石墨烯及其金属复合物的合成与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
石墨烯独特的电子结构使其具有优异的性质,如高的电子迁移率、大的比表面积、良好的透光性、高的杨氏模量和优异的热学性质。自从用机械剥离法从石墨中分离出石墨烯以来,很多方法被应用于合成石墨烯,例如化学气相沉积法、化学氧化还原法、有机合成法等。目前,如何可控合成高质量、大规模、低成本石墨烯依旧是限制石墨烯应用的重要因素。本论文进一步发展了化学氧化还原和化学气相沉积两种方法来合成石墨烯。
     首先,我们研究了Hummer法合成出的氧化石墨烯的氧化量,发现通过控制氧化剂的加入量,可以得到不同氧含量的氧化石墨烯。FTIR和Raman研究表明,含氧量的增加会使氧化石墨烯中sp3碳的杂化比例增大。通过测量不同含氧量氧化石墨烯的电势发现,氧化石墨烯的含氧量越高则电势越低。另外,氧化石墨烯之间的静电斥力也是影响氧化石墨烯在水溶液中分散的重要影响因素。
     目前,很多还原剂被应用于还原氧化石墨烯,例如水合肼及其衍生物。但是,这些还原剂毒性极大且容易挥发,限制了它们的使用。第三章介绍了一种在室温下用金属纳米颗粒来催化硼氢化钠水解从而来还原氧化石墨烯的简便方法。分别用原子力显微镜和透射电镜研究了石墨烯的形貌和结构。通过紫外-吸收光谱、X射线光电子能谱、拉曼光谱和X射线衍射研究了氧化石墨烯的还原过程。该方法避免使用水合肼及其衍生物作为还原剂,具有环保安全的优点。同时该方法在温和的条件(室温)下进行,得到的石墨烯缺陷较少,并且该方法可以放大使用,作为催化剂的金属盐可以被重复利用。
     石墨烯@金属纳米颗粒复合物具有特殊的结构和优异的性质,可以应用到催化、电极、传感器等领域中。金属纳米颗粒的尺寸和形貌会直接影响到石墨烯@金属纳米颗粒复合物在实际应用中的使用。第四章介绍了一种通过自催化在室温下合成石墨烯@金属纳米颗粒复合物的简便方法。首先,将需求尺寸和形貌的金属纳米颗粒负载到氧化石墨烯上,然后通过金属纳米颗粒作为催化剂来加速硼氢化钠水解去还原氧化石墨烯,通过得到石墨烯@金属纳米颗粒复合物。相比已有的方法,该方法避免使用水合肼及其衍生物等剧毒还原剂,环保安全,且该方法可以在室温下和不同酸碱度下高效进行。同时该方法可以用来大规模的合成石墨烯@金属纳米颗粒及石墨烯@金属氧化物纳米颗粒复合物,从而满足其实际应用。例如,石墨烯@Au纳米颗粒复合物在催化和太阳能电池方面展现出良好的应用。
     在绝缘体上生长出高质量、大面积石墨烯是微电子行业的迫切需求,第五章中介绍了一种利用多环芳烃(例如ADN、HAT-CN和NPB)或氧化石墨烯作为碳源,金属Cu作为催化剂无需转移直接将石墨烯生长到绝缘材料上的新方法。分别探讨了碳源、生长温度、H2含量及催化剂和碳源厚度对生长石墨烯的影响。目前的研究结果表明,HAT-CN可以在相对较低的温度下生长出石墨烯。用5nm的碳源可以生长出单层的石墨烯,随着碳源厚度的增加,石墨烯的质量下降。同时,该方法可以用来合成合成氮掺杂和不同图案的石墨烯。
Graphene has attracted enormous attention due to its unique structure andextraordinary properties, such as high carrier mobility, high surface area, good opticaltransparency, high Young’s modulus and excellent thermal conductivity. Sincesuccessful isolation of graphene by the mechanical exfoliation of graphite, manymethods have been developed to synthesize graphene, including chemical vapordeposition (CVD), chemical reduction graphene oxides, organic synthesis from micromolecule, etc. To date, however, rational synthesis of graphene with high quality andlarge quantity at low cost is still a key issue in the pratical applications of graphene. Inthis thesis, the endeavor has been mainly focused on the development of two syntheticstrategies of graphene, chemical redox method and CVD approach.
     We have firstly studied the oxidation level of the graphene oxide in the modifiedHummer method. The amount of oxygenated functional groups in the GO can be variedby changing the amount of oxidant. FTIR and Raman results show the sp3C domainsincrease with the increase in oxidation level. The oxygenated functional groups in GOsignificantly alter the potential of GO; the higher oxidation level of GO, the lowerpotential. In addition, electrostatic repulsion between the GO nanosheets is an importantfactor on the GO dispersibility in aqueous solution.
     So far, a number of chemical reductants have been developed to chemicalreduction of GO. For example, hydrazine or its derivatives as strong reducing agentwere used for the reduction of GO. However, these reductants are highly toxic andexplosive, which limited their usage. In third chapter, a simple chemical approach hasbeen developed for the synthesis of graphene through a mild reduction of grapheneoxide (GO) using metal nanoparticles as a catalyst for the hydrolysis reaction of NaBH4at room temperature. The morphology and structure of the graphene were characterizedwith atomic force microscopy and transmission electron microscopy. The reductionprocess and quality of graphene were followed and examined by UV-Vis absorption spectroscopy, X-ray photoelectron spectroscopy, Raman spectroscopy and X-raydiffraction. By this method, graphene can be prepared in large quantity without usingtoxic reducing agents such as hydrazine or its derivatives, making it environmentallybenign. The reaction is conducted under mild conditions (room temperature), resultingin the formation of fewer defects. The method can be easily scaled up and the metalcatalyst can be recycled.
     Graphene@metal nanoparticles (NPs) composites have attracted great interests invarious applications such as catalyst, electrode, sensor, etc. due to their uniquestructures and extraordinary properties. A facile synthesis of graphene/metal-NPscomposite with good control of size and morphology of metal NPs is critical to thepractical applications. A simple method to synthesize graphene/metal-NPs undercontrollable manner via a self-catalysis reduction at room temperature has beendeveloped in fourth chaprter. At first, metal NPs with desirable size and morphologywere decorated on GO, and then used the metal NPs as catalyst to accelerate thehydrolysis reaction of NaBH4to reduce the graphene oxide. Compared to the existingmethods, the method reported here features the several advantages whichgraphene/metal are prepared without using toxic and explosive reductant such ashydrazine or its derivatives, making it environmentally benign and the reaction can beprocessed at room temperature with high efficiency and in a large range of pH value.The approach has been demonstrated to successfully synthesize graphene compositewith various metal NPs at large quantity, which opens up a novel and simple way toprepare large-scale graphene/metal or graphene/metal oxide composite under a mildcondition for the practical applications. For example, graphene/AuNPs compositesynthesized by the method shows excellent performance in the catalysis and solar cellapplications.
     Direct formation of high-quality and wafer scale graphene on dielectric substrate isemergent for electronic application of graphene. In fivth chapter, we report atransfer-free method to directly synthesize graphene on dielectric substrate usingpolycyclic aromatic hydrocarbons (PAHs)(e.g. ADN, HAT-CN, NPB) or GO as thesolid carbon source and Cu layer as the catalyst covering on the solid carbon source.The effects of different carbon source, growth temperature, H2content, thickness ofcatalyst and carbon source, have been investigated. According to the results, HAT-CNcan be used to synthesize graphene at relatively low temperature. The monolayer graphene has been obtained with5nm carbon source. With increase the thickness ofcarbon source, the quality of graphene will decrease. By this method, N-doping andpatented growth of graphene can be easily achieved.
引文
[1] Novoselov KS, Jiang D, Schedin F, Booth TJ, Khotkevich VV, Morozov SV, et al.Two-dimensional atomic crystals. Proceedings of the National Academy ofSciences of the United States of America.2005;102(30):10451-10453.
    [2] Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, et al.Electric field effect in atomically thin carbon films. Science.2004;306(5696):666-669.
    [3] Geim AK, Novoselov KS. The rise of graphene. Nature Materials.2007;6(3):183-191.
    [4] Novoselov KS, Geim AK, Morozov SV, Jiang D, Katsnelson MI, Grigorieva IV, etal. Two-dimensional gas of massless Dirac fermions in graphene. Nature.2005;438(7065):197-200.
    [5] Katsnelson MI. Graphene: carbon in two dimensions. Materials Today.2007;10(1-2):20-27.
    [6] Novoselov KS, Jiang Z, Zhang Y, Morozov SV, Stormer HL, Zeitler U, et al.Room-temperature quantum hall effect in graphene. Science.2007;315(5817):1379-1379.
    [7] Ni ZH, Wang HM, Kasim J, Fan HM, Yu T, Wu YH, et al. Graphene thicknessdetermination using reflection and contrast spectroscopy. Nano Letters.2007;7(9):2758-2763.
    [8] Lee C, Wei X, Kysar JW, Hone J. Measurement of the elastic properties andintrinsic strength of monolayer graphene. Science.2008;321(5887):385-388.
    [9] Gao YW, Hao P. Mechanical properties of monolayer graphene under tensile andcompressive loading. Physica E.2009;41(8):1561-1566.
    [10] Balandin AA, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, et al. Superiorthermal conductivity of single-layer graphene. Nano Letters.2008;8(3):902-907.
    [11] Seol JH, Jo I, Moore AL, Lindsay L, Aitken ZH, Pettes MT, et al.Two-Dimensional Phonon Transport in Supported Graphene. Science.2010;328(5975):213-216.
    [12] Hernandez Y, Nicolosi V, Lotya M, Blighe FM, Sun Z, De S, et al. High-yieldproduction of graphene by liquid-phase exfoliation of graphite. NatureNanotechnology.2008;3(9):563-568.
    [13] Liu N, Luo F, Wu H, Liu Y, Zhang C, Chen J. One-Step Ionic-Liquid-AssistedElectrochemical Synthesis of Ionic-Liquid-Functionalized Graphene SheetsDirectly from Graphite. Advanced Functional Materials.2008;18(10):1518-1525.
    [14] Jiao L, Zhang L, Wang X, Diankov G, Dai H. Narrow graphene nanoribbons fromcarbon nanotubes. Nature.2009;458(7240):877-880.
    [15] Bai H, Li C, Shi G. Functional Composite Materials Based on ChemicallyConverted Graphene. Advanced Materials.2011;23(9):1089-1115.
    [16] Szabo T, Berkesi O, Forgo P, Josepovits K, Sanakis Y, Petridis D, et al. Evolutionof surface functional groups in a series of progressively oxidized graphite oxides.Chemistry of Materials.2006;18(11):2740-2749.
    [17] Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, et al.Synthesis of graphene-based nanosheets via chemical reduction of exfoliatedgraphite oxide. Carbon.2007;45(7):1558-1565.
    [18] Li X, Zhang G, Bai X, Sun X, Wang X, Wang E, et al. Highly conducting graphenesheets and Langmuir-Blodgett films. Nature Nanotechnology.2008;3(9):538-542.
    [19] Gómez-Navarro C, Weitz RT, Bittner AM, Scolari M, Mews A, Burghard M, et al.Electronic Transport Properties of Individual Chemically Reduced Graphene OxideSheets. Nano Letters.2009;9(5):2206-2206.
    [20] Chen W, Yan L, Bangal PR. Preparation of graphene by the rapid and mild thermalreduction of graphene oxide induced by microwaves. Carbon.2010;48(4):1146-1152.
    [21] Williams G, Seger B, Kamat PV. TiO2-graphene nanocomposites. UV-assistedphotocatalytic reduction of graphene oxide. ACS Nano.2008;2(7):1487-1491.
    [22] Yan X, Cui X, Li L-s. Synthesis of Large, Stable Colloidal Graphene QuantumDots with Tunable Size. Journal of the American Chemical Society.2010;132(17):5944-5945.
    [23] Shivaraman S, Barton RA, Yu X, Alden J, Herman L, Chandrashekhar M, et al.Free-standing epitaxial graphene. Nano Letters.2009;9(9):3100-3105.
    [24] Deng DH, Pan XL, Zhang H, Fu QA, Tan DL, Bao XH. Freestanding Graphene byThermal Splitting of Silicon Carbide Granules. Advanced Materials.2010;22(19):2168-2171.
    [25] Somani PR, Somani SP, Umeno M. Planer nano-graphenes from camphor by CVD.Chemical Physics Letters.2006;430(1-3):56-59.
    [26] Kim KS, Zhao Y, Jang H, Lee SY, Kim JM, Ahn JH, et al. Large-scale patterngrowth of graphene films for stretchable transparent electrodes. Nature.2009;457(7230):706-710.
    [27] Ogawa Y, Hu B, Orofeo CM, Tsuji M, Ikeda K-i, Mizuno S, et al. DomainStructure and Boundary in Single-Layer Graphene Grown on Cu(111) and Cu(100)Films. The journal of physical chemistry letters.2012;3(2):219-226.
    [28] Zhang Y, Gomez L, Ishikawa FN, Madaria A, Ryu K, Wang CA, et al. Comparisonof Graphene Growth on Single-Crystalline and Polycrystalline Ni by ChemicalVapor Deposition. The journal of physical chemistry letters.2010;1(20):3101-3107.
    [29] Xue Y, Wu B, Guo Y, Huang L, Jiang L, Chen J, et al. Synthesis of large-area,few-layer graphene on iron foil by chemical vapor deposition. Nano Research.2011;4(12):1208-1214.
    [30] Geng D, Wu B, Guo Y, Huang L, Xue Y, Chen J, et al. Uniform hexagonalgraphene flakes and films grown on liquid copper surface. Proceedings of theNational Academy of Sciences of the United States of America.2012;109(21):7992-7996.
    [31] Zhang B, Lee WH, Piner R, Kholmanov I, Wu YP, Li HF, et al. Low-TemperatureChemical Vapor Deposition Growth of Graphene from Toluene on ElectropolishedCopper Foils. ACS Nano.2012;6(3):2471-2476.
    [32] Xue Y, Wu B, Jiang L, Guo Y, Huang L, Chen J, et al. Low temperature growth ofhighly nitrogen-doped single crystal graphene arrays by chemical vapor deposition.Journal of American Chemical Society.2012;134(27):11060-11063.
    [33] Sun Z, Yan Z, Yao J, Beitler E, Zhu Y, Tour JM. Growth of graphene from solidcarbon sources. Nature.2010;468(7323):549-552.
    [34] Byun S-J, Lim H, Shin G-Y, Han T-H, Oh SH, Ahn J-H, et al. GraphenesConverted from Polymers. The journal of physical chemistry letters.2011;2(5):493-497.
    [35] Wan X, Chen K, Liu D, Chen J, Miao Q, Xu J. High-Quality Large-Area Graphenefrom Dehydrogenated Polycyclic Aromatic Hydrocarbons. Chemistry of Materials.2012;24(20):3906-3915.
    [36] Wang Y, Zheng Y, Xu X, Dubuisson E, Bao Q, Lu J, et al. Electrochemicaldelamination of CVD-grown graphene film: toward the recyclable use of coppercatalyst. ACS Nano.2011;5(12):9927-9933.
    [37] Ismach A, Druzgalski C, Penwell S, Schwartzberg A, Zheng M, Javey A, et al.Direct chemical vapor deposition of graphene on dielectric surfaces. Nano Letters.2010;10(5):1542-1548.
    [38] Su CY, Lu AY, Wu CY, Li YT, Liu KK, Zhang W, et al. Direct formation of waferscale graphene thin layers on insulating substrates by chemical vapor deposition.Nano Letters.2011;11(9):3612-3616.
    [39] Peng ZW, Yan Z, Sun ZZ, Tour JM. Direct Growth of Bilayer Graphene on SiO2Substrates by Carbon Diffusion through Nickel. ACS Nano.2011;5(10):8241-8247.
    [40] Yan Z, Peng ZW, Sun ZZ, Yao J, Zhu Y, Liu Z, et al. Growth of Bilayer Grapheneon Insulating Substrates. ACS Nano.2011;5(10):8187-8192.
    [41] Chen JY, Wen YG, Guo YL, Wu B, Huang LP, Xue YZ, et al. Oxygen-AidedSynthesis of Polycrystalline Graphene on Silicon Dioxide Substrates. Journal ofthe American Chemical Society.2011;133(44):17548-17551.
    [42] Son M, Lim H, Hong M, Choi HC. Direct growth of graphene pad on exfoliatedhexagonal boron nitride surface. Nanoscale.2011;3(8):3089-3093.
    [43] Song HJ, Son M, Park C, Lim H, Levendorf MP, Tsen AW, et al. Large scalemetal-free synthesis of graphene on sapphire and transfer-free device fabrication.Nanoscale.2012;4(10):3050-3054.
    [44] Li B, Goh CF, Zhou X, Lu G, Tantang H, Chen Y, et al. Patterning Colloidal MetalNanoparticles for Controlled Growth of Carbon Nanotubes. Advanced Materials.2008;20(24):4873-4878.
    [45] Huang X, Qi X, Boey F, Zhang H. Graphene-based composites. Chemical SocietyReviews.2012;41(2):666-686.
    [46] Muszynski R, Seger B, Kamat PV. Decorating graphene sheets with goldnanoparticles. Journal of Physical Chemisty C.2008;112(14):5263-5266.
    [47] Jasuja K, Berry V. Implantation and Growth of Dendritic Gold Nanostructures onGraphene Derivatives: Electrical Property Tailoring and Raman Enhancement.ACS Nano.2009;3(8):2358-2366.
    [48] Huang X, Zhou X, Wu S, Wei Y, Qi X, Zhang J, et al. Reduced GrapheneOxide-Templated Photochemical Synthesis and in situ Assembly of Au Nanodotsto Orderly Patterned Au Nanodot Chains. Small.2010;6(4):513-516.
    [49] Huang X-P, Shi Z-L, Wang M, Konoto M, Zhou H-S, Ma G-B, et al. Formation ofRegular Magnetic Domains on Spontaneously Nanostructured Cobalt Filaments.Advanced Materials.2010;22(24):2711-2716.
    [50] Huang X, Zhou X, Wu S, Wei Y, Qi X, Zhang J, et al. Reduced grapheneoxide-templated photochemical synthesis and in situ assembly of Au nanodots toorderly patterned Au nanodot chains. Small.2010;6(4):513-516.
    [51] Huang X, Li S, Huang Y, Wu S, Zhou X, Li S, et al. Synthesis of hexagonalclose-packed gold nanostructures. Nature Communication.2011;2:292.
    [52] Huang X, Li H, Li S, Wu S, Boey F, Ma J, et al. Synthesis of Gold Square-likePlates from Ultrathin Gold Square Sheets: The Evolution of Structure Phase andShape. Angewandte Chemie-International Edition.2011;50(51):12245-12248.
    [53] Li Z, Li W, Camargo PHC, Xia Y. Facile Synthesis of Branched An Nanostructuresby Templating Against a Self-Destructive Lattice of Magnetic Fe Nanoparticles.Angewandte Chemie-International Edition.2008;47(50):9653-9656.
    [54] Guo S, Wang E. Noble metal nanomaterials: Controllable synthesis and applicationin fuel cells and analytical sensors. Nano Today.2011;6(3):240-264.
    [55] Zhou X, Huang X, Qi X, Wu S, Xue C, Boey FYC, et al. In Situ Synthesis of MetalNanoparticles on Single-Layer Graphene Oxide and Reduced Graphene OxideSurfaces. Journal of Physical Chemisty C.2009;113(25):10842-10846.
    [56] Zhu MS, Chen PL, Liu MH. Graphene Oxide Enwrapped Ag/AgX (X=Br, Cl)Nanocomposite as a Highly Efficient Visible-Light Plasmonic Photocatalyst. ACSNano.2011;5(6):4529-4536.
    [57] Liu S, Wang J, Zeng J, Ou J, Li Z, Liu X, et al."Green" electrochemical synthesisof Pt/graphene sheet nanocomposite film and its electrocatalytic property. Journalof Power Sources.2010;195(15):4628-4633.
    [58] Yin Z, He Q, Huang X, Zhang J, Wu S, Chen P, et al. Real-time DNA detectionusing Pt nanoparticle-decorated reduced graphene oxide field-effect transistors.Nanoscale.2012;4(1):293-297.
    [59] Pang S, Hernandez Y, Feng X, Mullen K. Graphene as transparent electrodematerial for organic electronics. Advanced Materials.2011;23(25):2779-2795.
    [60] Kim KK, Reina A, Shi Y, Park H, Li LJ, Lee YH, et al. Enhancing the conductivityof transparent graphene films via doping. Nanotechnology.2010;21(28):285205.
    [61] Hwang JO, Park JS, Choi DS, Kim JY, Lee SH, Lee KE, et al.Workfunction-tunable, N-doped reduced graphene transparent electrodes forhigh-performance polymer light-emitting diodes. ACS Nano.2012;6(1):159-167.
    [62] Lee DH, Lee JA, Lee WJ, Kim SO. Flexible field emission of nitrogen-dopedcarbon nanotubes/reduced graphene hybrid films. Small.2011;7(1):95-100.
    [63] Zhu Y, Sun Z, Yan Z, Jin Z, Tour JM. Rational design of hybrid graphene films forhigh-performance transparent electrodes. ACS Nano.2011;5(8):6472-6479.
    [64] Bae S, Kim H, Lee Y, Xu X, Park JS, Zheng Y, et al. Roll-to-roll production of30-inch graphene films for transparent electrodes. Natural Nanotechnology.2010;5(8):574-578.
    [65] Yavari F, Chen ZP, Thomas AV, Ren WC, Cheng HM, Koratkar N. High SensitivityGas Detection Using a Macroscopic Three-Dimensional Graphene Foam Network.Scientific Reports.2011;1:166.
    [66] Jeong HY, Lee DS, Choi HK, Lee DH, Kim JE, Lee JY, et al. Flexibleroom-temperature NO2gas sensors based on carbon nanotubes/reduced graphenehybrid films. Applied Physics Letters.2010;96(21):213105.
    [67] Deng S, Tjoa V, Fan HM, Tan HR, Sayle DC, Olivo M, et al. Reduced GrapheneOxide Conjugated Cu(2)O Nanowire Mesocrystals for High-Performance NO(2)Gas Sensor. Jouranl of American Chemical Society.2012;134(10):4905-4917.
    [68] Huang QW, Zeng DW, Li HY, Xie CS. Room temperature formaldehyde sensorswith enhanced performance, fast response and recovery based on zinc oxidequantum dots/graphene nanocomposites. Nanoscale.2012;4(18):5651-5658.
    [69]Krishnamoorthy K, Mohan R, Kim SJ. Graphene oxide as a photocatalytic material.Applied Physics Letters.2011;98(24):244101.
    [70] Nguyen-Phan T-D, Pham VH, Shin EW, Pham H-D, Kim S, Chung JS, et al. Therole of graphene oxide content on the adsorption-enhanced photocatalysis oftitanium dioxide/graphene oxide composites. Chemical Engineering Journal.2011;170(1):226-232.
    [71] Fu Y, Wang X. Magnetically Separable ZnFe2O4–Graphene Catalyst and its HighPhotocatalytic Performance under Visible Light Irradiation. Industrial&Engineering Chemistry Research.2011;50(12):7210-7218.
    [72] Lightcap IV, Kosel TH, Kamat PV. Anchoring semiconductor and metalnanoparticles on a two-dimensional catalyst mat. Storing and shuttling electronswith reduced graphene oxide. Nano Letters.2010;10(2):577-583.
    [73] Chen D, Tang LH, Li JH. Graphene-based materials in electrochemistry. ChemicalSociety Reviews.2010;39:3157-3180.
    [74] Bai JW, Duan XF, Huang Y. Rational Fabrication of Graphene Nanoribbons Usinga Nanowire Etch Mask. Nano Letters.2009;9(5):2083-2087.
    [75] Kim E, Jain N, Gedrim RJ, Xu Y, Yu B. Exploring carrier transport phenomena in aCVD-assembled graphene FET on hexagonal boron nitride. Nanotechnology.2012;23(12):125706.
    [1] Novoselov KS. Electric Field Effect in Atomically Thin Carbon Films. Science.2004;306(5696):666-669.
    [2] De Heer WA, Berger C, Wu X, Sprinkle M, Hu Y, Ruan M, et al. Epitaxialgraphene electronic structure and transport. Journal of Physics D: Applied Physics.2010;43(37):374007.
    [3] Hummers, W. S.; Offeman, R. E.,Prepatation of graphitic oxide. Journal of theAmerican Chemical Society.1958;80(6):1339-1339.
    [4] Li D, Mueller MB, Gilje S, Kaner RB, Wallace GG. Processable aqueousdispersions of graphene nanosheets. Nature Nanotechnology.2008;3(2):101-105.
    [5] Shukla S, Saxena S. Spectroscopic investigation of confinement effects on opticalproperties of graphene oxide. Applied Physics Letters.2011;98(7):073104.
    [6] Krishnamoorthy K, Veerapandian M, Yun K, Kim SJ. The Chemical and structuralanalysis of graphene oxide with different degrees of oxidation. Carbon.2013;53:38-49.
    [7] Dreyer DR, Park S, Bielawski CW, Ruoff RS. The chemistry of graphene oxide.Chemical Society Reviews.2010;39(1):228-240.
    [8] Ferrari AC, Meyer JC, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, et al. RamanSpectrum of Graphene and Graphene Layers. Physical Review Letters.2006;97(18):187401.
    [9] Ni Z, Wang Y, Yu T, Shen Z. Raman spectroscopy and imaging of graphene. NanoResearch.2010;1(4):273-291.
    [10] Zhou X, Huang X, Qi X, Wu S, Xue C, Boey FYC, et al. In Situ Synthesis of MetalNanoparticles on Single-Layer Graphene Oxide and Reduced Graphene OxideSurfaces. Journal of Physical Chemisty C.2009;113(25):10842-10846.
    [11] Li D, Muller MB, Gilje S, Kaner RB, Wallace GG. Processable aqueousdispersions of graphene nanosheets. Nature Nanotechnology.2008;3(2):101-105.
    [12] Yang F, Liu YQ, Gao LA, Sun J. pH-Sensitive Highly Dispersed ReducedGraphene Oxide Solution Using Lysozyme via an in Situ Reduction Method.Journal Physical Chemisty C.2010;114(50):22085-22091.
    [13] Konkena B, Vasudevan S. Understanding Aqueous Dispersibility of GrapheneOxide and Reduced Graphene Oxide through pK(a) Measurements. Jouranl ofPhysical Chemistry Letters.2012;3(7):867-872.
    [14] Lee BR, Kim J-W, Kang D, Lee DW, Ko S-J, Lee HJ, et al. Highly EfficientPolymer Light-Emitting Diodes Using Graphene Oxide as a Hole Transport Layer.ACS Nano.2012;6(4):2984-2991.
    [15] Park H, Chang S, Smith M, Gradecak S, Kong J. Interface engineering of graphenefor universal applications as both anode and cathode in organic photovoltaics.Scientific Reports.2013;3:1581.
    [16] Jiang XC, Li YQ, Deng YH, Zhuo QQ, Lee ST, Tang JX. Anode modification ofpolymer light-emitting diode using graphene oxide interfacial layer: The role ofultraviolet-ozone treatment. Applied Physical Letters.2013;103(7):073305.
    [1]. He Q, Wu S, Yin Z, Zhang H. Graphene-based electronic sensors. ChemicalScience2012;3(6):1764-1672.
    [2]. Miller, J. R.; Outlaw, R. A.; Holloway, B. C.,Graphene double-layer capacitor withac line-filtering performance. Science2010;329(5999):1637-1639.
    [3]. Cao, X.; Shi, Y.; Shi, W.; Lu, G.; Huang, X.; Yan, Q.; Zhang, Q.; Zhang,H.,Preparation of Novel3D Graphene Networks for Supercapacitor Applications.Small2011;7(22):3163-3168.
    [4]. Takeuchi, M.; Koike, K.; Maruyama, T.; Mogami, A.; Okamura,M.,Electrochemical intercalation of tetraethylammonium tetrafluoroborate intoKOH-treated carbon consisting of multi-graphene sheets for an electric doublelayer capacitor. Denki Kagaku1998;66:1311-1317.
    [5]. Qi, X.; Pu, K.-Y.; Li, H.; Zhou, X.; Wu, S.; Fan, Q.-L.; Liu, B.; Boey, F.; Huang,W.; Zhang, H.,Amphiphilic Graphene Composites. AngewandteChemie-International Edition.2010;49(49):9426-9429.
    [6]. Huang, X.; Li, S.; Huang, Y.; Wu, S.; Zhou, X.; Li, S.; Gan, C. L.; Boey, F.; Mirkin,C. A.; Zhang, H.,Synthesis of hexagonal close-packed gold nanostructures. NatureCommunication.2011;2:292.
    [7]. Wang, D.; Choi, D.; Li, J.; Yang, Z.; Nie, Z.; Kou, R.; Hu, D.; Wang, C.; Saraf, L.V.; Zhang, J.; Aksay, I. A.; Liu, J.,Self-assembled TiO2-graphene hybridnanostructures for enhanced Li-ion insertion. ACS Nano.2009;3(4):907-914.
    [8]. Tung, V. C.; Chen, L. M.; Allen, M. J.; Wassei, J. K.; Nelson, K.; Kaner, R. B.;Yang, Y.,Low-temperature solution processing of graphene-carbon nanotube hybridmaterials for high-performance transparent conductors. Nano Letters.2009;9(5):1949-1955.
    [9]. Huang, X.; Qi, X.; Boey, F.; Zhang, H.,Graphene-based composites. ChemicalSociety Reviews2012;41(2):666-686.
    [10].Huang, X.; Yin, Z.; Wu, S.; Qi, X.; He, Q.; Zhang, Q.; Yan, Q.; Boey, F.; Zhang,H.,Graphene-Based Materials: Synthesis, Characterization, Properties, andApplications. Small.2011;7(14):1876-1902.
    [11]. Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I. V.; Firsov, A. A.,Electric field effect in atomically thin carbonfilms. Science.2004;306(5696):666-669.
    [12].Stankovich, S.; Dikin, D. A.; Piner, R. D.; Kohlhaas, K. A.; Kleinhammes, A.; Jia,Y.; Wu, Y.; Nguyen, S. T.; Ruoff, R. S.,Synthesis of graphene-based nanosheets viachemical reduction of exfoliated graphite oxide. Carbon.2007;45(7):1558-1565.
    [13].Zhou, X.; Huang, X.; Qi, X.; Wu, S.; Xue, C.; Boey, F. Y. C.; Yan, Q.; Chen, P.;Zhang, H.,In Situ Synthesis of Metal Nanoparticles on Single-Layer GrapheneOxide and Reduced Graphene Oxide Surfaces. Journal of Physical Chemistry C2009;113(25):10842-10846.
    [14].Reina, A.; Jia, X. T.; Ho, J.; Nezich, D.; Son, H. B.; Bulovic, V.; Dresselhaus, M. S.;Kong, J.,Large Area, Few-Layer Graphene Films on Arbitrary Substrates byChemical Vapor Deposition. Nano Letters.2009;9(1):30-35.
    [15].Huang, H.; Chen, W.; Chen, S.; Wee, A. T.,Bottom-up growth of epitaxial grapheneon6H-SiC(0001). ACS Nano.2008;2(12):2513-2518.
    [16].Hummers, W. S.; Offeman, R. E.,Prepatation of graphitic oxide. Journal of theAmerican Chemical Society.1958;80:1339-1339.
    [17].Moon, I. K.; Lee, J.; Ruoff, R. S.; Lee, H.,Reduced graphene oxide by chemicalgraphitization. Nature Communications.2010;1:73.
    [18].Zhang, J.; Yang, H.; Shen, G.; Cheng, P.; Zhang, J.; Guo, S.,Reduction of grapheneoxide vial-ascorbic acid. Chemical Communications.2010;46(7):1112-1114.
    [19].Zhu, C.; Guo, S.; Fang, Y.; Dong, S.,Reducing sugar: new functional molecules forthe green synthesis of graphene nanosheets. ACS Nano.2010;4(4):2429-2437.
    [20].Chatenet, M.; Micoud, F.; Roche, I.; Chainet, E.,Kinetics of sodium borohydridedirect oxidation and oxygen reduction in sodium hydroxide electrolyte.Electrochimica Acta.2006;51(25):5459-5467.
    [21].Kumari, P.; Poonam; Chauhan, S. M.,Efficient cobalt(II) phthalocyanine-catalyzedreduction of flavones with sodium borohydride. Chem Commun (Camb).2009;42:6397-6399.
    [22].Li, J. F.; Lin, H.; Yang, Z. L.; Li, J. B.,A method for the catalytic reduction ofgraphene oxide at temperatures below150degrees C. Carbon.2011;49(9):3024-3030.
    [23].Li, D.; Muller, M. B.; Gilje, S.; Kaner, R. B.; Wallace, G. G.,Processable aqueousdispersions of graphene nanosheets. Nature Nanotechnology.2008;3(2):101-105.
    [24].Nguyen, S. T.; Stankovich, S.; Dikin, D. A.; Piner, R. D.; Kohlhaas, K. A.;Kleinhammes, A.; Jia, Y.; Wu, Y.; Ruoff, R. S.,Synthesis of graphene-basednanosheets via chemical reduction of exfoliated graphite oxide. Carbon.2007;45(7):1558-1565.
    [25].Zhou, X. J.; Zhang, J. L.; Wu, H. X.; Yang, H. J.; Zhang, J. Y.; Guo, S.W.,Reducing Graphene Oxide via Hydroxylamine: A Simple and Efficient Route toGraphene. Journal of Physical Chemistry C.2011;115(24):11957-11961.
    [26].Cady, N. C.; Behnke, J. L.; Strickland, A. D.,Copper-Based NanostructuredCoatings on Natural Cellulose: Nanocomposites Exhibiting Rapid and EfficientInhibition of a Multi-Drug Resistant Wound Pathogen, A. baumannii, andMammalian Cell Biocompatibility In Vitro. Advanced Functional Materials.2011;21(13):2506-2514.
    [27].Fan, Z. J.; Kai, W.; Yan, J.; Wei, T.; Zhi, L. J.; Feng, J.; Ren, Y. M.; Song, L. P.;Wei, F.,Facile synthesis of graphene nanosheets via Fe reduction of exfoliatedgraphite oxide. ACS Nano.2011;5(1):191-198.
    [28].Fernandez-Merino, M. J.; Guardia, L.; Paredes, J. I.; Villar-Rodil, S.;Solis-Fernandez, P.; Martinez-Alonso, A.; Tascon, J. M. D.,Vitamin C Is an IdealSubstitute for Hydrazine in the Reduction of Graphene Oxide Suspensions. Journalof Physical Chemistry C.2010;114(14):6426-6432.
    [29].Moon, I. K.; Lee, J.; Ruoff, R. S.; Lee, H.,Reduced graphene oxide by chemicalgraphitization. Nature Communication.2010;1:73.
    [30].Shin, H.-J.; Kim, K. K.; Benayad, A.; Yoon, S.-M.; Park, H. K.; Jung, I.-S.; Jin, M.H.; Jeong, H.-K.; Kim, J. M.; Choi, J.-Y.; Lee, Y. H.,Efficient Reduction ofGraphite Oxide by Sodium Borohydride and Its Effect on Electrical Conductance.Advanced Functional Materials.2009;19(12):1987-1992.
    [1]. Xiao, F.; Song, J.; Gao, H.; Zan, X.; Xu, R.; Duan, H.,Coating graphene paper with2D-assembly of electrocatalytic nanoparticles: a modular approach towardhigh-performance flexible electrodes. ACS Nano.2012:6(1):100-110.
    [2]. Kou, R.; Shao, Y.; Mei, D.; Nie, Z.; Wang, D.; Wang, C.; Viswanathan, V. V.; Park,S.; Aksay, I. A.; Lin, Y.; Wang, Y.; Liu, J.,Stabilization of electrocatalytic metalnanoparticles at metal-metal oxide-graphene triple junction points. Journal ofAmerican Chemical Society.2011;133(8):2541-2547.
    [3]. Park, H.; Brown, P. R.; Bulovic, V.; Kong, J.,Graphene as transparent conductingelectrodes in organic photovoltaics: studies in graphene morphology, holetransporting layers, and counter electrodes. Nano Letters.2012;12(1):133-140.
    [4]. Zheng, Q.; Ip, W. H.; Lin, X.; Yousefi, N.; Yeung, K. K.; Li, Z.; Kim, J.K.,Transparent conductive films consisting of ultralarge graphene sheets producedby Langmuir-Blodgett assembly. ACS Nano.2011;5(7):6039-6051.
    [5]. Deng, S.; Tjoa, V.; Fan, H. M.; Tan, H. R.; Sayle, D. C.; Olivo, M.; Mhaisalkar, S.;Wei, J.; Sow, C. H.,Reduced Graphene Oxide Conjugated Cu(2)O NanowireMesocrystals for High-Performance NO(2) Gas Sensor. Journal of AmericanChemical Society.2012;134(10):4905-4917.
    [6]. Xiang, G.; He, J.; Li, T.; Zhuang, J.; Wang, X.,Rapid preparation of noble metalnanocrystals via facile coreduction with graphene oxide and their enhancedcatalytic properties. Nanoscale.2011;3(9):3737-3742.
    [7]. Matyba, P.; Yamaguchi, H.; Chhowalla, M.; Robinson, N. D.; Edman, L.,Flexibleand metal-free light-emitting electrochemical cells based on graphene andPEDOT-PSS as the electrode materials. ACS Nano.2011;5(1):574-580.
    [8]. Chen, S.; Zhu, J. W.; Wang, X.,One-Step Synthesis of Graphene-Cobalt HydroxideNanocomposites and Their Electrochemical Properties. Journal of PhysicalChemistry C.2010;114(27):11829-11834.
    [9]. Xu, C.; Wang, X.; Zhu, J. W.,Graphene-Metal Particle Nanocomposites. Journal ofPhysical Chemistry C.2008;112(50):19841-19845.
    [10].Liu, S.; Tian, J.; Wang, L.; Sun, X.,A method for the production of reducedgraphene oxide using benzylamine as a reducing and stabilizing agent and itssubsequent decoration with Ag nanoparticles for enzymeless hydrogen peroxidedetection. Carbon.2011;49(10):3158-3164.
    [11]. Zhang, S.; Shao, Y.; Liao, H.-g.; Liu, J.; Aksay, I. A.; Yin, G.; Lin, Y.,GrapheneDecorated with PtAu Alloy Nanoparticles: Facile Synthesis and PromisingApplication for Formic Acid Oxidation. Chemistry of Materials.2011;23(5):1079-1081.
    [12].Li, H. Q.; Han, L. N.; Cooper-White, J. J.; Kim, I.,A general and efficient methodfor decorating graphene sheets with metal nanoparticles based on thenon-covalently functionalized graphene sheets with hyperbranched polymers.Nanoscale.2012;4(4):1355-1361.
    [13].Guo, S. J.; Dong, S. J.; Wang, E. W.,Three-Dimensional Pt-on-Pd BimetallicNanodendrites Supported on Graphene Nanosheet: Facile Synthesis and Used as anAdvanced Nanoelectrocatalyst for Methanol Oxidation. ACS Nano.2010;4(1):547-555.14. Wang, S.; Wang, X.; Jiang, S. P.,Self-assembly of mixed Pt and Au nanoparticleson PDDA-functionalized graphene as effective electrocatalysts for formic acidoxidation of fuel cells. Physical Chemistry Chemical Physics.2011;13(15):7187-7195.
    [15].Hu, Y.; Zhang, H.; Wu, P.; Zhang, H.; Zhou, B.; Cai, C.,Bimetallic Pt–Aunanocatalysts electrochemically deposited on graphene and their electrocatalyticcharacteristics towards oxygen reduction and methanol oxidation. PhysicalChemistry Chemical Physics.2011;13(9):4083-4094.
    [16].Muir, S. S.; Yao, X.,Progress in sodium borohydride as a hydrogen storage material:Development of hydrolysis catalysts and reaction systems. International Journal ofHydrogen Energy.2011;36(10):5983-5997.
    [17].Chatenet, M.; Micoud, F.; Roche, I.; Chainet, E.,Kinetics of sodium borohydridedirect oxidation and oxygen reduction in sodium hydroxide electrolyte.Electrochimica Acta.2006,51,5459-5467.
    [18].Li, J.; Lin, H.; Yang, Z.; Li, J.,A method for the catalytic reduction of grapheneoxide at temperatures below150degrees C. Carbon.2011;49(9):3024-3030.
    [19].Shin, H. J.; Kim, K. K.; Benayad, A.; Yoon, S. M.; Park, H. K.; Jung, I. S.; Jin, M.H.; Jeong, H. K.; Kim, J. M.; Choi, J. Y.; Lee, Y. H.,Efficient Reduction ofGraphite Oxide by Sodium Borohydrilde and Its Effect on Electrical Conductance.Advanced Functional Materials.2009;19(12):1987-1992.
    [20].Hung, T. F.; Kuo, H. C.; Tsai, C. W.; Chen, H. M.; Liu, R. S.; Weng, B. J.; Lee, J.F.,An alternative cobalt oxide-supported platinum catalyst for efficient hydrolysisof sodium borohydride. Journal of Materials Chemistry.2011;21(32):11754-11759.
    [21].Simagina, V. I.; Komova, O. V.; Ozerova, A. M.; Netskina, O. V.; Odegova, G. V.;Kellerman, D. G.; Bulavchenko, O. A.; Ishchenko, A. V.,Cobalt oxide catalyst forhydrolysis of sodium borohydride and ammonia borane. Applied Catalysisa-General.2011;394(1-2):86-92.
    [22].Hummers, W. S.; Offeman, R. E., Prepatation of graphitic oxide. Journal of theAmerican Chemical Society.1958;80:1339-1339.
    [23].Bullen, C.; Zijlstra, P.; Bakker, E.; Gu, M.; Raston, C.,Chemical Kinetics of GoldNanorod Growth in Aqueous CTAB Solutions. Crystal Growth&Design.2011;11(8):3375-3380.
    [24].Xia, Y.; Xiong, Y.; Lim, B.; Skrabalak, S. E.,Shape-controlled synthesis of metalnanocrystals: simple chemistry meets complex physics?Angewandte ChemieInternational Edition Engl.2009;48(1):60-103.
    [25].Gao, H. C.; Xiao, F.; Ching, C. B.; Duan, H. W.,One-Step ElectrochemicalSynthesis of PtNi Nanoparticle-Graphene Nanocomposites for NonenzynnaticAmperometric Glucose Detection. ACS Applied Material Interfaces.2011;3(8):3049-3057.
    [26].Fan, G. Q.; Zhuo, Q. Q.; Li,Y. Q.; Sun, X. H.; Tang, J. X.,Plasmonic-enhancedpolymer solar cells incorporating solution-processable Au nanoparticle-adheredgraphene oxide. Journal of Materials Chemistry.2012;22(31):15614-15619.
    [1] Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, et al.Electric field effect in atomically thin carbon films. Science.2004;306(5696):666-669.
    [2] Yan X, Cui X, Li L-s. Synthesis of Large, Stable Colloidal Graphene QuantumDots with Tunable Size. Journal of the American Chemical Society.2010;132(17):5944-5945.
    [3] Bai H, Li C, Shi G. Functional Composite Materials Based on ChemicallyConverted Graphene. Advanced Materials.2011;23(9):1089-1115.
    [4] Ismach A, Druzgalski C, Penwell S, Schwartzberg A, Zheng M, Javey A, et al.Direct chemical vapor deposition of graphene on dielectric surfaces. Nano Letters.2010;10(5):1542-1548.
    [5] Kim KS, Zhao Y, Jang H, Lee SY, Kim JM, Ahn JH, et al. Large-scale patterngrowth of graphene films for stretchable transparent electrodes. Nature.2009;457(7230):706-710.
    [6] Xue Y, Wu B, Guo Y, Huang L, Jiang L, Chen J, et al. Synthesis of large-area,few-layer graphene on iron foil by chemical vapor deposition. Nano Research.2011;4(12):1208-1214.
    [7] Byun S-J, Lim H, Shin G-Y, Han T-H, Oh SH, Ahn J-H, et al. GraphenesConverted from Polymers. The journal of physical chemistry letters.2011;2(5):493-497.
    [8] Sun Z, Yan Z, Yao J, Beitler E, Zhu Y, Tour JM. Growth of graphene from solidcarbon sources. Nature.2010;468(7323):549-552.
    [9] Wan X, Chen K, Liu D, Chen J, Miao Q, Xu J. High-Quality Large-Area Graphenefrom Dehydrogenated Polycyclic Aromatic Hydrocarbons. Chemistry of Materials.2012;24(20):3906-3915.
    [10] Xue Y, Wu B, Jiang L, Guo Y, Huang L, Chen J, et al. Low temperature growth ofhighly nitrogen-doped single crystal graphene arrays by chemical vapor deposition.Journal of American Chemical Society.2012;134(27):11060-11063.
    [11] Yan Z, Peng ZW, Sun ZZ, Yao J, Zhu Y, Liu Z, et al. Growth of Bilayer Grapheneon Insulating Substrates. ACS Nano.2011;5(10):8187-8192.
    [12] Zhang CH, Fu L, Liu N, Liu MH, Wang YY, Liu ZF. Synthesis of Nitrogen-DopedGraphene Using Embedded Carbon and Nitrogen Sources. Advanced Materials.2011;23(8):1020-1024.
    [13] Zangmeister CD. Preparation and Evaluation of Graphite Oxide Reduced at220degrees C. Chemistry of Materials.2010;22(19):5625-5629.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700