烟草5-磷酸脱氧木酮糖还原异构酶(DXR)基因全长cDNA的克隆及序列分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
萜类化合物(terpenoids)是自然界存在的一类由异戊二烯为结构单元组成的化合物的统称,也称为类异戊二烯(isoprenoids)。该类化合物广泛分布于古细菌、细菌、真菌、植物等生物体内。烟叶中的致香物质前体主要包括三类,即西柏烷类化合物(Cembranoids)、类胡萝卜素类化合物(Carotenoids)和岩蔷薇类化合物(Labdaniods)。它们都是烟草中与香气相关的萜类化合物,由DOXP/MEP途径合成。5-磷酸脱氧木酮糖还原异构酶(DXR)是萜类化合物合成途径中参与DOXP/MEP途径的第一个关键酶,它催化DOXP生成MEP,是催化萜类合成前体IPP生成的关键步骤。该酶的作用决定了下游萜类化合物的产量。目前,很多细菌、原生动物和高等植物的DXR基因都相继被发现。不同物种中DXR氨基酸水平的同源性很高。
     本研究以烟草(Nicotiana tabacum)叶片为材料,应用RT-PCR及RACE的方法首次克隆了烟草DXR基因的全长cDNA序列(DQ839130)。该基因全长为1,804bp,开放阅读框(ORF)由1,422个碱基组成,共编码473个氨基酸,理论分子量约为51.2kDa,等电点为6.04,N-末端有一个富含Pro残基的信号肽;二级结构预测表明,不规则盘绕和α-螺旋是DXR蛋白中主要的结构元件;同源序列比对表明,推断的DXR氨基酸序列与本塞姆氏烟草(Nicotiana benthamiana, AM236596)、番茄(Lycopersicon esculentum, AF331705)、长春花(Catharanthus roseus, AF250235)、金鱼草(Antirrhinum majus, AY770406)、胡椒薄荷(Mentha×piperita, AF116825)DXR的一致性分别达到97%、92%、84%、82%、80%,证实该基因确为DXR基因。进化树分析显示烟草DXR与番茄DXR的亲缘关系最近,且基本反应了10种不同植物DXR之间的进化关系。
     烟草DXR基因的克隆与分析为进一步验证DXR在烟草类萜生物合成途径中的分子调控机理,以及构建改良烟叶香气品质的转基因烟草,从而增加烟草中重要香气物质的含量奠定了良好的基础。
Terpenoids, also called isoprenoids, are a group of natural products which all formally built from isoprenic unit. Those kinds of compound are biosynthesized by archaebacterium, bacterium, fungi, and plant. Many of these compounds are of important economic value. There are three key fragrant terpenoids which are synthesized through DOXP/MEP pathway in tobacco, including Cembranoids, Carotenoids, Labdaniods. Their biosynthesis pathway and regulation of concerned emzymes should be elucidated. 1-deoxy-D-xylulose-5-phosphate reductoisomerase (DXR) is the first key enzyme in the process of the DOXP/MEP pathway for terpenoid biosynthesis. It catalyzes conversion of 1-deoxy-D-xylulose-5-phosphate (DOXP) to 2C-methyl-D-erythritol-4-phosphate (MEP), that represents the committed step in the production of isopentenylallyl diphosphate (IPP). It will determine the outputs of downstream products. DXR gene has been isolated from different species, including bacteria, protozoa and higher plants. The amino acid identity among DXR from different species is high.
     In this work, reverse transcription-PCR (RT-PCR) and rapid amplification of cDNA ends (RACE) techniques had been applied to clone the DXR gene (GenBank accession No.: DQ839130) using tobacco (Nicotiana tabacum) leaves as the target material for the first time. The full-length cDNA was 1,804bp and the biggest open reading frame (ORF) was 1,422bp and encoded 473 amino acids which had a theoretical molecular weight of 51.2 kDa, an isoelectric point of 6.04 and a plastid transit peptide which was rich in Pro residue at its N-terminal. Secondary structure predicting reveals thatα-helix and random coil were the main structural conformations in DXR protein. Through sequence analysis by Blast P online, the deduced amino acid sequence showed highly homologous to the DXR which was from other plant species. The identification that compared with Nicotiana benthamiana (AM236596), Lycopersicon esculentum(AF331705), Catharanthus roseus(AF250235), Antirrhinum majus(AY770406) and Mentha×piperita(AF116825) were 97%, 92%, 84%, 82% and 80% respectively.The phylogenetic tree showed that tobacco DXR was closely related to tomato DXR, and basically reflect the phylogenetic relationships of these DXR in ten plants.
     The cloning and analysis of tobacco DXR gene provided a good base for research on functional expression and potential application in improving the fragrant quality of tobacco leaves, and for construction of high yield key fragrant terpenoids genetic engineering tobacco.
引文
[1]杨涛,曾英.植物萜类合酶研究进展.云南植物研究, 2005, 27(1): 1~10
    [2] Cane DE.BIOSYNTHETIC PATHWAYS: Biosynthesis Meets bioinformatics. Science, 2000, 287: 818~822
    [3] Lange BT, Martin W, Croteau R. Isoprenoid biosynthesis; the volution of two ancient and distinct pathways across genomes. Proc Natl Acad Sci USA ,2000,1997(13): 172~175
    [4] Davis EM, Croteau R. Cyclization enzymes in the biosynthesis of monoterpenes, sesquiterpenes, and diterpenes. Curr Topics Chem, 2000, 209: 53~95
    [5] Chappell J. The Biochemistry and Molecular Biology of lsoprenoid Metabolism. Plant Physiol, 1995, 107: 1~6
    [6] Roger NP, V. Mane Fils, Le Bar-Sur-Loup, France. Tobacco Flavoring: An Overview. Perfumer & Flavorist, 1997, 22: 21~28
    [7]何承刚,曾旭波.烤烟香气物质的影响因素及其代谢研究进展.中国烟草科学, 2005, 26(2): 40~43
    [8] Greenhagen B, Chappell J. Molecular scaffolds for chemical wizardry: Learning nature’s rules for terpene cyclases. PNAS, 2001, 98: 13479~13481
    [9] Lichtenthaler HK. The l-deoxy-D-xylulose-5-phosphate pathway of isoprenoid biosynthesis in plants. Plant Mo1 Boil, 1999, 50: 47~65
    [10] Bach TJ, Boronat A, Caelles C, et al.Aspects related to mevalonate biosynthesis in plants. Lipids, 1991, 26: 637~648
    [11] McGarvey JD, Croteau R. Terpenoid Metabolism. The Plant Cell, 1995, 7: 1015~1026
    [12] Rohmer M. The discovery of a mevalonate-independent pathway for isoprenoid biosynthesis in bacteria, algae and higher plants. Nat Prod Rep, 1999, 16: 565~574
    [13] Schwender J, Gemünden C, Lichtenthaler HK. Chlorophyta exclusively use the 1-deoxyxululose 5-phosphate/2-C-methylerythritol 4-phosphate pathway for thebiosynthesis of isoprenoids. Planta, 2001, 212: 416~423
    [14] Eisenreicha W, Bachera A, Arigonib D, et al. Biosynthesis of isoprenoids via the non-mevalonate pathway. Cell Mol Life Sci, 2004, 61: 1401~1426
    [15] Rohmer M. The discovery of a mevalonate-independent pathway for isoprenoid biosynthesis in bacteria, algae and higher plants. Nat Prod Rep, 1999, 16: 565~574
    [16] Eisenreicha W, Bachera A, Arigonib D, et al. Biosynthesis of isoprenoids via the non-mevalonate pathway. Cell Mol Life Sci, 2004,61: 1401~1426
    [17]兰文智,余龙江,蔡永君等.类异戊二烯非甲羟戊酸代谢途径的分子生物学研究进展.西北植物学报, 2001, 21(5): 1039~1047
    [18] Lützow M, Beyer P. The isopentenyl-diphosphate A-isomerase and its relation to the phytoene synthase complex in daffodil chromoplasts. Biochim Biophys Acta, 1988, 959: 118~126
    [19] Aubourg S. Genomic analysis of the terpenoid synthase (AtTPS) gene family of Arabidopsis thaliana. Mol Genet Genomics, 2002, 267: 730~745
    [20] Kasahara H, Hanada A, Kuzuyama T, et al. Contribution of the mevalonate and methylerythritol phosphate pathways to the biosynthesis of gibberellins in Arabidopsis. J Biol Chem, 2002, 277: 45188~45194
    [21] Arigoni D, Sagner S, Latzel C, et al. Terpenoid biosynthesis from 1-deoxy-Dxylulose in higher plants by intramolecular skeletal rearrangement. Proc Natl Acad Sci USA, 1997, 94: 10600~10605
    [22]陈建,赵德刚.植物萜类生物合成相关酶类及其编码基因的研究进展.分子植物育种, 2004, 2(6): 757~764
    [23] Proteau PJ. 1-Deoxy-D-xylulose 5-phosphate reductoisomerase: an overview. Bioorg Chem, 2004, 32: 483~493
    [24] Carretero-Paulet L, Ahumada I, Cunillera N, et al. Expression and molecular analysis of the Arabidopsis DXR gene encoding 1-deoxy-D-xylulose 5-phosphate reductoisomerase, the first committed enzyme of the 2-C-methyl-D-erythritol 4-phosphate pathway. Plant Physiol, 2002, 129(4): 1581~1591
    [25]郑清平,余龙江,刘智等.红豆杉细胞非甲羟戊酸途径关键酶基因dxr的克隆与分析.生物工程学报, 2004, 20(4): 548~553
    [26] Reuter K, Sanderbrand S, Jomaa H, et al. Crystal structure of 1-deoxy--xylulose- -phosphate reductoisomerase, a crucial in the non-mevalonate pathway of isoprenoid biosynthesis. J Biol Chem, 2002, 227: 5378~5384
    [27] Yajima S, Nonaka T, Kuzuyama T, et al. 1-deoxy-D-xylulose-5-phosphate Reductoisomerase Complexed with Cofactors: Implications of a Flexible Loop Movement upon Substrate Binding. J. Biochem, 2002, 131: 313~317
    [28] Steinbacher S, Kaiser J, Eisenreich W, et al. Structural Basis of Fosmidomycin Action Revealed by the Complex with 2-C-Methyl-d-erythritol 4-phosphate synthase (IspC). J. Biol. Chem, 2003, 278: 18401~18407
    [29] Ricagno S, Grolle S, Bringer-Meyer S, et al. Crystal structure of 1-deoxy-d-xylulose-5-phosphate reductoisomerase from Zymomonas mobilis at 1.9A resolution. Biochim. Biophys. Acta, 2004, 1698: 37~44
    [30] Takahashi S, Kuzuyama T, Walanabe H, et al. A 1-deoxy-D-xylulose 5-phosphate reductoismerase catalyzing the formation of 2-C-methyl-D-erythritol 4-phosphate in an alternative nonmevalonate pathway for terpeonid biosynthesis. Proc Natl Acad Sci USA, 1998,95: 9879~9 884
    [31] Carretero-Paulet L, Ahumada I, Cunillera N, et al. Expression and molecular analysis of the Arabidopsis DXR gene encoding 1-deoxy-D-xylulose 5-phosphate reductoisomerase, the first committed enzyme of the 2-C-methyl-D-erythritol 4-phosphate pathway. Plant Physiol, 2002, 129(4): 1581~1591
    [32] Mahmoud SS, Croteau RB. Metabolic engineering of essential oil yield and composition in mint by altering expression of deoxyxylulose phosphate reductoisomerase and menthofuran synthase. Proc Natl Acad Sci USA, 2001, 98(15): 8915~8920
    [33] Manuel Rodríguez-Concepción, Ivan Ahumada, et al. 1-Deoxy-D-xylulose 5-phosphate reductoisomerase and plastid isoprenoid biosynthesis during tomato fruit ripening. The Plant Journal, 2001, 27(3): 213~222
    [34] Walter MH, Fester T, Strack D. Arbuscular mycorrhizal fungi induce the non-mevalonate methylerythritol phosphate pathway of isoprenoid biosynthesis correlated with accumulation of the“yellow pigment”and other apocarotenoids. PlantJ, 2000, 21(6): 571~578
    [35] Veau B, Courtois M, Oudin A, et al. Cloning and expression of cDNAs encoding two enzymes of the MEP pathway in Catharanthus roseus. Biochim Biophys Acta, 2000, 1517(1): 159~163
    [36] Frohman MA, Dush MK, Martin G. Rapid production of full length cDNAs from rare transcripts: amplification using a single gene-specific oligonucleotide primer. Proc Natl Acad Sci USA ,1988 , 85: 8998~9002
    [37] Loh EY, Elliot JF, Cwirla S, et al. Polymerase chain reaction with single-sided specificity : analysis of T cell receptor d chain. Science, 1989, 243: 217~220
    [38]唐克轩,开国银,张磊等. RACE的研究及其在植物基因克隆上的应用.复旦学报(自然科学版), 2002, 41(6): 704~709
    [39] De M, Linda E, Whiteman PH, et al. Isolation and characterisation of a cDNA clone encoding cinnamyl alcohol dehydrogenase in Eucalyptus globulus Labill. Plant Science,1999, 143(2): 173~182
    [40] Reddy MK, Nair S, Singh BN, et al. Cloning and expression of a nuclear encoded plastid specific 33 kDa ribonucleoprotein gene (33RNP) from pea that is light stimulated. Gene, 2001, 263(1): 179~187
    [41] Chen H, Vierling R. A Molecular cloning and characterization of soybean peroxidase gene families. Plant Science, 2000, 150(2): 129~137
    [42]陈渝萍,薛社普.应用改进的SSP-抑制PCR技术扩增cDNA片段旁侧序列.基础医学与临床, 1999, 19(4): 1~5
    [43] Klein M, Pieri I, Uhlmann F, et al. Cloning and characterization of promoter and 5-UTR of the NMDA receptor subunit 2: Evidence for alternative splicing of 5’-non-coding exon. Gene, 1998, 208(2): 259~269
    [44] Schaefer BC. Revolutions in rapid am plification of cDNA ends: New strategies for polym erase chain reaction cloning of full-length cDNA ends. Anal Biochem, 1995, 227: 255~273
    [45]王玲.基于知识发现的生物信息学.生物工程进展, 2000, 20(3): 27~29
    [46]王哲,黄高升. NCBI的数据库资源及其应用.生命科学, 2002, 14(1): 59~62
    [47]胡德华,方平.网上序列类似性检索.医学信息, 2001, 14(2): 68~70
    [48]强伯勤,方福德.中国基因组研究的现在与未来.生物化学与生物物理进展, 2000, 27(5): 455~460
    [49]崔红,宋志红.类萜代谢工程研究进展及在烟草品种改良中的应用前景.中国烟草学报, 2003, 9(2): 35~38, 42
    [50]史宏志,刘国顺.烟草香味学.北京:中国农业出版社, 1998, 144~146
    [51] J.萨姆布鲁克, D.W.拉赛尔.分子克隆实验指南.第3版.黄培堂等译.北京:科学出版社, 2002, 96~105
    [52] J.萨姆布鲁克, D.W.拉赛尔.分子克隆实验指南.第3版.黄培堂等译.北京:科学出版社, 2002, 619~620
    [53] Gasteiger E, Gattiker A, Hoogland C, et al. ExPasy: the proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Res, 2003, 31: 3784~3788
    [54] Carretero-Paulet L, Ahumada I, Cunillera N, et al. Expression and molecular analysis of the Arabidopsis DXR gene encoding 1-deoxy-D-xylulose 5-phosphate reductoisomerase, the first committed enzyme of the 2-C-methyl-D-erythritol 4-phosphate pathway. Plant Physiol, 2002, 129(4): 1581~1591

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700