聚丙烯酰胺系树脂吸湿性功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
有机高分子吸湿材料是新型的功能高分子材料,它最初是由高吸水性树脂发展而产生的。它具有优异的吸湿、保湿性能,是一种经过化学与物理方法改性的水性树脂,以分子中的亲水基团来吸收水分。本文以丙烯酰胺为主要原料,合成了PAM树脂、P(AA-AM)树脂、P(MAA-AA-AM)树脂以及PAM/U复合材料、P(AA-AM)/U复合材料和P(MAA-AA-AM)/U复合材料。研究了反应条件对吸湿材料吸湿性能的影响;采用正交试验决定了最佳反应条件及影响吸湿性能的主要因素;采用FT-IR、SEM分析了聚合物的组成及其微观结构。
Organic moisture absorbent is a new type of functional hygroscopic material due to their excellent moisture absorption and retention property. The resins, modified by chemical and physical modification, have a water-absorbent property by hydrophilic groups. In this paper, Polyacrylamide, Poly [acrylate-co-acrylamide], Poly [methacrylate-co-acrylate-co-acrylamide] and their composite materials with urea were be made with acrylamide, acrylate and methacrylate as monomers. The factors relating to the properties of moisture absorption, such as monomer concentration, dosage of initiator, reaction temperature and so on, were investigated systematically. The best reaction condition and the sequence of the factors influencing on hygroscopicity were based on the orthogonal experiment design. The mathematical correlation on various factors and moisture absorbency was obtained based on the multiple regression analysis. The composition and microstructure of polymer were described by means of infrared spectrum analysis and SEM analysis.
     Polyacrylamide and Polyacrylamide /Urea were synthesized with acrylamide as monomer by means of aqueous solution polymerization. The factors relating to the properties of moisture absorption, such as monomer concentration, dosage of initiator, crossing-linking agent concentration, reaction temperature and dosage of urea, were investigated systematically. The optimal synthesis conditions were as following: the monomer concentration, the crossing-linking agent concentration and the reaction temperature were respectively 26%, 0.12% and 50℃. Besides, the optimal dosage of urea was 30%.
     The result showed that the moisture absorption capacity of PAM is higher than the molecular sieve’s and silica gel’s under the condition of 25℃and RH=90%. Besides the moisture absorption capacity and the moisture absorption rate of PAM/U were higher than PAM cause of the urea attending. The reason was urea wrinkled surface area of polymer, which increased the effective surface area and then improved the moisture absorption rate. But the extra dosage of urea would lower the molecular weight of polymer.
     Poly [acrylate-co-acrylamide] and Poly [acrylate-co-acrylamide]/Urea were synthesized with acrylamide and acrylate as monomer by means of aqueous solution polymerization. The factors relating to the properties of moisture absorption, such as monomer concentration, dosage of initiator, crossing-linking agent concentration, monomer ratio, reaction temperature and dosage of urea, were investigated systematically. The max moisture absorbency of polymer reached 1.05g/g under the condition of 25℃and RH=90%. Also the results showed that the moisture-absorbing rate was very slow under low humidity. The moisture absorbency under relative humidity of 90% was ten times of that under relative humidity of 40%. And also the Infrared Spectroscopy confirmed the existence of the copolymer.
     The moisture content intuitive analysis table indicated the sequence of the factors influencing on hygroscopicity was shown as follows: monomer concentration> reaction temperature>AM concentration> crossing-linking agent concentration> dosage of urea> dosage of initiator.
     When the AM concentration was 100%, monomer concentration was18%, crossing-linking agent concentration was 0.22%, initiator agent concentration was 0.15%, urea concentration was 20% and the reaction temperature was 45oC, the max moisture absorbency was 1.05%.
     The mathematical correlation on various factors and moisture absorbency was obtained based on the multiple regression analysis: Y=a0+a1[N]2+a2[M]+a3[C]3+a4ln[I]+a5[U]+a6[T]3
     In which a0=1.351,a1=0.00000783,a2=-0.0259, a3=9.065, a4=0.0825, a5=0.00252, a6=0.0000007.
     The results of SEM showed that P(AA-AM)/U had a lot of micropore structure, which was produced by decomposition of urea. NH3 and CO2 were originated from the decomposed urea, played a role in pore making agent. And the result showed the dosage of urea and drying temperature impacted the moisture absorbing ability. The optimal conditions were the urea concentration was 20%-30% and the drying temperature was 120oC. There were two main reasons of moisture absorption property of P(AA-AM)/U better than P(AA-AM). Firstly, decomposition of urea produced pores, which increased the effective surface area and improved the moisture absorption rate. Secondly, urea was not only the pore agent, but also participated in reaction. A new hydrophilic group -N=C=O was generated.
     Poly [methacrylate-co-acrylate-co-acrylamide] and Poly [methacrylate-co-acrylate-co-acrylamide]/Urea were synthesized with methacrylate, acrylamide and acrylate as monomer by means of aqueous solution polymerization. The factors relating to the properties of moisture absorption, such as monomer concentration, dosage of initiator, crossing-linking agent concentration, monomer ratio and dosage of urea, were investigated systematically. The max moisture absorbency of polymer reached 0.885g/g under the condition of 25℃and RH=90%. Also the optimal monomer ratio was R(mMAA:mAA:mAM)=2:1:1. And the optimal urea concentration was 30%.
引文
[1]邹新禧.超强吸水剂[M].北京:化学工业出版社,2002
    [2] LG BERGLUND..Comfort and humidity [J]. ASHRAE Journal, 1998(8) :35~41.
    [3]张冬梅.浅谈气象环境对人体健康的影响[J].内蒙古科技与经济, 2007(21):44
    [4]周祖康,胶体化学基础[M],北京:北京大学出版社,1987
    [5]李云开,杨培岭,刘洪禄.保水剂农业应用及其效应研究进展[J].农业工程学报,2002,2(18):182-187.
    [6]邹新禧.两性淀粉螯合剂吸附性能的研究[J].功能高分子学报,1996,9(3):468-474.
    [7] DATA M, SUMIYA T, PEARL A. EP Patent,69 618 005, 1994-03-25
    [8] TANAKA T. JP Patent, 60 163 404,1985 -04-18
    [9]万震,刘嵩,陈小利.高亲水棉织物[J].广西纺织科技, 2001, 30(2):43
    [10] CRAWSHAW J P, HILLS J H.Experimental determination of binary sorption and desorption kinetics for the system ethanol, water, and maize at 90 [J].Ind Eng Chem Rcs,1992,31:887-892.
    [11] MICHAEL R.L. Biobased adsorbents for drying of gases [J].Enzyme and Microbial Technology, 1997,20:162-164.
    [12] KYLE E. B, MICHAEL. R. L. Chenisty and properties of starch based desiccants[J]. Enzyme and Microbial Technology, 2001, 28:573-581
    [13]王航,黄立新,高群玉,余若黔.多孔淀粉的研究进展[J].精细化工,2002,19:101-104
    [14]李鑫,李忠,韦利飞,等.除湿材料研究进展[J].化工进展,2004,23(8):881-884
    [15] M.R.LADISCH. Biobased adsorbents for drying of gases[J], Enzyme Microbial Tech, 20(3),1997:162-164.
    [16]周莉.从鱿鱼软骨提取β-甲壳质及其结构表征与应用性能[J],精细化工,20(1),2003:8-10
    [17] J. KHEDARI, R. RAWANGKUL, W. CHIMCHAVEE. Feasibility study of using agriculture waste asdesiccant for air conditioning system[J]. Renewable energy, 28(10),2003:1617-1628
    [18]ポリマ一ダィジェス卜(日),2002;54(12):15
    [19]木下直之.高吸放湿尼龙Quup的特性与开发[J].国外纺织技术,2001,(11):12
    [20]李万芬,汪超,陈国锋,等.魔芋葡甘聚糖接枝丙烯酸共聚物超强吸湿剂的扩散吸湿特性研究[J].材料科学与工程学报,2007,25(2):276-280
    [21] RYOSUKE NISHIDA,OKU-GUN.Moisture-absorbing and desorbing polymer and compositions derived therefrom [P]. US:6429265, 2002.
    [22] L. CHEN, S. H. GORDON,S. H. IMAM. Starch Graft Poly(methyl acrylate) Loose-Fill Foam: Preparation[J]. Properties and Degradation Biomacromolecules, 2004, 5:238-244
    [23]刘川文黄红军李志广,等.聚乙烯醇吸附性树脂的制备及其吸湿放湿性能研究[J].科学技术与工程,2007,7(2):242-244
    [24] H A EL-REHIM. Swelling of radiation crosslinked acrylamide-based microgels and their potential applications [J].Radiation Physics and Chemistry,2005, 74:111–117.
    [25]罗曦云.调湿材料的开发[J].化工新型材料,1997,(3):9
    [26]刘川文黄红军李志广,等.改性聚乙烯醇-氯化钙共混物的吸湿性能研究[J].科学技术与工程,2007,7(6):1169-1171
    [27]封禄田田一光.蒙脱土/聚丙烯酰胺复合材料的制备和性能研究[J].沈阳化工学院学报1999(13):1
    [28] CAO LI-YUN, HUANG JIAN-FEN. Preparation of Bentonite/PAM Humidity-Controlling Membrane by Coordinating Intercalation Polymerization Method [J]. Journal of Shanxi university of science&technology,2004,22(1):1-5
    [29]蔡开勇,王久芬,杜拴丽.引发体系对聚丙烯酰胺相对分子质量的影响[J].华北工学院学报, 1999, 20(1): 83-87.
    [30]吴挡兰,方熠,陈日耀,等.水溶液聚合高分子聚丙烯酰胺的研究[J].当代化工, 2005, 34(3): 183-187.
    [31]穆志坚.聚丙烯酰胺的合成与研究[J].南通职业大学学报,2001, 15(2): 21-23.
    [32]张宝军,宁英男,刘广舜,等.新型氧化还原引发体系合成超高分子量聚丙烯酰胺的研究[J].化学工程师, 2000(77): 20-21.
    [33]王少为.人体必需微量元素——硒[J].广东微量元素科学,1999, 6(6): 50-51.
    [34]侯建军.硒的生物功能[J].生物学通报, 1997, 32(5): 16-17.
    [35]罗海吉,吉雁鸿.硒的生物学作用及其意义[J].微量元素与健康研究, 2000, 17(2): 70-72.
    [36]陈昕,薛德平,傅辛福,等.微量元素硒的生理功能[J].南京军医学院学报, 2000, 22(2): 103-104.
    [37]郭建军,方子龙,杨则宜.硒营养与人体健康[J].生物学通报, 2000, 35(4): 21-22.
    [38]黄利铭,伍钦.均聚法制备高分子量聚丙烯酰胺[J].功能材料, 2004,2(35): 257-261.
    [39]李富生,左晓玲,段明,等. CuSO4-NaHSO3引发的聚丙烯酰胺聚合[J].精细石油化工, 2003, 3(2): 20-22.
    [40]吴日韦,毛国梁,黎钢.以Cu(Ⅲ)络离子为引发剂合成带支链的聚丙烯酰胺-丙烯酰胺均聚共水解[J].大庆石油学院学报, 2006(4): 120-121, 159.
    [41]张秀莉.三次采油用聚丙烯酰胺新引发体系研究[J].化学研究与应用, 1998, 10(6): 650-652.
    [42]孟昆,赵京波,张兴英.反相乳液聚合法制备聚丙烯酰胺[J].石油化工, 2004, 33(8): 740-742.
    [43] ALEXANDER P, KRISTINA P, KARL-HEINZ R. The inverse emulsion polymerization of acrylamide with pentaerythritolmyristate as emulsifier, I. Experimental studies[J]. Polymer International,1998, 45: 22-26.
    [44] BISWAJIT R, BROJIA M M. Dispersion polymerization of acrylamide[J]. Langmuir, 1997, 132: 191-2196.
    [45] XU ZUSHUN, CHEN YUANCHUN, ZHANG GUEIJUN, et al. The inverse emulsion polymerization of acrylamide using polystyrene-graft-polyoxyethylene as the stabilizer[J].Journal of Polymer Science(Part A): Polymer Chiesmtry,1999, 37: 2719-2725.
    [46] XU ZUSHUN, YI CHANGFENG, CHENG SHIYUAN, et al. The inverse emulsion polymerization of acrylamide using po(lmyethylmethacrylates)-graft-polyoxyethylene as thset abilizer[J].Journal of Applied Polymer Science2,0 01, 79: 528-534.
    [47] MIRCEA T, KRZYSZTOF M. Atom transfer radical polymerizationof (meth)acrylamides[J].Macromolecules, 1999, 32:4826-4831.
    [48] MIKLOS O, KRISZTIONA K C, ANATOL M Z. Pattern formation during polymerization of acrylamide in the presence of sulfide ions[J]. J Phys Chem B, 1999, 103: 3-640.
    [49] FANG S J, FUJIMOTO K, KONDO S. Emulsifier-free emulsion copolymerization of styrene and acrylamide using an amphotericinitiator[J]. ColloidePolymerScience, 2000,278:864-871.
    [50] HOAR J P, SCHULMAN J H. Transparent water-in-oil dispersion:The oleophilic hydro-micelle[J]. Nature, 1943, 152:102-103.
    [51] SCHULMAN J H, STOECKENIUS W, PRINCE L. Mechanism of formation and structure of microemulsions by electron microscopy[J]. Phys Chem, 1959, 631: 677-1680.
    [52] CANDAU F, LEONG Y S. Kinetic study of the polymeriztion of acrylamide in inverse microemulsion [J]. Polym Sci, Polym Chem Ed, 1985, 23: 193-214.
    [53] CANDAU F, ZEKHNINI Z, DURAND J. Copolymerization of acrylate and sodium acrylate in microemulsions[J]. Prog Colloid Polym Sci, 1987, 73: 33 -36.
    [54] CANDAU F, ZEKHNINI Z, HEATLEY F. 13C NMR study of the sequence distribution of poly(acrylamide-co-sodium acrylates) prepared in inverse microemulsions[J].Macromolecules, 1986, 19(7):1 985-1920.
    [55]李文兵,王光华,李蕾.聚丙烯酰胺的反相微乳液聚合研究[J].武汉化工学院学报, 2003, 25(3): 28-31.
    [56] EDWARD L GRIFFIN. Emulsions of mineral oil with soap and water: Theinterfacialfilm[J]. JournaloftheFranklinInstitute,1923, 196(3): 401.
    [57]张乾,范晓东.丙烯酰胺反相微乳液体系的制备、聚合及表征[J].化学工业与工程, 2001, 18(6): 316-322.
    [58]赵勇,何炳林.反相微乳液中疏水缔合型聚丙烯酰胺的合成及其性能研究[J].高分子学报, 2000, 10(5): 550-553.
    [59]李晓,张卫英.丙烯酰胺反相微乳液聚合[J].精细石油化工进展, 2002, 3(3): 13-16.
    [60]李晓,张卫英,袁惠根.反相微乳液聚合机理及模型化处理[J].中国工程科学, 2003, 5(1): 69-73.
    [61]刘莲英,韩淑珍,金关泰,等.反相悬浮法碱水解合成阴离子型聚丙烯酰胺[J].北京化工大学学报, 2000, 27(4): 36-38.
    [62]张忠兴,韩淑珍,刘昆元.反相悬浮共聚合成聚丙烯酰胺的中试研究[J].北京化工大学学报, 2001, 28(1): 52-55.
    [63]徐初阳,聂容春.光引发合成聚丙烯酰胺的研究[J].安徽理工大学学报(自然科学版), 2003, 23(2): 49-52.
    [64]聂容春,贾荣仙,徐初阳,等.阳离子型PAM絮凝剂的光引发合成表征及絮凝效果[J].煤炭学报, 2006(5): 81-84.
    [65] JAMES P, RICHARD G J. Direct evidence for the interaction of the mechanisms of thermally initiated and atomtransfer radical polymerization[J]. Macromolecules, 2000, 339:1 66-9168.
    [66]叶强,葛学武,徐相凌,等.水溶性超高分子量聚丙烯酰胺的辐射反相乳液聚合[J].辐射研究与辐射工艺学报,1998, 16(2): 94-96.
    [67]何彦刚.等离子体引发聚合制备季铵盐类阳离子型聚电解质[D].天津:河北工业大学, 2006.
    [68]李万捷,阮路.微波场中PAM合成及其在洗煤废水中的应用[J].煤炭转化, 1999, 22(4): 87-89.
    [69] PAUL J C, DAVID M D, GARY A E. 3-dimensional submicronpolymerization of acrylamide by multiphoton excitation of xanthene dyes[J]. Macromolecules, 2000, 331:5 11-1513.
    [70]王久芬,王通,徐月皓.阳离子聚电解质PAM.MG的合成[J].化学世界, 2002(2): 69-71, 97.
    [71]王玉鹏,许军,王传兴,等. AM/AA/AMPS三元共聚物的制备与表征[A].第九届全国化学工艺学术年会论文集[C].北京:中国石化出版社, 2005. 1398-1402.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700