13044-13049
    30. Lau, C, K., Churchich, J.E., Biochimica Biophysica Acta., 1999, 1431: 282-289
    31. Karuppiah, N.,Sharma, A.,BiochembiophyRescomm., 1995,211(1): 60-66
    32. Rozema, D., Gellrnan, S.H.,Jamchemsci., 1995,117:2373-2374
    33. Rozema, D., Gellman, S.H.,J Biol Chem.,1996,271: 3478-3487
    34. Daugherty, D.L., Rozema, D., Hanson,P.E.,et al.,J BiolChem., 1998,273:33961-33971
    35. Xie. Y., Welaufer, D.B., Protein Sci., 1996, 5:517-523
    36. Umakoshi, H., Persson, J., Kroon, M.etal., J Chromtography B.,2000,743:13-19
    37. Rariy, R,V.,Klibanov, A.M.,Biotechbioeng.,1999,62(6):704-710
    38. Muzummil,S., Kumar, Y., Tayyab,S., Biochimicabiophysica
    
    Acta.,2000,1476:139-148
    39. Twshima, T., Kondo, A., FuKuda, H., ApplMicobilbiotech, 1997,48:41-46
    40. Dong, X. Y., Yang, H., Sun, Y., Biotechtechniques.,1999,13:637-641
    41.董晓燕,杨晖,甘一如等,生物工程学报,2000,16(2):169-172
    42. Shimizu, H., Fujimoto, K.,Kawaguchi, H., Colloids and surfaces B.,2000,18:137-144
    43. N K Sinha, A Light, J. Biol. Chem., 1975, 250(22): 8624-8629
    44.郭立安,高效液相色谱法纯化蛋白质理论与技术,陕西科学技术出版社,西安,1993
    45.刘彤,耿信笃,色谱,2000,18(1):30-35
    46.耿信笃,常建华,李华儒等,高技术通讯,199l,1(7):1-8
    47. X D Geng, X Q Chang, J. Chromatogr., 1992, 599:185-194
    48.耿信笃,冯文科,边六交等.中国专利,ZL92102727.3
    49.郭立安,耿信笃,生物工程学报,2000,16(6):661-666
    50. P K Jadhav, P J Ala, F J Woerner, et al., J Med Chem, 1997, 40(2), 181-191
    51. P J Ala, E E Huston, R M Klabe, et al., Biochem., 1997, 1573-1580
    52. P J Ala. R J Delossskey. E E Huston, et al., J Biol Chem.,1998: 273(20): 12325-12331
    53. P J Ala. E E Huston, R M Klabe, et al., Biochem., 1998: 15042-15049
    54.白泉,孔宇,耿信笃,高等化学学报,2002,23(8):1483-1488
    55.白泉,孔宇,耿信笃,西北大学学报,2000,30:4851-4854
    56.刘彤,西北大学博士论文,1996年
    57.耿信笃,白泉.中国科学,2002,32(5):460-471
    58. M H Werner, G M Clore, A M Gronenborn, et al., FEBS Lett., 1994, 345(2-3): 125-130
    59. B Batas, J B Chaudhuri, Biotech. Bioengineer., 1996, 50(1):16-23
    60. B Batas, H P Jones, J R Chaudhuri, J. Chromatogr., A, 1997, 766: 109-119
    61. B Batas, J B Chaudhuri, J. Chromatogra. A, 1999, 864: 229-236
    62. B Batas, C Schiraldi, J B Chaudhuri, J. Biotech., 1999, 68: 149-158
    63. E M Fahey, J B Chaudhuri, P Binding, J. Chromatogra. B., 2000,737:225-235
    64. M Carsten, R Ursula, J. Chromatogr., 1999, 855:203-213
    65.谷振宇,苏志国,化工学报,2000,5l(Suppl.):325-329
    66. C J Levinthal, J.Chem. Phys. 1968,65:44-45
    67. J Suttnar, J E Dyr, E Hamsikova, et al., J. Chromatogr. B, 1994, 656 (1):123-126
    68. G Stempfer, B Holl-Neugebauer, R Rudolph, Nat. Biotech., 1996, 14:329-334
    69. T E Creighton, D L Oxender(eds), UCLA Symposia on Molecular and Cellular Biology, new series, 1986, 39:249-257
    70. M Yoshimoto, T Shimanouchi, H Umakoshi, R Kubio, J. Chromatogr. B, 2000, 743: 93-99
    71. M Yoshimoto, R Kuboi, Biotechnol. Prog, 1999, 15: 480-487
    72. M Yoshimoto, R Kuboi, Q Yang, J Miyake, J. Chromatogr., B., 1998,712: 59-71
    73. H Shimizu, K Fujimoto, H Kawaguchi, Colloids and Surface B: Interfaces, 2000, 18:137-144
    74. A S Acharya, H Taniuchi, J. Biol. Chem., 1976, 251:6934-6946
    75. A K Ahmed, S W Schaffer, D B Wetlaufer, J. Biol. Chem. 1975, 250:8477-8482
    76. V P Saxena, D B Wetlaufer, Biochem., 1970, 9:5015-5022
    77. C J Epstein, R A Goldberg, J. Biol. Chem. 1963, 238:1380-1383
    78. C B Anfinsen. E Haber, J. Biol. Chem., 1961,236:1361-1363
    79. T Isemura, T Takagi, Y Maeda, K Imai, Biochem. Biophys. Res. Comm., 1961,
    
    5(5) : 373-377
    80. A S Acharya, H Taniuchi, J. Biol. Chem., 1976, 251: 6934-6946
    81. A K Ahmed, S W Schaffer, D B Wetlaufer, J. Biol. Chem. 1975, 250: 8477-8482
    82. V P Saxena, D B Wetlaufer, Biochem., 1970, 9: 5015-5022
    83. C T Duda, A Light, J. Biol. Chem., 1982, 257: 9866-9871
    84. C T Duda, A Light, J. Biol. Chem., 1982, 257: 9866-9871
    85. A Light, C T Duba, T W Odorzynski, W G I More, J. Cell. Biochem. 1986, 31: 19-26
    86. T W Odorzynski, A Light, J Biol Chem, 1979, 254: 4294-4295
    87. V P Saxena, D B Wetlaufer, Biochem., 1970, 9: 5015-5022
    88. V P Saxena, D B Wetlaufer, Biochem., 1970, 9: 5015-5022
    89. A K Ahmed, S W Schaffer, D B Wetlaufer, J. Biol. Chem. 1975, 250: 8477-8482
    90. T E Creighton, D P Goldenberg, J. Mol. Biol, 1984, 179: 497-526
    91. T E Creighton, Meth. Enzymol., 1986, 131: 83-106.
    92. T E Creighton, D P Goldenberg, J. Mol. Biol, 1984, 179: 497-52
    93. N K Sinha, A Light, J. Biol. Chem., 1975, 250: 8624-8629
    94. D F Steiner, J I Clark, Proc. Natl. Acad. Sci. USA, 1969, 60: 622-629
    95. Van Mierlo C P M.Kemmink J, Neuhaus D et al.J Mol Biol,1994,235:1044-1061
    96. Creighton T E, Darby N J, Kemmink J, FASEB J, 1996, 10:110-118
    97. B. Raman, T. Ramakrishna, Ch. Mohan Rao, FEBS Letters 1997,416:369-372
    98. M. C. Song, H. A. Scheraga, FEBS letters 2000,471:177-181
    99. M.Yoshimoto,T.Shimanouchi,H.Umakoshi,R. Kuboi,J.Chromatogr.B2000,743:93-99
    100. 耿信笃,现代分离科学导论,北京,高等教育出版社,2001
    101. 耿信笃,白泉,中国科学,2002, 32(5) : 460-471

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700