钌助化SBA-15负载的钴基费—托合成催化剂结构及催化性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
费-托合成是将煤和天然气转化为洁净液体燃料油最有前途的方法之一。钴基催化剂因其具有催化活性高、水煤气变换活性低、长链烃选择性高、失活效率低等优点,越来越受到重视。由于SBA-15具有高的比表面积,孔径大小在5-30 nm范围内且可调控,孔道规整有序,并有较厚的孔壁和好的水热稳定性,可用作于费-托合成催化剂的载体。
     钌对SBA-15负载的钴基催化剂的催化性能方面的研究报道较少,用原位漫反射红外光谱技术研究钌助剂对SBA-15负载的钴基催化剂上CO吸附和合成气的费-托合成反应则未见文献报道。因此,本文选取SBA-15作为载体,用满孔浸渍法制备催化剂,重点研究钌负载量对SBA-15负载的钴基催化剂费-托合成催化性能的影响并采用X-射线衍射、H_2-程序升温还原、H_2-程序升温脱附、氧滴定等技术对催化剂进行了表征。此外采用CO为探针分子,用漫反射红外光谱法在原位条件下研究催化剂的吸附性能,同时考察不同钌助剂含量的SBA-15负载钴基催化剂表面CO加氢反应机理。催化剂费-托合成反应活性和选择性测试在典型的费-托合成条件下(230℃、10 bar)在固定床反应器上进行。
     综合表征结果及反应结果发现,钌助剂显著影响Co/SBA-15催化剂的结构、氧化钴物种的还原度和催化反应性能。
     (1)钌金属作氢溢流的桥梁,促进了催化剂上钴氧化物的还原,提高了催化剂的分散度,增加了活性中心的数量。且钌可以阻止钴与载体间的相互作用,促进氧化钴的还原。
     (2)不同钌含量的催化剂显示不同的催化活性。催化剂的催化活性随着钌含量的增加而提高。钌含量为0.5 wt%的Co/SBA-15催化剂表现出最高的费-托合成反应活性和长链烃选择性。
     (3)原位红外光谱研究表明,室温下CO在还原态催化剂表面主要以线式吸附和桥式吸附存在。在有H_2共吸附的情况下,H_2不仅使催化剂对CO的吸附能力大为增强,并显示出更多的吸附位。
     (4)不同钌含量的钴基催化剂还原后显示出不同的CO吸附性能。随着钌含量的增大,催化剂上桥式吸附和线性吸附发生了明显的变化。催化剂上存在桥式吸附和多种线性吸附,但只有特定的吸附位才对反应活性有显著影响。
     (5)还原态催化剂上合成气原位反应红外光谱研究表明,在钴金属表面CO并不是C-O键直接解离形成产物,而是先形成了羰基氢化物再发生解离。羰基氢化物是催化反应的重要中间体,与反应活性密切相关。羰基氢化物谱峰随温度升高红移的过程实际上是活性位上CO分子在H的作用下C-O键逐渐活化、减弱的过程。
Fischer-Tropsch (F-T) synthesis is one of the most promising processes for coal and natural gas conversion to ultra-clean fuels at economically feasible cost. Supported cobalt catalysts are the preferred catalysts for the F-T synthesis of long-chain paraffins from natural gas because of its high activity, low water–gas shift activity, and relatively lower deactivation rate. SBA-15 is commonly used as the support material due to its high surface area,the hexagonal array of uniform tubular channel with pore diameters ranging from 5 to 30 nm, the thick pore walls and good hydrothermal stability.
     From a survey of the literatures, we found that there was little information focused on the effect of Ru promoter on the SBA-15 supported Co-based catalysts for FT synthesis. So the work focused on the effect of Ru promoter on the catalyst structure and its catalytic behavior on F-T synthesis for the Co/SBA-15 catalyst. A series of cobalt catalysts supported by SBA-15 with different Ru loading were prepared by incipient wetness impregnation method. X-ray diffraction (XRD), Hydrogen Temperature programmed reduction (H_2-TPR), Hydrogen temperature programmed desorption (H_2-TPD) and oxygen titration were used to characterize the catalysts. The adsorption and reaction properties of Co/SBA-15 catalysts were studied by in situ diffuses reflectance FTIR spectroscopy (DRIFTS) using CO and syngas as probe moleculars, and the reaction mechanism of CO hydrogenation on Co/SBA-15 catalysts with different Ru losding was also investigated by DRIFTS. The activity and selectivity for the F-T reaction were measured by using a fixed bed reactor under typical F-T synthesis conditions for cobalt catalysts (230℃and 10 bar).
     Catalysis and characterization results showed that the Ru promoter influenced the structure, reducibility, and the F-T catalytic performance of SBA-15 supported cobalt catalysts strongly.
     (1) Ru acted as the soures of H_2 spill over process, it facilitated the reduction of cobalt oxide. It also improved the dispersion and increased the active numbers of the catalysts, and it reduced the interaction between cobalt and the support to inhance the reducibility
     (2) Catalysts with different Ru loading showed different catalytic properties. The catalytic reaction activity is enhanced with increasing Ru loading. The catalysts with 0.5%Ru loading displayed the highest F-T activity and highest C5+ selectivity inthe catalysts.
     (3) The results of DRIFTS at room temperature showed that the CO linear and bridge-type adsorption were occured on Co/SBA-15. In the presence of hydrogen, the hydrogen not only improved the CO adsorption, the catalysts also had more Co adsorption sites.
     (4) Catalysts with different Ru loading showed different CO adsorption properties. The linear and bridge-type CO adsorption changed significantly with increasing Ru loading. There are several types of adsorption sites on catalyst surface, but only the special adsorption sites could influence the activity.
     (5) The results of syngas TP-IR indicated that the C-O bond did not dissociate directly to form hydrocarbons on catalyst surface but via hydrocarbonyl. The hydrocarbonyl was intermediate species and could be observed from IR spectra during the catalytic reaction. With increasing temperatures, the peak of hydrocarbonyl shifted to low wavenumbers, indicating that the C-O bond became gradually weaker.
引文
[1] Anderson R.B.The Fischer-Tropsch Synthesis. Academic Press, New York,1984
    [2]加藤顺,小林博行,村田义夫著,金革等译,碳一化学工业生产技术.化学工业出版社,北京,1990: 467-523
    [3]康守永,煤变油:远离石油危机.经济月刊,2000,11
    [4]陈建刚,相宏伟,李永旺等,费托法合成液体燃料关键技术研究进展.化工学报,2003(54)4:516-521
    [5]代小平,余长春,沈师孔,费-托合成制液态烃研究进展.化学进展,2000(12)3:268-280
    [6] Sasol Chevron开展从南非至卡塔尔的独特挑战旅行以测试GTL燃料, 2006-04-20
    [7] Dry M.E., The Fischer-Tropsch process: 1950-2000. Catalysis Today, 2002, 71(3-4): 227-241
    [8] Geerlings J.J.C., Wilson J.H., Kramer G.J., Fischer-Tropsch technology from active site to commercial process. Applied Catalysis A: 1999, 186: 27-40
    [9] Krylova A.J., Lapidus A.L., Tsapkina M.V., Process for the preparation of high activity carbon monoxide hydrogenation catalysts; the catalyst composition, use of the catalysts for conducting such reactions, and the products of such reactions. United States Patent, 6313062, 2001-11-6
    [10] Phodes A.K., Downstream. Oil&Gas Journal, 1996, 94: 85-86.
    [11] Joep J.H.M., Freidea F., Gamlin T.D., An adventure in catalysis: the story of the BP Fischer-Tropsch catalyst from laboratory to full-scale demonstration in Alaska. Topics in Catalysis, 2003, 26(1-4): 3-12
    [12]周敬来,张志新,张碧江.煤基合成液体燃料的MFT工艺技术,燃料化学学报, 1999,27(12)58-64
    [13] Yang Y., Xiang H., Xu Y., et al. Effect of potassium promoter on precipitatediron-manganese catalyst for Fischer-Tropsch synthesis. Applied Catalysis A, 2004,266: 181-194
    [14] Yang Y., Xiang H. Tian L., et al. Structure and Fischer-Tropsch performance of iron-manganese catalyst incorporated with SiO2. Applied Catalysis A: 2005, 284: 105-122
    [15] Zhang J., Chen J., Ren J., et al. Chemical treatment ofγ-Al2O3 and its influence on the properties of Co-based catalysts for Fischer-Tropsch synthesis. Applied Catalysis A: 2003 243: 121-133
    [16] Zhang J., Chen J., Ren J., et al. Support effect of Co/Al2O3 catalysts for Fischer-Tropsch synthesis. Fuel,2003 82(5): 581-586
    [17]马文平,丁云杰,罗洪原,等,铁/活性炭催化剂上费-托合成反应产物分布的非Anderson-Schulz-Flory特性.催化学报,2001,22(3): 279-282
    [18]李强,沈师孔.Co-CeO2/SiO2催化剂上的费-托反应性能.催化学报,2002,23(6): 513-516
    [19] Tang Q., Wang Y., Zhang Q., et al. Preparation of metallic cobalt inside NaY zeolite with high catalytic activity in Fischer-Tropsch synthesis. Catalysis Communications, 2003, 4(5): 253-258
    [20] Friedel R.A., Anderson R.B., Composition of synthetic liquid fuels. I. Product distribution and analysis of C5-C8 paraffin isomers from cobalt catalyst. Journal of the American Chemical Society, 1950, 72(3): 1212-1215
    [21] Anderson R.B., Catalysts for the Fischer-Tropsch synthesis in catalysis, Emmett P.H. ed., New York: Van Nostrand-Rheinhold, 1956, 5:29-255
    [22] Huff G.A., Satterfield C.N., Evidence for two chain growth probabilities on iron catalysts in Fischer-Tropsch synthesis. Journal of Catalysis, 1984, 85: 370-379
    [23] Iglesia E., Reyes S.C., Madon R.J., Transport enhancedα-olefin readsorption pathways in Ru-catalyzed hydrocarbon synthesis. Journal of Catalysis, 1991, 129: 238-256
    [24] Kuipers E.W., Vinkenburg I.H., Oosterbeek H., Chain length dependence ofα-olefin readsorption in Fischer-Tropsch synthesis. Journal of Catalysis, 1995, 152(1): 137-146
    [25] Gerard P., van der Laan, Antonie A.C.M. Beenackers, Hydrocarbon selectivity model for the gas-solid Fischer-Tropsch synthesis on precipitated iron catalysts. Industrial & Engineering Chemistry Research, 1999, 38(4): 1277-1290
    [26] Schulz H.,Major and minor reactions in Fischer-Tropsch synthesis on cobalt catalysts. Topics in Catalysis, 2003, 26(1-4): 73-85
    [27] Dictor R.A., Bell A.T., An explanation for deviations of Fisher-Tropsch products from a Schulz-Flory distribution. Industrial & Engineering Chemistry Process Design and Development, 1983, 22(4): 678-681
    [28] Raje A.P., Davis B.H., Effect of vapor-liquid equilibrium on Fischer-Tropsch hydrocarbon selectivity for a deactivating catalyst in a slurry reactor. Energy &Fuels, 1996, 10(3): 552-560
    [29] Zhan X., Davis B.H., Two alpha Fischer-Tropsch product distributions: A role for vapor-liquid equilibrium. Petroleum Science and Technology, 2000, 18(9-10): 1037-1053
    [30] Qukaci R., Singlton A.H., Googwin J.G.Jr., Comparison of patented Co F–T catalysts using fixed-bed and slurry bubble column reactors . Applied Catalysis A: 1999, 186(1-2):129-144
    [31] Andreas F., Michael C., Steen E.V., Cobalt Cluster Effects in Zirconium Promoted Co/SiO2 Fischer-Tropsch Catalysts. Jounal of Catalysis, 1999, 185: 120-130
    [32] Madon R.J., Reyes S.C, Iglesia E., Primary and secondary reaction pathways in ruthenium-catalyzed hydrocarbon synthesis. Journal of Physical Chemistry, 1991, 95(20): 7795-7804
    [33] Madon R J, Iglesia E. The importance of olefin readsorption and H2/CO reactant ratio for hydrocarbon chain growth on ruthenium. Journal of Catalysis, 1993, 139(2):576-590
    [34] Anderson R.B., The Fischer-Tropsch Synthesis, London: Aca-demic Press.1984
    [35] Dry M.E., the Fischer-Tropsch Process-Commercial Aspects, Catalysis Today, 1990, 6(3):183-206
    [36] Jacobs G., Das T.K., Zhang Y.Q., et al, Fischer-Tropsch Synthesis: Support,Loading, and Promoter Effects on the Reducibility of Cobalt Catalyst. Applied.Catalysis.A, 2002, (233):263-281
    [37]陈建刚,相宏伟,李永旺,等,费托法合成液体燃料关键技术研究进展.化工学报,2003,54(4):517-522
    [38] Reuel R.C., Bartholomew C.H., Effects of support and dispersion on the CO hydrogenation activity selectivity properties of cobalt, Journal of Catalysis. 1984, 85(1): 78-88
    [39] Bartholomew C.H., Reuel R.C., Effects of support and. dispersion on the CO hydrogenation activity/selectivity properties of cobalt. Industrial & Engineering Chemistry Product Research Development, 1985, 24(1): 56-61
    [40] Geerlings J.J.C., Zonnevylle M.C., De Groot C.P.M.,The Fischer-Tropsch reaction on a cobalt (0001) single crystal, Surface Science. 1991, 241(3):302-314
    [41] Iglesia E., Soled S. L., Fiato R. A., Fischer-Tropsch synthesis on cobalt and ruthenium. Metal dispersion and support effects on reaction rate and selectivity. Journal of Catalysis, 1992, 137: 212-224
    [42] Kraum M., Baerns M., Fischer-Tropsch synthesis: the influence of various cobalt compounds applied in the preparation of supported cobalt catalysts on their performance. Applied Catalysis A: 1999, 186(1-2): 189-200
    [43] Anderson A.B., Hall W.K., Krieg A., et al. Studies of the Fischer-Tropsch Synthesis. Activities and Surface Areas of Reduced and Carburized Cobalt Catalyst. Journal of the American Chemical Society, 1949, 71,183-188
    [44] Saib A.M., Claeys M., van Steen E., Silica supported Cobalt Fischer-Tropsch Catalysts: Effect of Pore Diameter of Support. Catalysis Today, 2002, 71,395-402
    [45] Vanhove D., Zhuyong Z., Makambo L., et al. Hydrocarbon selectivity in Fischer-Tropsch synthesis in relation to textural properties of supported cobalt catalysts. Applied CatalysisA, 1984, 9(3): 327-342
    [46] Lapszewicz J.A., Loeh H.J., Chipperfield J.R., The Effect of catalyst porosity on methane selectivity in the Fischer-Tropsch reaction. Chemical Communications, 1993(11): 913
    [47] Iwasaki T., Reinikainen M., Onodera Y., et al. Use of silicate crystallite mesoporous material as catalyst support for Fischer–Tropsch reaction. Applied Surface Science, 1998,130-132 (1-4): 845-850
    [48] Yin D., Li W., Yang W., et al. Mesoporous HMS Molecular Sieves Supported Cobalt Catalysts for Fischer-Tropsch Synthesis. Microporous and Mesoporous Materials, 2001, 47: 15-24
    [49] Khodakov A.Y., Bechara R., Griboval-Constant A., Fischer–Tropsch synthesis over silica supported cobalt catalysts: mesoporous structure versus cobalt surface density. Applied Catalysis A: 2003, 254: 273-288
    [50] Colley S.E., Copperthwaite R.G., Hutchings G.J., et al. Co/manganese oxide catalysts: Use of Cr promoters for long chain hydrocarbon production. Applied Catalysis A, 1992, 84: 1-15
    [51] Rohr F., Lindvag O.A., Holmen A., et al. Fischer-Tropsch synthesis over cobalt catalysts supported on zirconia-modified alumina. Catalysis Today, 2000, 58(4): 247-254
    [52]张俊岭,任杰,陈建刚等.锰助剂对F-T合成Co/Al203催化剂反应性能的影响.物理化学学报,2002, 18(3): 260-263
    [53] Haddad G.J., Chen B., Goodwin J.G.Jr., Efect of La3+ promotion of Co/SiO2 on CO hydrogenation. Journal of Catalysis, 1996, 161: 274-281
    [54] Ernst B., Hilaire L., Kienmemann A. Efects of highly dispersed ceria addition on reducibility, activity and hydrocarbon chain growth of a Co/SiO2 Fischer-Tropsch catalyst. Catalysis Today, 1999, 50: 413-427
    [55] Niemel? M.K., Krause A.O.I., Characterization of magnesium promoted Co/SiO2 catalysts. Catalysis Letter, 1995, 34: 75-84
    [56] Sexton B.A., Hughes A.E., Turney T.W., An XPS and TPR study of the reduction of promoted cobalt-kieselguhr Fischer-Tropsch catalyst. Journal of Catalysis, 1986, 97: 390-406
    [57] Viswanathan B. J., Gopalakrishnan R., Effect of support and promoter in Fischer-Tropsch cobalt catalysts. Journal of Catalysis, 1986, 99(2): 342-348
    [58] Gopalakrishnan, R., Viswanathan, B., Effect of Support and Promoter on theCoadsorption of Carbon Monoxide and Hydrogen on Fischer-Tropsch Cobalt Catalysts. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, 1986, 82(9): 2635-2644
    [59] Puskas I., Fleisch T.H., Hall J.B., et al. Cobalt Reducibility and Magnesium Promotion in Silica-Supported Fischer-Tropsch Catalyst. Studies in Surface Science and Catalysis, 1993, 75(C): 2813
    [60] Puskas I., Fleisch T.H., Hall J.B., et al. Metal-support interactions in precipitated, magnesium-promoted cobalt-silica catalysts. Journal of Catalysis, 1992, 134(2): 615-628
    [61] Puskas I., Meyers B.L., Hall, J.B., A fast deactiving Fischer-Tropsch catalyst. Preprints, Division of Petroleum Chemistry, American Chemical Society, 1993, 38(4): 905
    [62] Li J., Coville N.J., The effect of boron on the catalyst reducibility and activity of Co/TiO2 Fischer-Tropsch catalysts. Applied Catalysis A: 1999, 181: 201-208
    [63] Curtisa V., Nicolaidesa C.P., Coville N.J., et al. The effect of sulfur on supported cobalt Fischer-Tropsch catalysts. Catalysis Today, 1999, 49: 33-40
    [64] Madikizela-Mnqanqeni N.N., Coville N.J., Surface and reactor study of the effect of zinc on titania-supported Fischer-Tropsch cobalt catalysts. Applied Catalysis A, 2004, 272: 339-346
    [65] Li J.L., Jacobs G., Zhang Y.Q., et al. Fischer-Tropsch synthesis: efect of small amounds of boron, ruthenium, and rhenium on Co/TiO2 catalysts. Applied Catalysis A, 2002, 223: 195-203
    [66] Tsubaki N., Sun S.L., Fujimoto K. Diferent functions of the noble metals added to cobalt catalysts for Fischer-Tropsch synthesis. Journal of Catalysis, 2001, 199: 236-246
    [67] Vada S., Hof A., ?dnanes E., et al. F-T synthesis on supported cobalt catalysts promoted by platinum and rhenium. Topics in Catalysis, 1995, 2: 155-162
    [68] Schanke D., Vada S., Blekkan E.A.,et al. Study of Pt-promoted cobalt CO hydrogenation catalysts. Journal of Catalysis, 1995, 156: 85-95
    [69] Hoang M., Hughes A.E., Turney T.W., An XPS study of Ru-promotion forCo/CeO2 Fischer-Tropsch catalysts. Applied Surface Science. 1993, 72(1): 55-65
    [70] Kogelbauer A., Goodwin J.G., Oukaci R., Ruthenium Promotion of Co/Al2O3 Fischer-Tropsch Catalysts. Journal of Catalysis, 1996, 160: 125-133
    [71] Iglesia E., Soled S.L., Fiato R.A., et al. Dispersion, support and bimetallic effects in Fischer-Tropsch synthesis on cobalt catalysts. Studies in Surface Science and Catalysis, 1994, 88: 433
    [72] Sing K.S.W., Everett D.H., Haul R.A.W, et al, IUPAC manual of symbols and terminology. Pure and Applied Chemistry, 1972, 31: 578.
    [73]徐如人,庞文琴.分子筛与多孔材料化学,第一版,北京:科学出版社,2004
    [74] Stein A. Advances in microporous and mesoporous solids-highlight of recent progress. Advanced Materials, 2003, 15(10): 763-774
    [75] Brahwiler D, Calzaferri G. Molecular sieves as host materials for supramolecular organization. Microporous and Mesoporous Materials, 2004, 72: 1-23
    [76] Trong O.D, Desplantier-Giscard D., Danumah C., et al, Perspectives in catalytic applications of mesostructured materials. Applied Catalysis, 2003, 253:545-602
    [77] Corma A. State of the art and future challenges of zeolites as catalysts. Journal of Catalysis, 2003, 216: 298-312
    [78] Anwander R. Surface organometallic chemistry at periodic mesoporous silica. Chemistry of Materials, 2001, 13: 4419-4438
    [79] Clark J.H. Solid acids for green chemistry. Accounts of Chemical Research, 2002, 35: 791-797
    [80] Taguchi A, Schuth F. Ordered mesoporous materials in catalysis. Microporous and Mesoporous Materials, 2005, 77: 1-45
    [81] Corma A. From microporous to mesoporous molecular sieve materials and their use in catalysis. Chemical Reviews. 1997, 97: 2373-2419
    [82] Stein A, Melde B.J., Schroden R.C., Hybrid inorganic±organic mesoporous silicates-nanoscopic reactors coming of age. Advanced Materials, 2000, 12(19): 1403-1419
    [83] Beck J.S., Varhili J.C., Roth W.J., et al, A new family of mesoporous molecular-sieves prepared with liquid-crystal template. Journal of the AmericanChemical Society, 1992, 114: 10834-10843
    [84] Kresge J.S., Leonowicz M.E., Roth W.J., et al, Ordered mesoporous molecular sieve synthesized by a liquid-crystal template mechanism, Nature. 1992, 359: 710-712
    [85]严东生,世界科技研究与发展,院士论坛,2004, 20 (6): 9-12
    [86] Moonier A, Schuth F, Huo Q. Cooperative formation of inorganic-organic interfaces in the synthesis of silicate mesostructure. Science, 1993, 261: 1299-1303
    [87] Bagshaw S.A., Prouzet E., Pimavaia T.J., Templating of molecular sieves by nonionic polyethylene oxide surfactant. Science, 1995, 269: 1242-1244
    [88] Tanev P.T., Pinniavaia T.J. A neutral templating route to mesoporous molecular sieves.Science, 1995, 267: 865-867
    [89] Tanev P.T., Pinnavaia T.J., Biomimetic templating of porous lamellar silicas by vesicular surfactant assemblies, Science, 1996, 271(5253): 1267-1269
    [90] Bagshaw S.A., Prouzet E, Pinnavaia T.J. Templating of mesoporous molecular-sieves by nonionic polyethylene oxide. Science, 1995, 269 (5228): 1242-1244
    [91] Pauly T.R., Liu Y., Pinnavaia T.J., et al, Textural mesoporosity and the catalytic activity of mesoporous molecular sieves with wormhole framework structures. Journal of the American Chemical Society, 1999, 121: 8835-8842
    [92] Blin J.L., Leonard A., Su B.L., Synthesis of large pore disordered MSU-type mesoporous silicas through the assembly of C16 (EO) 10 surfactant and tmos silica source: effect of the hydrothermal treatment and thermal stability of materials. Journal of Physical Chemistry B, 2001, 105: 6070-6079
    [93] Huo Q., Leon R., petroff P.M., et al, Mesostructure design with Gemini Surfactants-supercage formation ui a 3-dimensional hexagonal array. Science, 1995, 268: 1324-1327
    [94] Zhao D., Huo Q., Feng J., et al, Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermal stable, mesoporous silica structures. Journal of the American Chemical Society, 1998,120: 6024-6036
    [95] Zhao D., Feng J., Huo Q., et al, Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science, 1998, 279: 548-552
    [96] Huo Q., Margolese D., Ciesla U., et al, Generalized synthesis of periodic surfactant inorganic composite-materials. Nature, 1994, 368: 317-319.
    [97] Galarneau A., Cambon H., Renzo F., et al, Microporosity and connections between pores in SBA-15 mesostnictmed silicas as a limction of the temperahire of synthesis. New Journal of Chemistry, 2003, 27: 73-79
    [98] Imperor-Clerc M., Davidson P., Davidson A. Existence of a microporous corona around the mesopores of silica-based SBA-15 materials templated by triblock copolymers. Journal of the American Chemical Society, 2000, 122: 11925-11933
    [99] Davidson A. Modifying the walls of mesoporous silicas prepared by supramolecular templating. Current Opinion in Colloid & Interface Science, 2002, 7: 92-106
    [100] Corma A., Martinet A., Mouton J.B., et al, Hydrocracking of vacuum gasoil on the novel mesoporous MCM-41 aluminosilicate catalyst.Journal of Catalysis, 1996, 153(1): 25-31
    [101] Roos K, Liepold A, Koch H, et al. Impact of accessibility and acidity oil novel molecular sieves for catalytic cracking of hydrocarbons. Chemical Engineering and Technology .1997, 20(5): 326-332
    [102] Pena M.L., Dejoz A., Fornes V., et al, V-containing MCM-41 and MCM-48 catalysts for the selective oxidation of propane in gas phase. Applied Catalysis A, 2001, 209: 155-164
    [103] Wu P., Tatsumi T. Postsynthesis, characterization, and catalytic properties in alkene epoxidation of hydrothennally stable mesoporous Ti-SBA-15. Chemistry of Materials, 2002, 14:1657-1664
    [104] Chiker F., Nogier J.P., Launay F., et al. Optimisation of gas phase deposition of titanium on mesoporous silica SBA-15: active site counting and catalytic activiy in cyclohexene epoxidation. Applied Catalysis A, 2004, 259: 153-162
    [105] Reddy E.P., Sun B., Smirniotis P.G., Transition metal modified tio2-loadedMCM-41 catalysts for visible- and UV-light driven photo degradation of aqueous organic pollutants. Journal of Physical Chemistry B, 2004, 108: 17198-17205
    [106] Blasco T., Corma A., Navarro M.T., et al, Synthesis, characterization and catalytic activity of Ti-MCM-41 Structures. Journal of Catalysis, 1995, 156 (1): 65-74
    [107] Carvalho W.A., Wallau M., Schuchardt U. Iron and copper immobilized on mesoporous MCM-41 molecvar sieves as catalysts for the oxidation of cyclohexane. Journal of Molecular Catalysis A, 1999, 144: 91-99
    [108] Kustrowski P., Chmielarz L., Dziembaj R., et al, Dehydrogenation of ethylbenzene with nitrous oxide in the presence of mesoporous silica materials modified with transition metal oxides. Journal of Physical Chemistry A, 2005, 109 (2): 330-336
    [109] Savidha R., Pandurangan A., Palanichamy M., et al, A comparative study on the catalytic activity of Zn and Fe containing AI-MCM-41 molecular sieves on t-butylation of phenol. Journal of Molecular Catalysis A, 2004, 211: 165-177
    [110] Bachari K., Millet J.M.M., Benaichouba B., et al, Benzylation of benzene by benzyl chloride over iron mesoporous molecular sieves materials. Journal of Catalysis, 2004, 221: 55-61
    [111] Wingen A., Anastasievic N., Hollnagel A., et al, Fe-MCM-41 as a catalyst for Sulfur Dioxide Oxidation in highly Concentrated Gases. Journal of Catalysis,. 2000, 193: 248-254
    [112] Wang Y., Zhang Q., Shishido T., et al, Characterizations of Iron-Containing MCM-41 and its Catalytic Properties in Epoxindation of Styrene with Hydrogen Peroxide. Journal of Catalysis, 2002, 209: 186-296
    [113] Nozaki C, Lugmair C G, Bell A T, et al. Synthesis, Characterization, and Catalytic Performmce of Single-Site Iron (III) Centers on the Surface of SBA-15 Silica. Journal of the American Chemical Society, 2002, 124: 13194-13203
    [114] Li C. Chiral. Synthesis on catalysts immobilized in microporous and mesoporous materials. Catalysis Reviews, 2004, 46(3-4): 419-492
    [115] Xiang S, Zhang Y, Xin Q, et al,Asymmetric epoxidation of allyl alcohol on organic-inorganic hybrid chiral catalysts grafted on the surface of silica and in the mesopore of MCM-41. Angewandte Chemie International Edition, 2002, 41:821-825
    [116]辛勤,梁长海,固体催化剂研究方法:红外光谱法(上).石油化工, 2001,30 (1): 72-85
    [117]辛勤等,催化剂研究中的原位技术.北京:北京大学出版社,1993,6:179-199
    [118] Dai X.P., Yu C.C., Shen S.K., Recent advances in the synthesis of liquid hydrocarbon via Fischer-Tropsch synthesis. Progress in Chemistry, 2000, 12 (3): 268-281
    [119]蔡启瑞,彭少逸等,碳一化学中的催化作用,北京:化学工业出版社,1995年4月
    [120]辛勤,梁长海,固体催化剂研究方法:红外光谱法(下),石油化工,2001,30 (1): 72-85
    [121] Khodakov A.Y., Lynch J., Bazin D., et al, Reducibility of cobalt species in silica-supported Fischer–Tropsch catalysts. Journal of Catalysis, 1997, 168: 16-25
    [122] Rodrigues E.L., Bueno J.M.C., Co/SiO2 catalysts for selective hydrogenation of crotonaldehyde II: influence of the Co surface structure on selectivity. Applied Catalysis A, 2002, 232: 147–158
    [123] Zhang J.L., Chen J.G., Sun Y.H., et al, Adsorption and reaction behavior of F-T Co catalysts supported by chemically-modified alumina. Chemical Journal of Chinese Universities, 2003, 24(2): 301-304
    [124] Zhao H.X., Zhu Z.Q., Sun Y.H, et al, Effect of pH value of impregnating solution on Co/SiO2 catalyst for Fischer-Tropsch synthesis. Chinese Journal of Catalysis, 2004, 25 (4): 289-292
    [125] Curtis V., Nicolaides C.P., Coville N.J., et al, The effect of sulfur on supported cobalt Fischer-Tropsch catalysts. Catalysis Today, 1999, 49: 33-40
    [126] Bromfield T. C., Coville N.J., The effect of sulfide ions on a precipitated iron Fischer–Tropsch catalyst. Applied Catalysis A. 1999, 186: 297–307
    [127] Li J.L., Coville N.J., The effect of boron on the catalyst reducibility and activity of Co/TiO2 Fischer-Tropsch catalysts. Applied Catalysis A, 1999, 181: 201-208
    [128] Rodrigues E.L., Bueno J.M.C., Co/SiO2 catalysts for selective hydrogenation of crotonaldehyde III. Promoting effect of zinc. Applied Catalysis A, 2004, 257: 201–211
    [129] Chen J.G., Dong Q.N., Sun Y.H., et al, H2 or CO chemisorption on Co-based catalysts for F-T synthesis. Acta Physical Chemistry Sina, 2001, 17 (2): 161-164
    [130] Rygh L.E.S., Nielsen C.J.,Infrared Study of CO Adsorbed on Co/Re/Al2O3 Fischer–Tropsch Catalyst, Journal of Catalysis, 2000, 194: 401–409
    [131] Rygh L.E.S., Ellestad O.H., Klaboe P., et al, Infrared study of CO adsorbed on Co/Al2O3 based Fischer-Tropsch catalysts: semi-empirical calculations as a tool for vibrational assignments. Physical Chemistry and Chemical Physics, 2000, 2: 1835-1846
    [132]尹元根,多相催化剂的研究方法.北京:化学工业出版社1988,10:595-596
    [133] Lapidus A., Krylova A., Kazanskii V., et al, Hydrocarbon synthesis from carbon monoxide and hydrogen on impregnated cobalt catalysts. Applied Catalysis A, 1991, 73: 65-82
    [134] Krishnamoorthy S., Tu M., Iglesia E., et al, An Investigation of the effects of water on rate and selectivity for the Fischer–Tropsch synthesis on cobalt-based catalysts. Journal of Catalysis, 2002, 211: 422-433
    [135] Chang J., Xiang H.W, Sun Y.H., et al, Effect of ZrO2 promoter on structural change of Co/SiO2 catalyst during its deactivation in F-T synthesis. Chinese Journal of Catalysis, 2005, 26 (9): 731-733
    [1]王树国,吴东,孙予罕,钟炳等,MCM-48介孔分子筛的高压合成,物理化学学报,2001,17(7):659-661
    [2] Zhao D., Feng J., Huo Q., et al, Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science, 1998, 279: 548-552
    [3] Cullity B.D., Elements of X-Ray Diffraction, Addision–Wesley, London, 1978
    [4] Schanke D., Vada S., Blekkan E.A., et al. Study of Pt-promoted cobalt CO hydrogenation catalysts. Journal of Catalysis, 1995, 156(1): 85-95
    [5] Reuel R.C., Bartholomew C.H., The stoichiometries of H2 and CO adsorptions on Cobalt: effects of support and preparation. Journal of Catalysis, 1984, 85: 63-77.
    [1] Knottenbelt C., Mossgas“gas-to-liquid”diesel fuels—an environmentally friendly option. Catalysis Today, 2002, 71: 437.
    [2] Dry M.E., The fischer-tropsch process - commercial aspects.Catalysis Today, 1990, 6: 183.
    [3] Zhang Y., Xiong H., Liew K., et al, Effect of magnesia on alumina-supported cobalt Fischer–Tropsch synthesis catalysts. Journal of Molecular Catalysis A, 2005, 237: 172.
    [4] Li H., Wang S., Ling F., et al, Studies on MCM-48 supported cobalt catalyst for Fischer–Tropsch synthesis.Journal of Molecular Catalysis A, 2006, 244: 33.
    [5] Zhao D., Huo Q., Feng J., et al, Nonionic Triblock and Star Diblock Copolymer and Oligomeric Surfactant Syntheses of Highly Ordered, Hydrothermally Stable, Mesoporous Silica Structures. Journal of the American Chemical Society, 1998, 120: 6024.
    [6] Nijs H.H., Jacobs P.A., Metal particle size distributions and Fischer-Tropsch selectivity. An extended Schulz-Flory model. Journal of Catalysis, 1980, 65:328.
    [7] Kogelbauer A., Goodwin Jr.J.G. Oukaci R., Ruthenium Promotion of Co/Al2O3 Fischer–Tropsch Catalysts. Journal of Catalysis, 1996, 160: 125.
    [8] Tsubaki N., Sun S., Fujimoto K., Different Functions of the Noble Metals Added to Cobalt Catalysts for Fischer–Tropsch Synthesis. Journal of Catalysis, 2001, 199:236.
    [9] Iglesia E. Soled S.L., Fiato R.A., SiO2 -promoted cobalt catalyst on a support of TiO2 for converting synthesis gas to heavy hydrocarbons US Patent No. 4794099, 1988.
    [10] Iglesia E., Soled S.L., Fiato R.A., et al, Bimetallic Synergy in Cobalt Ruthenium Fischer-Tropsch Synthesis Catalysts. Journal of Catalysis, 1993, 143: 345.
    [11] E. Iglesia, Design, synthesis, and use of cobalt-based Fischer-Tropsch synthesis catalysts. Applied Catalysis, 1997 161: 59.
    [12] H. Li, J. Li, H. Ni, et al, Studies on cobalt catalyst supported on mesoporous silica with different pore size for Fischer-Tropsch synthesis. Catalysis Letters, 2006, 110: 71.
    [13] D. Song, J. Li, Effect of catalyst pore size on the catalytic performance of silica supported cobalt Fischer–Tropsch catalysts. Journal of Molecular Catalysis, 2006 247: 206.
    [14] Martínez A., López C., Márquez F., Fischer–Tropsch synthesis of hydrocarbons over mesoporous Co/SBA-15 catalysts: the influence of metal loading, cobalt precursor, and promoters. Journal of Catalysis, 2003, 220: 486.
    [15] Li H., Wang S., Ling F., et al, Studies on MCM-48 supported cobalt catalyst for Fischer-Tropsch synthesis.Journal of Molecular Catalysis A, 2006, 244: 33.
    [16] Panpranot J., Goodwin Jr.J.G., Sayari A., Synthesis and characteristics of MCM-41 supported CoRu catalysts. Catalysis Today, 2002, 77: 269.
    [17] Rygh L.E.S., Nielsen C.J., Infrared Study of CO Adsorbed on a Co/Re/γAl2O3-Based Fischer–Tropsch Catalyst. Journal of Catalysis, 2000 194: 401.
    [18] Song D., Li J., Cai Q., In situ diffuse reflectance FTIR study of CO adsorbed on a cobalt catalyst supported by silica with different pore sizes. Journal of Physical Chemistry C, 2007 111: 18972
    [19] Khodakov A.Y., Griboval-Constant A., Bechara, R., et al, Pore Size Effects in Fischer Tropsch Synthesis over Cobalt-Supported Mesoporous Silicas. Journal of Catalysis, 2002, 206: 230.
    [1] Curtis V., Nicolaides C. P., Coville N. J., et al, The effect of sulfur on supported cobalt Fischer-Tropsch catalysts. Catalysis Today, 1999, 49: 33-40
    [2] Bromfield T.C., Coville N.J., The effect of sulfide ions on a precipitated iron Fischer–Tropsch catalyst. Applied Catalysis A, 1999, 186: 297–307
    [3] Rodrigues E.L., Bueno J.M.C., Co/SiO2 catalysts for selective hydrogenation of crotonaldehyde III, Promoting effect of zinc. Applied Catalysis, 2004, 257: 201–211
    [4] Chen J.G., Dong Q.N., Sun Y.H., et al, H2 or CO chemisorption on Co-based catalysts for F-T synthesis. Acta Physical Chemistry Sina, 2001, 17 (2): 161-164
    [5] Rygh L.E.S. and Nielsen C.J.,Infrared Study of CO Adsorbed on Co/Re/Al2O3 Fischer–Tropsch Catalyst, Journal of Catalysis, 2000, 194: 401-409
    [6] Rygh L.E.S., Ellestad O.H., Klaboe P., et al, Infrared study of CO adsorbed on Co/Al2O3 based Fischer-Tropsch catalysts: semi-empirical calculations as a tool for vibrational assignments. Physical Chemistry and Chemical Physics, 2000, 2: 1835-1846
    [7] Song D., Li J., Effect of catalyst pore size on the catalytic performance of silica supported cobalt Fischer–Tropsch catalysts. Journal of Molecular Catalysis, 2006 247: 206.
    [8] Rygh L.E.S., Nielsen C.J., Infrared Study of CO Adsorbed on a Co/Re/γAl2O3-Based Fischer–Tropsch Catalyst. Journal of Catalysis, 2000, 194: 401.
    [9] Song D., Li J., Cai Q., In situ diffuse reflectance FTIR study of CO adsorbed on a cobalt catalyst supported by silica with different pore sizes.Journal of Physical Chemistry, 2007, 111: 18972
    [10] Martínez A., López C, Márquez F., et al, Fischer–Tropsch synthesis of hydrocarbons over mesoporous Co/SBA-15 catalysts: the influence of metal loading, cobalt precursor, and promoters. Journal of Catalysis, 2003, 220: 486.
    [11] Jiang M., Naoto K., Toshihiko O., et al, Adsorption properties of cobalt and cobalt-manganese catalysts studied by in situ diffuse reflectance FTIR using CO and CO+H2 as probes. Applied Catalysis A, 2001, 209: 59–70
    [12] Li H., Wang S., Ling F., et al, Studies on MCM-48 supported cobalt catalyst for Fischer–Tropsch synthesis.Journal of Molecular Catalysis A, 2006, 244: 33.
    [13] Sun S.L., Fujimoto K., Tsubaki N., et al, A highly active and stable Fischer-Tropsch synthesis cobalt/silica catalyst with bimodal cobalt particle distribution. Catalysis Communications, 2003, 4: 361-364
    [14] Iglesia E., Soled S.L., Fiato R.A., et al, Bimetallic Synergy in Cobalt Ruthenium Fischer-Tropsch Synthesis Catalysts. Journal of Catalysis, 1993 143: 345.
    [15] Mendes F.M.T.M., Perez C.A.C., Noronha F.B., et al,Fischer-Tropsch synthesis on anchored Co/Nb2O5/Al2O3 catalysts: the nature of the surface and the effect on chain growth. Journal of Physical Chemistry B, 2006, 155: 1345
    [16] Curtis V., Nicolaides C.P., Coville N.J., et al, The effect of sulfur on supported cobalt Fischer-Tropsch catalysts. Catalysis Today, 1999, 49: 33-40
    [17] Ernst B., Hilaire L., Kiennemann A., Effects of highly dispersed ceria addition on reducibility, activity and hydrocarbon chain growth of a Co/SiO2 Fischer-Tropsch catalyst. Catalysis Today, 1999, 50: 413-427
    [18] Khodakov A.Y., Griboval-Constant A., Bechara R., et al, Pore size effects in Fischer-Tropsch synthesis over cobalt-supported mesoporous silicas. Journal of Catalysis, 2002, 206: 230–241
    [19] Saib A.M., Borgna A., vande Loosdrecht J., et al, In situ surface oxidation study of a planar Co/SiO2/Si (100) model catalyst with nanosized cobalt crystallites under model Fischer-Tropsch synthesis conditions. Journal of Physical Chemistry B, 2006, 110(17): 8657-8664
    [20] Iglesia E., Soled S.L., Fiato R.A., Fischer-Tropsch synthesis on cobalt and ruthenium: Metal dispersion and support effects on reaction rate and selectivity, Journal of Catalysis, 1992, 137: 212-224
    [21] Mendes F.M.T., Perez C.A.C., Noronha F.B., et al., Fischer-Tropsch Synthesis on Anchored Co/Nb2O5/Al2O3 Catalysts: The Nature of the Surface and the Effecton Chain Growth. Journal of Physical Chemistry B, 2006, 110(18): 9155-9163
    [22] Yusuke Y., Kayo I., Kazumi T., Novel Rate Constants for a Catalytic Hydrogenation Reaction of Propylene Obtained by a Frequency Response Method. Journal of Physical Chemistry B, 1995, 99: 17852-17861
    [23] Geerling J.J.C., Wilson J., Kramer G.J., et al, Fischer–Tropsch technology-from active site to commercial process. Applied Catalysis A, 1999, 186: 27
    [24] Rodriues E.L., Bueno J.M.C. Co/SiO2 catalysts for selective hydrogenation of crotonaldehyde II: influence of the Co surface structure on selectivity. Applied CatalysisA, 2002, 232: 147

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700