超氧化物歧化酶折叠与错误折叠机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铜锌超氧化物歧化酶是一种分布非常广泛的金属蛋白酶,它结构和功能上的完整性依赖于金属辅基(铜离子和锌离子)的正确结合。我们采用牛红细胞铜锌超氧化物歧化酶作为研究对象,在生理pH值和室温下,研究了还原变性的超氧化物歧化酶的氧化重折叠过程中,化学计量比的铜离子和锌离子的调节作用。荧光实验显示,还原变性的脱辅基超氧化物歧化酶(apo-SOD1)的氧化重折叠是二相过程,在复性缓冲液中加入锌离子可以显著加速氧化重折叠的快相和慢相两个过程,同时也显著降低氧化重折叠过程中的聚集程度和减缓聚集的速度。与此相对应的是加入化学计量比的铜离子,对氧化重折叠中的二相过程和聚集没有显著影响。蛋白酶K抗性实验显示,在还原变性的脱辅基超氧化物歧化酶(apo-SOD1)的氧化重折叠的过程中,形成了一种可以对抗低浓度蛋白酶K水解的构象,加入化学计量比的铜离子对这种构象的形成基本没有影响;然而在复性液中含有化学计量比的锌离子,SOD1可以形成一种对抗高蛋白酶K水解的构象。我们的实验显示化学计量比的锌离子在SOD1的氧化重折叠的过程具有重要的作用,它能加速氧化重折叠的过程、抑制蛋白质聚集和帮助蛋白形成一种可以抵抗高浓度的蛋白酶K抗性的构象。
     人铜锌超氧化物歧化酶是体内一种非常重要的抗氧化酶,它的错误折叠和聚集则与肌萎缩性脊髓侧索硬化症(Amyorophic Lateral Sclerosis, ALS)这种致命的神经推行性疾病相关。最近的研究显示,共表达野生型hsodl和突变型hsodl的转基因小鼠模型,会导致其ALS疾病的加速发展。这些研究都提示野生型hSOD1在SOD1突变诱导的ALS中也是一个非常重要的因素。然而,为什么转入相对稳定的野生型hSOD1后会加速ALS的疾病发展,其中的机制目前还不清楚。我们的研究发现hSOD1的突变体A4V可以促使野生型hSODl的加速聚集。Thioflavin T结合实验和紫外浊度实验显示加入0.05-0.2 mg/ml的A4V突变体可以明显加速野生型SOD1聚集体的形成,从而进一步进行蛋白质的错误折叠。透射电镜实验和外源荧光ANS结合实验显示,这种由A4V突变体诱导的野生型hSOD1的聚集与那些突变体蛋白在体外形成的聚集具有一样的性质,它们都具有细胞毒性,可能导致神经退行性疾病的发生。总之,我们的结果显示A4V突变体蛋白强烈诱导野生型hSOD1在体外的聚集,这可以较好地解释小鼠模型中共表达突变型A4V和野生型hSOD1反而加速其疾病过程。这种野生型hSOD1聚集倾向的加强暗示hSOD1蛋白不仅仅通过突变而获得致病性,也可能通过其他方式获得致病性,例如诱导。
The structural integrity of the ubiquitous enzyme copper, zinc superoxide dismutase (SOD1) depends critically on the correct coordination of zinc and copper. We investigate here the roles of the stoichiometric zinc and copper ions in modulating the oxidative refolding of reduced, denatured bovine erythrocyte SOD1 at physiological pH and room temperature. Fluorescence experiments show that the oxidative refolding of the demetalated SOD1 (apo-SOD1) is biphasic, and the addition of stoichiometric Zn2+ ions into the refolding buffer remarkably accelerates both the fast phase and the slow phase of the oxidative refolding, compared with no Zn2+. Aggregation of apo-SOD1 in the presence of stoichiometric Zn2+ ions is remarkably slower than that in the absence of Zn2+. In contrast, the effects of stoichiometric Cu2+ on both the rates of the oxidative refolding and the aggregation of apo-SOD1 are not remarkable. Experiments of resistance to proteinase K show that apo-SOD1 forms a conformation with low-level proteinase K resistance during refolding and stoichiometric Cu2+ has no obvious effect on the resistance to proteinase K. In contrast, when the refolding buffer contains stoichiometric zinc, SOD1 forms a compact conformation with high-level proteinase K resistance during refolding. Our data here demonstrate that stoichiometric zinc plays an important role in the oxidative refolding of low micromolar bovine SOD1 by accelerating the oxidative refolding, suppressing the aggregation during refolding and helping the protein to form a compact conformation with high protease resistance activity.
     Misfolding and aggregation of mutant human copper, zinc superoxide dismutase (SOD1) is associated with the fatal neurodegenerative disease amyotrophic lateral sclerosis (ALS). Recent studies have shown that the co-expression of mutant and wild-type SOD1 (WT SOD1) in mice accelerates ALS of mice and thus provides evidence that WT SOD1 may be an important factor in mutant SOD 1-mediated ALS. However, the mechanism of why the relative stable WT SOD1 aggregates in vivo is not well understood. We report here an enhancing effect of human SOD1 mutant A4V (A4V SOD1) on the aggregation of WT SOD1. The results obtained from thioflavin T binding and turbidity experiments show that the addition of A4V SOD1 at 0.05-0.2 mg/ml dramatically accelerates aggregate formation of WT SOD1 on the first events of misfolding. The results from transmission electron microscopy and ANS binding suggest that the aggregates, produced from WT SOD1 induced by A4V SOD1, resemble aggregates found in vivo and may be also toxic to the cells and responsible for the onset of neurodegenerative disease. Taken together, these results indicate that A4V SOD1 strongly induces the aggregation of WT SOD1, providing a good explanation why co-expression of mutant and WT SOD1 in mice accelerates ALS of mice. The increased propensity of WT SOD1 to aggregate described here implies that SOD1 could gain toxic function via other ways, such as inducement, rather than mutation.
引文
1.方允中,李文杰.(1989)自由基与酶—基础理论及其在生物学和医学中的应用.科学出版社.
    2. 方允中,郑荣梁.(2002)自由基生物学的理论与应用.科学出版社.
    3.梁毅.(2005)结构生物学.科学出版社.
    4.赵南明,周海梦(2004)生物物理学.高等教育出版社.
    5. Abernethy, J.L., Steinman, H.M. and Hill, R.L. (1974) Bovine erythrocyte superoxide dismutase. Subunit structure and sequence location of the intrasubunit disulfide bond. J Biol Chem 249(22),7339-47.
    6. Andersen, P.M., Nilsson, P., Ala-Hurula, V., Keranen, M.L., Tarvainen, I., Haltia, T., Nilsson, L., Binzer, M., Forsgren, L. and Marklund, S.L. (1995) Amyotrophic lateral sclerosis associated with homozygosity for an Asp90Ala mutation in CuZn-superoxide dismutase. Nat Genet 10(1),61-6.
    7. Assfalg, M., Banci, L., Bertini, I., Turano, P. and Vasos, P.R. (2003) Superoxide dismutase folding/unfolding pathway:role of the metal ions in modulating structural and dynamical features. J Mol Biol 330(1),145-58.
    8. Banci, L., Bertini, I., Cantini, F., D'Onofrio, M. and Viezzoli, M.S. (2002a) Structure and dynamics of copper-free SOD:The protein before binding copper. Protein Sci 11(10),2479-92.
    9. Banci, L., Bertini, I., Cramaro, F., Del Conte, R. and Viezzoli, M.S. (2002b) The solution structure of reduced dimeric copper zinc superoxide dismutase. The structural effects of dimerization. Eur J Biochem 269(7),1905-15.
    10. Banci, L., Bertini, I., Cramaro, F., Del Conte, R. and Viezzoli, M.S. (2003) Solution structure of Apo Cu,Zn superoxide dismutase:role of metal ions in protein folding. Biochemistry 42(32),9543-53.
    11. Banci, L., Bertini, I., Durazo, A., Girotto, S., Gralla, E.B., Martinelli, M., Valentine, J.S., Vieru, M. and Whitelegge, J.P. (2007) Metal-free superoxide
    dismutase forms soluble oligomers under physiological conditions:a possible general mechanism for familial ALS. Proc Natl Acad Sci U S A 104(27),11263-7.
    12. Bannister, J., Bannister, W. and Wood, E. (1971) Bovine erythrocyte cupro-zinc protein.1. Isolation and general characterization. Eur J Biochem 18(2),178-86.
    13. Barra, D., Martini, F., Bannister, J.V., Schinina, M.E., Rotilio, G., Bannister, W.H. and Bossa, F. (1980) The complete amino acid sequence of human Cu/Zn superoxide dismutase. FEBS Lett 120(1),53-6.
    14. Barra, D., Martini, F., Bossa, F., Rotilio, G, Bannister, J.V. and Bannister, W.H. (1978) Primary structure of human copper-zinc superoxide dismutase. Cysteine-and tryptophan-containing peptides. Biochem Biophys Res Commun 81(4), 1195-200.
    15. Barrow, C.J. and Zagorski, M.G. (1991) Solution structures of beta peptide and its constituent fragments:relation to amyloid deposition. Science 253(5016),179-82.
    16. Beal, M.F., Ferrante, R.J., Browne, S.E., Matthews, R.T., Kowall, N.W and Brown, R.H., Jr. (1997) Increased 3-nitrotyrosine in both sporadic and familial amyotrophic lateral sclerosis. Ann Neurol 42(4),644-54.
    17. Beem, K.M., Rich, WE. and Rajagopalan, K.V. (1974) Total reconstitution of copper-zinc superoxide dismutase. J Biol Chem 249(22),7298-305.
    18. Bendotti, C. and Carri, M.T. (2004) Lessons from models of SOD 1-linked familial ALS. Trends Mol Med 10(8),393-400.
    19. Bogdanov, M.B., Ramos, L.E., Xu, Z. and Beal, M.F. (1998) Elevated "hydroxyl radical" generation in vivo in an animal model of amyotrophic lateral sclerosis. J Neurochem 71(3),1321-4.
    20. Borchelt, D.R., Lee, M.K., Slunt, H.S., Guarnieri, M., Xu, Z.S., Wong, P.C., Brown, R.H., Jr., Price, D.L., Sisodia, S.S. and Cleveland, D.W. (1994) Superoxide dismutase 1 with mutations linked to familial amyotrophic lateral sclerosis possesses significant activity. Proc Natl Acad Sci U S A 91(17),8292-6.
    21. Bruijn, L.I., Beal, M.F., Becher, M.W., Schulz, J.B., Wong, P.C., Price, D.L. and Cleveland, D.W. (1997) Elevated free nitrotyrosine levels, but not protein-bound nitrotyrosine or hydroxyl radicals, throughout amyotrophic lateral sclerosis (ALS)-like disease implicate tyrosine nitration as an aberrant in vivo property of one familial ALS-linked superoxide dismutase 1 mutant. Proc Natl Acad Sci U S A 94(14),7606-11.
    22. Bruijn, L.I., Houseweart, M.K., Kato, S., Anderson, K.L., Anderson, S.D., Ohama, E., Reaume, A.G, Scott, R.W. and Cleveland, D.W. (1998) Aggregation and motor neuron toxicity of an ALS-linked SOD1 mutant independent from wild-type SOD1. Science 281(5384),1851-4.
    23. Bruns, C.K. and Kopito, R.R. (2007) Impaired post-translational folding of familial ALS-linked Cu, Zn superoxide dismutase mutants. Embo J 26(3), 855-66.
    24. Bucciantini, M., Giannoni, E., Chiti, F., Baroni, F., Formigli, L., Zurdo, J., Taddei, N., Ramponi, G, Dobson, C.M. and Stefani, M. (2002) Inherent toxicity of aggregates implies a common mechanism for protein misfolding diseases. Nature 416(6880),507-11.
    25. Cabelli, D.E., Allen, D., Bielski, B.H. and Holcman, J. (1989) The interaction between Cu(I) superoxide dismutase and hydrogen peroxide. J Biol Chem 264(17),9967-71.
    26. Carrico, R.J. and Deutsch, H.F. (1970) The presence of zinc in human cytocuprein and some properties of the apoprotein. J Biol Chem 245(4),723-7.
    27. Cass, A.E., Hill, H.A., Bannister, J.V. and Bannister, W.H. (1979) Zinc(Ⅱ) binding to apo-(bovine erythrocyte superoxide dismutase). Biochem J 177(2),477-86.
    28. Caughey, B. and Lansbury, P.T. (2003) Protofibrils, pores, fibrils, and neurodegeneration:separating the responsible protein aggregates from the innocent bystanders. Annu Rev Neurosci 26,267-98.
    29. Chiti, F. and Dobson, C.M. (2006) Protein misfolding, functional amyloid, and human disease. Annu Rev Biochem 75,333-66.
    30. Chiti, F., Stefani, M., Taddei, N., Ramponi, G. and Dobson, C.M. (2003) Rationalization of the effects of mutations on peptide and protein aggregation rates. Nature 424(6950),805-8.
    31. Chiti, F., Taddei, N., Bucciantini, M., White, P., Ramponi, G. and Dobson, C.M.
    (2000)Mutational analysis of the propensity for amyloid formation by a globular protein. Embo J 19(7),1441-9.
    32. Chou, S.M., Wang, H.S. and Komai, K. (1996) Colocalization of NOS and SOD1 in neurofilament accumulation within motor neurons of amyotrophic lateral sclerosis:an immunohistochemical study. J Chem Neuroanat 10(3-4),249-58.
    33. Chung, J., Yang, H., de Beus, M.D., Ryu, C.Y., Cho, K. and Colon, W. (2003) Cu/Zn superoxide dismutase can form pore-like structures. Biochem Biophys Res Commun 312(4),873-6.
    34. Cleveland, D.W. and Rothstein, J.D. (2001) From Charcot to Lou Gehrig: deciphering selective motor neuron death in ALS. Nat Rev Neurosci 2(11), 806-19.
    35. Cozzolino, M., Amori, I., Pesaresi, M.G, Ferri, A., Nencini, M. and Carri, M.T. (2008) Cysteine 111 affects aggregation and cytotoxicity of mutant Cu,Zn-superoxide dismutase associated with familial amyotrophic lateral sclerosis. J Biol Chem 283(2),866-74.
    36. Crow, J.P., Sampson, J.B., Zhuang, Y., Thompson, J.A. and Beckman, J.S. (1997) Decreased zinc affinity of amyotrophic lateral sclerosis-associated superoxide dismutase mutants leads to enhanced catalysis of tyrosine nitration by peroxynitrite. J Neurochem 69(5),1936-44.
    37. Deng, H.X., Hentati, A., Tainer, J.A., Iqbal, Z., Cayabyab, A., Hung, W.Y., Getzoff, E.D., Hu, P., Herzfeldt, B., Roos, R.P. and et al. (1993) Amyotrophic lateral sclerosis and structural defects in Cu,Zn superoxide dismutase. Science 261(5124),1047-51.
    38. Deng, H.X., Shi, Y, Furukawa, Y, Zhai, H., Fu, R., Liu, E., Gorrie, GH., Khan, M.S., Hung, W.Y., Bigio, E.H., Lukas, T., Dal Canto, M.C., O'Halloran, T.V. and Siddique, T. (2006) Conversion to the amyotrophic lateral sclerosis phenotype is associated with intermolecular linked insoluble aggregates of SOD1 in mitochondria. Proc Natl Acad Sci U S A 103(18),7142-7.
    39. DiDonato, M., Craig, L., Huff, M.E., Thayer, M.M., Cardoso, R.M., Kassmann, C.J., Lo, T.P., Bruns, C.K., Powers, E.T., Kelly, J.W., Getzoff, E.D. and Tainer, J.A. (2003) ALS mutants of human superoxide dismutase form fibrous aggregates via framework destabilization. J Mol Biol 332(3),601-15.
    40. Ding, F. and Dokholyan, N.V. (2008) Dynamical roles of metal ions and the disulfide bond in Cu, Zn superoxide dismutase folding and aggregation. Proc Natl Acad Sci U S A 105(50),19696-701.
    41. Durham, H.D., Roy, J., Dong, L. and Figlewicz, D.A. (1997) Aggregation of mutant Cu/Zn superoxide dismutase proteins in a culture model of ALS. J Neuropathol Exp Neurol 56(5),523-30.
    42. Ermilova, I.P., Ermilov, V.B., Levy, M., Ho, E., Pereira, C. and Beckman, J.S. (2005) Protection by dietary zinc in ALS mutant G93A SOD transgenic mice. Neurosci Lett 379(1),42-6.
    43. Estape, D. and Rinas, U. (1999) Folding kinetics of the all-beta-sheet protein human basic fibroblast growth factor, a structural homolog of interleukin-lbeta. J Biol Chem 274(48),34083-8.
    44. Fee, J.A. (1973) Studies on the reconstitution of bovine erythrocyte superoxide dismutase. I. The presence of four divalent metal-binding sites on the apo protein which are different from the native sites. Biochim Biophys Acta 295(1),87-95.
    45. Ferrante, R.J., Shinobu, L.A., Schulz, J.B., Matthews, R.T., Thomas, C.E., Kowall, N.W., Gurney, M.E. and Beal, M.F. (1997) Increased 3-nitrotyrosine and oxidative damage in mice with a human copper/zinc superoxide dismutase mutation. Ann Neurol 42(3),326-34.
    46. Ferreira, S.T., Stella, L. and Gratton, E. (1994) Conformational dynamics of bovine Cu, Zn superoxide dismutase revealed by time-resolved fluorescence spectroscopy of the single tyrosine residue. Biophys J 66(4),1185-96.
    47. Fezoui, Y. and Teplow, D.B. (2002) Kinetic studies of amyloid beta-protein fibril assembly. Differential effects of alpha-helix stabilization. J Biol Chem 277(40), 36948-54.
    48. Forman, H.J. and Fridovich, I. (1973) On the stability of bovine superoxide dismutase. The effects of metals. J Biol Chem 248(8),2645-9.
    49. Fukada, K., Nagano, S., Satoh, M., Tohyama, C., Nakanishi, T., Shimizu, A.,
    Yanagihara, T. and Sakoda, S. (2001) Stabilization of mutant Cu/Zn superoxide dismutase (SOD1) protein by coexpressed wild SOD1 protein accelerates the disease progression in familial amyotrophic lateral sclerosis mice. Eur J Neurosci 14(12),2032-6.
    50. Furukawa, Y, Kaneko, K., Yamanaka, K., O'Halloran, T.V. and Nukina, N. (2008) Complete loss of post-translational modifications triggers fibrillar aggregation of SOD1 in the familial form of amyotrophic lateral sclerosis. J Biol Chem 283(35), 24167-76.
    51. Furukawa, Y. and O'Halloran, T.V. (2005) Amyotrophic lateral sclerosis mutations have the greatest destabilizing effect on the apo-and reduced form of SOD1, leading to unfolding and oxidative aggregation. J Biol Chem 280(17),17266-74.
    52. Furukawa, Y, Torres, A.S. and O'Halloran, T.V. (2004) Oxygen-induced maturation of SOD1:a key role for disulfide formation by the copper chaperone CCS. Embo J 23(14),2872-81.
    53. Goto, J.J., Zhu, H., Sanchez, R.J., Nersissian, A., Gralla, E.B., Valentine, J.S. and Cabelli, D.E. (2000) Loss of in vitro metal ion binding specificity in mutant copper-zinc superoxide dismutases associated with familial amyotrophic lateral sclerosis. J Biol Chem 275(2),1007-14.
    54. Greenfield, N.J. (2006) Using circular dichroism spectra to estimate protein secondary structure. Nat Protoc 1(6),2876-90.
    55. Gurney, M.E., Pu, H., Chiu, A.Y., Dal Canto, M.C., Polchow, C.Y., Alexander, D.D., Caliendo,J., Hentati, A., Kwon, Y.W., Deng, H.X. and et al. (1994) Motor neuron degeneration in mice that express a human Cu,Zn superoxide dismutase mutation. Science 264(5166),1772-5.
    56. Hart, P.J., Balbirnie, M.M., Ogihara, N.L., Nersissian, A.M., Weiss, M.S., Valentine, J.S. and Eisenberg, D. (1999) A structure-based mechanism for copper-zinc superoxide dismutase. Biochemistry 38(7),2167-78.
    57. Hayward, L.J., Rodriguez, J.A., Kim, J.W., Tiwari, A., Goto, J.J., Cabelli, D.E., Valentine, J.S. and Brown, R.H., Jr. (2002) Decreased metallation and activity in subsets of mutant superoxide dismutases associated with familial amyotrophic lateral sclerosis. J Biol Chem 277(18),15923-31.
    58. Hirose, J., Ohhira, T., Hirata, H. and Kidani, Y. (1982) The pH dependence of apparent binding constants between apo-superoxide dismutase and cupric ions. Arch Biochem Biophys 218(1),179-86.
    59. Ho, Y.S., Gargano, M., Cao, J., Bronson, R.T., Heimler, I. and Hutz, R.J. (1998) Reduced fertility in female mice lacking copper-zinc superoxide dismutase. J Biol Chem 273(13),7765-9.
    60. Hunter, T., Bannister, J.V. and Hunter, GJ. (2002) Thermostability of manganese-and iron-superoxide dismutases from Escherichia coli is determined by the characteristic position of a glutamine residue. Eur J Biochem 269(21),5137-48.
    61. Jaarsma, D., Haasdijk, E.D., Grashorn, J.A., Hawkins, R., van Duijn, W., Verspaget, H.W., London, J. and Holstege, J.C. (2000) Human Cu/Zn superoxide dismutase (SOD1) overexpression in mice causes mitochondrial vacuolization, axonal degeneration, and premature motoneuron death and accelerates motoneuron disease in mice expressing a familial amyotrophic lateral sclerosis mutant SOD1. Neurobiol Dis 7(6 Pt B),623-43.
    62. Johnson, F. and Giulivi, C. (2005) Superoxide dismutases and their impact upon human health. Mol Aspects Med 26(4-5),340-52.
    63. Johnston, J.A., Dalton, M.J., Gurney, M.E. and Kopito, R.R. (2000) Formation of high molecular weight complexes of mutant Cu, Zn-superoxide dismutase in a mouse model for familial amyotrophic lateral sclerosis. Proc Natl Acad Sci U S A 97(23),12571-6.
    64. Kato, S., Sumi-Akamaru, H., Fujimura, H., Sakoda, S., Kato, M., Hirano, A., Takikawa, M. and Ohama, E. (2001) Copper chaperone for superoxide dismutase co-aggregates with superoxide dismutase 1 (SOD1) in neuronal Lewy body-like hyaline inclusions:an immunohistochemical study on familial amyotrophic lateral sclerosis with SOD1 gene mutation. Acta Neuropathol 102(3),233-8.
    65. Kato, S., Takikawa, M., Nakashima, K., Hirano, A., Cleveland, D.W., Kusaka, H., Shibata, N., Kato, M., Nakano, I. and Ohama, E. (2000) New consensus research on neuropathological aspects of familial amyotrophic lateral sclerosis with
    superoxide dismutase 1 (SOD1) gene mutations:inclusions containing SOD1 in neurons and astrocytes. Amyotroph Lateral Scler Other Motor Neuron Disord 1(3),163-84.
    66. Kayatekin, C., Zitzewitz, J.A. and Matthews, C.R. (2008) Zinc binding modulates the entire folding free energy surface of human Cu,Zn superoxide dismutase. J Mol Biol 384(2),540-55.
    67. Khare, S.D., Caplow, M. and Dokholyan, N.V. (2004) The rate and equilibrium constants for a multistep reaction sequence for the aggregation of superoxide dismutase in amyotrophic lateral sclerosis. Proc Natl Acad Sci U S A 101(42), 15094-9.
    68. Khare, S.D., Caplow, M. and Dokholyan, N.V. (2006) FALS mutations in Cu, Zn superoxide dismutase destabilize the dimer and increase dimer dissociation propensity:a large-scale thermodynamic analysis. Amyloid 13(4),226-35.
    69. Khare, S.D., Ding, F. and Dokholyan, N.V. (2003) Folding of Cu, Zn superoxide dismutase and familial amyotrophic lateral sclerosis. J Mol Biol 334(3),515-25.
    70. Kirkitadze, M.D., Bitan, G and Teplow, D.B. (2002) Paradigm shifts in Alzheimer's disease and other neurodegenerative disorders:the emerging role of oligomeric assemblies. J Neurosci Res 69(5),567-77.
    71. Klug-Roth, D., Fridovich, I. and Rabani, J. (1973) Pulse radiolytic investigations of superoxide catalyzed disproportionation. Mechanism for bovine superoxide dismutase. J Am Chem Soc 95(9),2786-90.
    72. Klug, D., Rabani, J. and Fridovich, I. (1972) A direct demonstration of the catalytic action of superoxide dismutase through the use of pulse radiolysis. J Biol Chem 247(15),4839-42.
    73. Kumagai, Y., Shinyashiki, M., Sun, GF., Shimojo, N. and Sagai, M. (1994) An efficient method for purification of cuprozinc superoxide dismutase from bovine erythrocytes. Experientia 50(7),673-6.
    74. Kurahashi, T., Miyazaki, A., Suwan, S. and Isobe, M. (2001) Extensive investigations on oxidized amino acid residues in H(2)O(2)-treated Cu,Zn-SOd protein with LC-ESI-Q-TOF-MS, MS/MS for the determination of the copper-binding site. J Am Chem Soc 123(38),9268-78.
    75. Kuznetsova, I.M., Stepanenko, O.V., Povarova, O.I., Biktashev, A.G., Verkhusha, V.V., Shavlovsky, M.M. and Turoverov, K.K. (2002) The place of inactivated actin and its kinetic predecessor in actin folding-unfolding. Biochemistry 41(44), 13127-32.
    76. Lang, K. and Schmid, F.X. (1986) Use of a trypsin-pulse method to study the refolding pathway of ribonuclease. Eur J Biochem 159(2),275-81.
    77. Lashuel, H.A., Hartley, D., Petre, B.M., Walz, T. and Lansbury, P.T., Jr. (2002) Neurodegenerative disease:amyloid pores from pathogenic mutations. Nature 418(6895),291.
    78. Lee, J.P., Gerin, C., Bindokas, V.P., Miller, R., Ghadge, G and Roos, R.P. (2002) No correlation between aggregates of Cu/Zn superoxide dismutase and cell death in familial amyotrophic lateral sclerosis. J Neurochem 82(5),1229-38.
    79. Lepock, J.R., Arnold, L.D., Torrie, B.H., Andrews, B. and Kruuv, J. (1985) Structural analyses of various Cu2+, Zn2+-superoxide dismutases by differential scanning calorimetry and Raman spectroscopy. Arch Biochem Biophys 241(1), 243-51.
    80. Lerch, K. and Ammer, D. (1981) Amino acid sequence of copper-zinc superoxide dismutase from horse liver. J Biol Chem 256(22),11545-51.
    81. Liang, Y., Du, F., Sanglier, S., Zhou, B.R., Xia, Y., Van Dorsselaer, A., Maechling, C., Kilhoffer, M.C. and Haiech, J. (2003) Unfolding of rabbit muscle creatine kinase induced by acid. A study using electrospray ionization mass spectrometry, isothermal titration calorimetry, and fluorescence spectroscopy. J Biol Chem 278(32),30098-105.
    82. Lindberg, M.J., Normark, J., Holmgren, A. and Oliveberg, M. (2004) Folding of human superoxide dismutase:disulfide reduction prevents dimerization and produces marginally stable monomers. Proc Natl Acad Sci U S A 101(45), 15893-8.
    83. Lippard, S.J., Burger, A.R., Ugurbil, K., Pantoliano, M.W. and Valentine, J.S. (1977) Nuclear magnetic resonance and chemical modification studies of bovine
    erythrocyte superoxide dismutase:evidence for zinc-promoted organization of the active site structure. Biochemistry 16(6),1136-41.
    84. Lynch, S.M. and Colon, W. (2006) Dominant role of copper in the kinetic stability of Cu/Zn superoxide dismutase. Biochem Biophys Res Commun 340(2), 457-61.
    85. Lyons, T.J., Nersissian, A., Huang, H., Yeom, H., Nishida, C.R., Graden, J.A., Gralla, E.B. and Valentine, J.S. (2000) The metal binding properties of the zinc site of yeast copper-zinc superoxide dismutase:implications for amyotrophic lateral sclerosis. J Biol Inorg Chem 5(2),189-203.
    86. Malinowski, D.P. and Fridovich, I. (1979) Subunit association and side-chain reactivities of bovine erythrocyte superoxide dismutase in denaturing solvents. Biochemistry 18(23),5055-60.
    87. Mamathambika, B.S. and Bardwell, J.C. (2008) Disulfide-linked protein folding pathways. Annu Rev Cell Dev Biol 24,211-35.
    88. Mann, B.T. and Keilin, D. (1938) Haemocuprein and hepatocuprein, copper-protein compounds of blood and liver in mammals. Proc R Soc Lond B Biol Sci 126,303-15.
    89. Marklund, S. and Marklund, G (1974) Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem 47(3),469-74.
    90. Marklund, S.L., Holme, E. and Hellner, L. (1982) Superoxide dismutase in extracellular fluids. Clin Chim Acta 126(1),41-51.
    91. McCord, J.M. and Fridovich, I. (1969) Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). J Biol Chem 244(22),6049-55.
    92. Mei, G., Rosato, N., Silva, N., Jr., Rusch, R., Gratton, E., Savini, I. and Finazzi-Agro, A. (1992) Denaturation of human Cu/Zn superoxide dismutase by guanidine hydrochloride:a dynamic fluorescence study. Biochemistry 31(32), 7224-30.
    93. Morrison, B.M., Morrison, J.H. and Gordon, J.W. (1998) Superoxide dismutase and neurofilament transgenic models of amyotrophic lateral sclerosis. J Exp Zool 282(1-2),32-47.
    94. Mulligan, V.K., Kerman, A., Ho, S. and Chakrabartty, A. (2008) Denaturational Stress Induces Formation of Zinc-Deficient Monomers of Cu,Zn Superoxide Dismutase:Implications for Pathogenesis in Amyotrophic Lateral Sclerosis. J Mol Biol.
    95. Naiki, H., Higuchi, K., Matsushima, K., Shimada, A., Chen, W.H., Hosokawa, M. and Takeda, T. (1990) Fluorometric examination of tissue amyloid fibrils in murine senile amyloidosis:use of the fluorescent indicator, thioflavine T. Lab Invest 62(6),768-73.
    96. Nordlund, A., Leinartaite, L., Saraboji, K., Aisenbrey, C., Grobner, G., Zetterstrom, P., Danielsson, J., Logan, D.T. and Oliveberg, M. (2009) Functional features cause misfolding of the ALS-provoking enzyme SOD1. Proc Natl Acad Sci U S A 106(24),9667-72.
    97. Nordlund, A. and Oliveberg, M. (2006) Folding of Cu/Zn superoxide dismutase suggests structural hotspots for gain of neurotoxic function in ALS:parallels to precursors in amyloid disease. Proc Natl Acad Sci U S A 103(27),10218-23.
    98. Okamoto, K., Hirai, S., Yamazaki, T., Sun, X.Y. and Nakazato, Y. (1991) New ubiquitin-positive intraneuronal inclusions in the extra-motor cortices in patients with amyotrophic lateral sclerosis. Neurosci Lett 129(2),233-6.
    99. Pantoliano, M.W., Valentine, J.S., Burger, A.R. and Lippard, S.J. (1982) A pH-dependent superoxide dismutase activity for zinc-free bovine erythrocuprein. Reexamination of the role of zinc in the holoprotein. J Inorg Biochem 17(4), 325-41.
    100.Perry, J.J., Shin, D.S., Getzoff, E.D. and Tainer, J.A. (2010) The structural biochemistry of the superoxide dismutases. Biochim Biophys Acta 1804(2), 245-62.
    101.Potter, S.Z., Zhu, H., Shaw, B.F., Rodriguez, J.A., Doucette, P.A., Sohn, S.H., Durazo, A., Faull, K.F., Gralla, E.B., Nersissian, A.M. and Valentine, J.S. (2007) Binding of a single zinc ion to one subunit of copper-zinc superoxide dismutase apoprotein substantially influences the structure and stability of the entire
    homodimeric protein. J Am Chem Soc 129(15),4575-83.
    102.Rabizadeh, S., Gralla, E.B., Borchelt, D.R., Gwinn, R., Valentine, J.S., Sisodia, S., Wong, P., Lee, M., Hahn, H. and Bredesen, D.E. (1995) Mutations associated with amyotrophic lateral sclerosis convert superoxide dismutase from an antiapoptotic gene to a proapoptotic gene:studies in yeast and neural cells. Proc Natl Acad Sci U S A 92(7),3024-8.
    103.Rae, T.D., Schmidt, P.J., Pufahl, R.A., Culotta, V.C. and O'Halloran, T.V. (1999) Undetectable intracellular free copper:the requirement of a copper chaperone for superoxide dismutase. Science 284(5415),805-8.
    104.Rakhit, R., Crow, J.P., Lepock, J.R., Kondejewski, L.H., Cashman, N.R. and Chakrabartty, A. (2004) Monomeric Cu,Zn-superoxide dismutase is a common misfolding intermediate in the oxidation models of sporadic and familial amyotrophic lateral sclerosis. J Biol Chem 279(15),15499-504.
    105.Rakhit, R., Cunningham, P., Furtos-Matei, A., Dahan, S., Qi, X.F., Crow, J.P., Cashman, N.R., Kondejewski, L.H. and Chakrabartty, A. (2002) Oxidation-induced misfolding and aggregation of superoxide dismutase and its implications for amyotrophic lateral sclerosis. J Biol Chem 277(49),47551-6.
    106.Ratovitski, T., Corson, L.B., Strain, J., Wong, P., Cleveland, D.W., Culotta, V.C. and Borchelt, D.R. (1999) Variation in the biochemical/biophysical properties of mutant superoxide dismutase 1 enzymes and the rate of disease progression in familial amyotrophic lateral sclerosis kindreds. Hum Mol Genet 8(8),1451-60.
    107.Richardson, D.C., Bier, C.J. and Richardson, J.S. (1972) Two crystal forms of bovine superoxide dismutase. J Biol Chem 247(19),6368-9.
    108.Richardson, J., Thomas, K.A., Rubin, B.H. and Richardson, D.C. (1975) Crystal structure of bovine Cu,Zn superoxide dismutase at 3 A resolution:chain tracing and metal ligands. Proc Natl Acad Sci U S A 72(4),1349-53.
    109.Richardson, J.S. and Richardson, D.C. (2002) Natural beta-sheet proteins use negative design to avoid edge-to-edge aggregation. Proc Natl Acad Sci U S A 99(5),2754-9.
    110.Riddles, P.W., Blakeley, R.L. and Zerner, B. (1983) Reassessment of Ellman's reagent. Methods Enzymol 91,49-60.
    111.Rodriguez, J.A., Shaw, B.F., Durazo, A., Sohn, S.H., Doucette, P.A., Nersissian, A.M., Faull, K.F., Eggers, D.K., Tiwari, A., Hayward, L.J. and Valentine, J.S. (2005) Destabilization of apoprotein is insufficient to explain Cu,Zn-superoxide dismutase-linked ALS pathogenesis. Proc Natl Acad Sci U S A 102(30), 10516-21.
    112.Rodriguez, J.A., Valentine, J.S., Eggers, D.K., Roe, J.A., Tiwari, A., Brown, R.H., Jr. and Hayward, L.J. (2002) Familial amyotrophic lateral sclerosis-associated mutations decrease the thermal stability of distinctly metallated species of human copper/zinc superoxide dismutase. J Biol Chem 277(18),15932-7.
    113.Roe, J.A., Butler, A., Scholler, D.M., Valentine, J.S., Marky, L. and Breslauer, K.J. (1988) Differential scanning calorimetry of Cu,Zn-superoxide dismutase, the apoprotein, and its zinc-substituted derivatives. Biochemistry 27(3),950-8.
    114.Rosen, D.R., Siddique, T., Patterson, D., Figlewicz, D.A., Sapp, P., Hentati, A., Donaldson, D., Goto, J., O'Regan, J.P., Deng, H.X. and et al. (1993) Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 362(6415),59-62.
    115.Rotilio, G, Bray, R.C. and Fielden, E.M. (1972a) A pulse radiolysis study of superoxide dismutase. Biochim Biophys Acta 268(2),605-9.
    116.Rotilio, G, Morpurgo, L., Giovagnoli, C., Calabrese, L. and Mondovi, B. (1972b) Studies of the metal sites of copper proteins. Symmetry of copper in bovine superoxide dismutase and its functional significance. Biochemistry 11(11), 2187-92.
    117.Rowland, L.P. and Shneider, N.A. (2001) Amyotrophic lateral sclerosis. N Engl J Med 344(22),1688-700.
    118.Rumfeldt, J.A., Lepock, J.R. and Meiering, E.M. (2009) Unfolding and folding kinetics of amyotrophic lateral sclerosis-associated mutant Cu,Zn superoxide dismutases. J Mol Biol 385(1),278-98.
    119.Schechter, I. and Berger, A. (1967) On the size of the active site in proteases. I. Papain. Biochem Biophys Res Commun 27(2),157-62.
    120.Schulz, G.E. and Schirmer, R.H. (1979) Principles of Protein Structure. New York/Heidelberg:Springer-Verlag,314 pp.
    121.Selverstone Valentine, J., Doucette, P.A. and Zittin Potter, S. (2005) Copper-zinc superoxide dismutase and amyotrophic lateral sclerosis. Annu Rev Biochem 74, 563-93.
    122.Senoo, Y., Katoh, K., Nakai, Y., Hashimoto, Y, Bando, K. and Teramoto, S. (1988) Activity and stability of recombinant human superoxide dismutase in buffer solutions and hypothermic perfusates. Acta Med Okayama 42(3),169-74.
    123.Shaw, B.F., Durazo, A., Nersissian, A.M., Whitelegge, J.P., Faull, K.F. and Valentine, J.S. (2006) Local unfolding in a destabilized, pathogenic variant of superoxide dismutase 1 observed with H/D exchange and mass spectrometry. J Biol Chem 281(26),18167-76.
    124.Shaw, B.F. and Valentine, J.S. (2007) How do ALS-associated mutations in superoxide dismutase 1 promote aggregation of the protein? Trends Biochem Sci 32(2),78-85.
    125.Shefner, J.M., Reaume, A.G., Flood, D.G., Scott, R.W., Kowall, N.W., Ferrante, R.J., Siwek, D.F., Upton-Rice, M. and Brown, R.H., Jr. (1999) Mice lacking cytosolic copper/zinc superoxide dismutase display a distinctive motor axonopathy. Neurology 53(6),1239-46.
    126.Sherman, M.Y. and Goldberg, A.L. (2001) Cellular defenses against unfolded proteins:a cell biologist thinks about neurodegenerative diseases. Neuron 29(1), 15-32.
    127.Shibata, N. (2001) Transgenic mouse model for familial amyotrophic lateral sclerosis with superoxide dismutase-1 mutation. Neuropathology 21(1),82-92.
    128.Shin, D.S., Didonato, M., Barondeau, D.P., Hura, GL., Hitomi, C., Berglund, J.A., Getzoff, E.D., Cary, S.C. and Tainer, J.A. (2009) Superoxide dismutase from the eukaryotic thermophile Alvinella pompejana:structures, stability, mechanism, and insights into amyotrophic lateral sclerosis. J Mol Biol 385(5),1534-55.
    129.Skaper, S.D., Fabris, M., Ferrari, V, Dalle Carbonare, M. and Leon, A. (1997) Quercetin protects cutaneous tissue-associated cell types including sensory neurons from oxidative stress induced by glutathione depletion:cooperative effects of ascorbic acid. Free Radic Biol Med 22(4),669-78.
    130.Soto, C. (2003) Unfolding the role of protein misfolding in neurodegenerative diseases. Nat Rev Neurosci 4(1),49-60.
    131.Sridevi, K., Juneja, J., Bhuyan, A.K., Krishnamoorthy, G and Udgaonkar, J.B. (2000) The slow folding reaction of barstar:the core tryptophan region attains tight packing before substantial secondary and tertiary structure formation and final compaction of the polypeptide chain. J Mol Biol 302(2),479-95.
    132.Stansell, M.J. and Deutsch, H.F. (1965) Physicochemical studies of crystalline human erythrocuprein. J Biol Chem 240(11),4306-11.
    133.Stathopulos, P.B., Rumfeldt, J.A., Scholz, GA., Irani, R.A., Frey, H.E., Hallewell, R.A., Lepock, J.R. and Meiering, E.M. (2003) Cu/Zn superoxide dismutase mutants associated with amyotrophic lateral sclerosis show enhanced formation of aggregates in vitro. Proc Natl Acad Sci U S A 100(12),7021-6.
    134.Steinman, H.M. (1980) The amino acid sequence of copper-zinc superoxide dismutase from bakers' yeast. J Biol Chem 255(14),6758-65.
    135.Steinman, H.M., Naik, V.R., Abernethy, J.L. and Hill, R.L. (1974) Bovine erythrocyte superoxide dismutase. Complete amino acid sequence. J Biol Chem 249(22),7326-38.
    136.Stieber, A., Gonatas, J.O. and Gonatas, N.K. (2000) Aggregation of ubiquitin and a mutant ALS-linked SOD1 protein correlate with disease progression and fragmentation of the Golgi apparatus. J Neurol Sci 173(1),53-62.
    137.Tainer, J.A., Getzoff, E.D., Beem, K.M., Richardson, J.S. and Richardson, D.C. (1982) Determination and analysis of the 2 A-structure of copper, zinc superoxide dismutase. J Mol Biol 160(2),181-217.
    138.Tainer, J.A., Getzoff, E.D., Richardson, J.S. and Richardson, D.C. (1983) Structure and mechanism of copper, zinc superoxide dismutase. Nature 306(5940), 284-7.
    139.Tiwari, A. and Hayward, L.J. (2003) Familial amyotrophic lateral sclerosis mutants of copper/zinc superoxide dismutase are susceptible to disulfide reduction. J Biol Chem 278(8),5984-92.
    140.Tiwari, A., Liba, A., Sohn, S.H., Seetharaman, S.V., Bilsel,O., Matthews, C.R., Hart, P.J., Valentine, J.S. and Hayward, L.J. (2009) Metal deficiency increases aberrant hydrophobicity of mutant superoxide dismutases that cause amyotrophic lateral sclerosis. J Biol Chem 284(40),27746-58.
    141.Ushimaru, T., Kanematsu, S., Katayama, M. and Tsuji, H. (2001) Antioxidative enzymes in seedlings of Nelumbo nucifera germinated under water. Physiol Plant 112(1),39-46.
    142.Valentine, J.S. and Hart, P.J. (2003) Misfolded CuZnSOD and amyotrophic lateral sclerosis. Proc Natl Acad Sci U S A 100(7),3617-22.
    143.Valentine, J.S., Pantoliano, M.W., McDonnell, P.J., Burger, A.R. and Lippard, S.J. (1979) pH-dependent migration of copper(II) to the vacant zinc-binding site of zinc-free bovine erythrocyte superoxide dismutase. Proc Natl Acad Sci U S A 76(9),4245-9.
    144.Wang, J., Xu, G, Gonzales, V, Coonfield, M., Fromholt, D., Copeland, N.G, Jenkins, N.A. and Borchelt, D.R. (2002) Fibrillar inclusions and motor neuron degeneration in transgenic mice expressing superoxide dismutase 1 with a disrupted copper-binding site. Neurobiol Dis 10(2),128-38.
    145.Wang, Q., Johnson, J.L., Agar, N.Y. and Agar, J.N. (2008) Protein aggregation and protein instability govern familial amyotrophic lateral sclerosis patient survival. PLoS Biol 6(7), e170.
    146.Wiedau-Pazos, M., Goto, J.J., Rabizadeh, S., Gralla, E.B., Roe, J.A., Lee, M.K., Valentine, J.S. and Bredesen, D.E. (1996) Altered reactivity of superoxide dismutase in familial amyotrophic lateral sclerosis. Science 271(5248),515-8.
    147.Winklhofer, K.F., Tatzelt, J. and Haass, C. (2008) The two faces of protein misfolding:gain-and loss-of-function in neurodegenerative diseases. Embo J 27(2),336-49.
    148.Witan, H., Kern, A., Koziollek-Drechsler, I., Wade, R., Behl, C. and Clement, A.M. (2008) Heterodimer formation of wild-type and amyotrophic lateral sclerosis-causing mutant Cu/Zn-superoxide dismutase induces toxicity independent of protein aggregation. Hum Mol Genet 17(10),1373-85.
    149.Yang, F., Jr., Zhang, M., Zhou, B.R., Chen, J. and Liang, Y. (2006) Oleic acid inhibits amyloid formation of the intermediate of alpha-lactalbumin at moderately acidic pH. J Mol Biol 362(4),821-34.
    150.Yim, M.B., Kang, J.H., Yim, H.S., Kwak, H.S., Chock, P.B. and Stadtman, E.R. (1996) A gain-of-function of an amyotrophic lateral sclerosis-associated Cu,Zn-superoxide dismutase mutant:An enhancement of free radical formation due to a decrease in Km for hydrogen peroxide. Proc Natl Acad Sci U S A 93(12), 5709-14.
    151.Zhou, B.R., Liang, Y, Du, F., Zhou, Z. and Chen, J. (2004) Mixed macromolecular crowding accelerates the oxidative refolding of reduced, denatured lysozyme:implications for protein folding in intracellular environments. J Biol Chem 279(53),55109-16.
    152.Zhou, Y.L., Liao, J.M., Chen, J. and Liang, Y. (2006) Macromolecular crowding enhances the binding of superoxide dismutase to xanthine oxidase:implications for protein-protein interactions in intracellular environments. Int J Biochem Cell Biol 38(11),1986-94.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700