高容量电极材料的制备及其电化学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
锂离子电池和超级电容器是储能的两个重要方向,它们的电化学性能和能量密度决定着它们今后的道路。然而,目前的储能电极材料一方面在具有高容量的同时,它的电化学循环和倍率容量性能却很差,需要进行改性处理;另一方面电极材料的电化学性能和储能容量和它的形貌有着密切的关系,实现电极材料的形貌最优化制备对提升电极材料电化学性能和能量密度有着重要意义。
     1.金属氧化物的理论储锂容量比较高,是石墨的2-3倍,但是它的循环性能却很差,需要进行改性处理。可充电锂离子二次电池的电化学性能主要和脱嵌锂电极中Li的固相扩散动力问题以及材料表面特性相关。我们以油酸为碳源,发明了一种新颖的制备氧化镍/碳复合纳米片的技术,这种以油酸为碳源,氧化镍纳米片为前驱体制备的NiO@C复合材料在50次循环后仍然展现出883mAh g-1的可逆容量,大大改善了NiO在充放电过程中的循环衰减问题和倍率问题,制备了一种高能量密度且循环性能优异的锂电负极材料,并在实验中比较了两种不同碳包覆效果对材料的影响,对碳包覆表面改性处理方式的差异提供了重要依据。
     2.我们研究了羟磷铁锂结构LiFe(PO4)(OH)xF1-x分层微球的形貌-变量的电化学性能,包括壳结构和中空结构的创建。实验结果表明材料的电化学性能会随着其形貌的改变而明显变化。与其它颗粒相比,由纳米棒和多孔微球组成的羟磷铁锂微球表现出优异的电化学性能,这可以归因于锂离子扩散途径被缩短,材料比表面积增大。据我们所知,这是第一次就形貌对可很好定义结构的羟磷铁锂电极材料的电化学活性的影响进行系统的研究。这种易于实现的合成不同形貌羟磷铁锂材料的方法能为进一步研究羟磷铁锂结构LiFe(PO4)(OH)xF1-x形状-变量材料的电化学性能研究提供一个有趣的平台。
     3.硅是自然界储锂容量最高的,但同时它的循环性能很差。我们从材料结构设计入手,合成了一种柔性外壳包裹弹性内核的核壳结构的石墨烯包裹单颗粒硅纳米结构。通过对纳米硅进行化学修饰,实现纳米硅与氧化石墨烯的自组装,然后采用环保的维生素C(抗坏血酸)在微波辅助下还原氧化石墨烯,形成石墨烯包裹单颗粒纳米硅复合材料。利用石墨烯的高比表面积、良好导电性和多孔结构来抑制硅在脱嵌锂过程中的体积膨胀,提高其电化学性能。通过对它的电化学性能研究和与纯硅性能的对比验证了石墨烯的包覆能有效改善硅的循环性能和倍率性能,为制备高能量密度硅基材料提供了思路。
     4.为了进一步验证材料的颗粒大小和形貌对储能材料电化学性能的影响,我们利用简单的静电纺丝后空气退火的方法制备出一维(1D)多孔ZnCo2O4纳米管(PNTs)并首次应用于超级电容器(SCs),并与ZnCo2O4纳米颗粒的超电容性能做了系统的对比研究,实验证明这种一维多孔ZnCo2O4纳米管的比容量、循环性能以及倍率性能等明显优于ZnCo2O4纳米颗粒。我们的一系列实验证明通过改变材料的形貌确实可以实现优化电化学性能的目的。
Lithium-ion battery and supercapacitor are two of important energy storage devices. Their electrochemical performance, especially in the energy density, strongly influence the future applications in electric vehicles. However, on one hand present battery electrode materials with higher capacity have poor electrochemical performance in cycling and rate capacity, thus they require further modification. On the other hand, the electrochemical performance and corresponding energy storage are closely related with the morphologies of electrode materials. To find a optimal morphologe of electrode materials is of great significance to enhance the electrochemical performance and energy density.
     1. Lithium storage capacity of metal oxides is two or three times higher than that of graphite. However, their cycle performance is poor, thus modification is necessary. The performance of rechargeable Li-ion batteries is mainly associated with their kinetic problems linked to the solid-state diffusion of Li in intercalation electrodes and the quality of interfaces, we prepared the NiO@C nanocomposites as excellent anodes by a novel coating technique using oleic acid and NiO nanoplates as carbon resource and precursor, respectively. The as-prepared NiO@C using oleic acid and NiO nanoplates as precursors exhibited a reversible capacity of883mAhg"1over50cycles. This work demonstrates such coating precursor techniques are effective to solve above-mentioned kinetic problems of electrode materials related with cycling and rate capacity. Additionally, this work also studied the difference between two different coating processes, and the effects of corresponding materials on their electrochemical performance.
     2. We investigate the shape-dependent electrochemical property over tavorite LiFe(PO4)(OH)xF1-x hierarchical microspheres, including architecture of shell structure and creation of interior space. Our experimental results demonstrate that the electrochemical performances vary significantly with particle shape. The tavorite microspheres composed of nanorods and hollow microspheres exhibit superior electrochemical properties, compared to the other particles, which can be attributed to their shorter Li+ion diffusion and higher specific surface area. To the best of our knowledge, this is the first study to systematically investigate the shape effect on electrochemical activity of tavorite electrode materials with well-defined architectures. It is highly expected this facile synthesis of tavorite particles with different morphologies can provide an interesting platform for further fundamental investigation into the shape-dependent electrochemical performance of tavorite LiFe(PO4)(OH)xFi1-x.
     3. We synthesized a kind of core-shell structure which flexible elastic graphene shell ecapsulate silicon particles kernel. Silicon has the highest theorical capacity among all anode materials, however, it has extremely poor cycling ability as the same as metal oxides. Herein we describe a self-assembled graphene-encapsulated silicon (GE-Si) by coassembly between negatively charged graphene oxide and positively charged oxide nanoparticles. The process is driven by the mutual electrostatic interactions of the two species, and is followed by chemical reduction with combining the green reductive agent of ascorbic acid and microwave technique. This hierarchical structure can accommodate a large volume change of Si nanoparticles during cycling, provide a high electrical conductivity for the whole electrode, and generate many nanospaces in the electrode for lithium ion diffusion. Electrochemical tests demonstrated that Si@rGO nanocomposite had better performance in cycling and rate ability than pure Si nanoparticles. This will provide novel ideas for designing high-energy-density silicon-based nanocomposites.
     4. In order to further verify the influence of size and shape of materials on their electrochemical performance, we also studied the peseocapacitive characteristics of porous ZnCo2O4nanotubes synthesized via the electrospunning and annealing processes. Electrochemical tests demonstrated that the as-synthesized porous ZnCo2O4nanotubes had better electrochemical performance than ZnCo2O4nanoparticles. In summary, we found that the optimized electrochemical performance could be obtained through adjusting morphology of materials.
引文
[1]T.Nagaura.4th International Rechargeable Battery Seminar, Deerfield Beach, Florida,1990
    [2]Proc.3th International Seminar on Double Layer Capacitors and Similar Energy Storage Devices, Deerfield Beach, Florida,1993
    [3]Y.G.Guo, J.S.Hu and L.J.Wan. Nanostructured materials for electrochemical energy conversion and storage devices. Adv. Mater.,2008,20,2878
    [4]A.S.Arico, P.Bruce, B.Scrosati, et al. Nanostructured materials for advanced energy conversion and storage devices. Nat. Mater.,2005,4,366
    [5]P.G.Bruce, B.Scrosati and J.Tarascon. Nanomaterials for rechargeable lithium batteries. Angew. Chem. Int. Ed.,2008,47,2930
    [6]A.Pan, H.B.Wu, L.Yu, et al. Template-Free Synthesis of VO2 Hollow Microspheres with Various Interiors and Their Conversion into V2O5 for Lithium-Ion Batteries. Angew. Chem.,2013,125,2282
    [7]J.S.Chen, Y.L.Tan, C.M.Li, et al. Constructing hierarchical spheres from large ultrathin anatase TiO2 nanosheets with nearly 100% exposed (001) facets for fast reversible lithium storage. J. Am. Chem. Soc,2010,132,6124
    [8]H.Li, Z.Wang, L.Chen, et al. Research on Advanced Materials for Li-ion Batteries. Adv. Mater.,2009,21,4593
    [9]S.Chen, W.Xing, J.Duan, et al. Nanostructured morphology control for efficient supercapacitor electrodes. J. Mater. Chem. A,2013,1,2941
    [10]郭炳,徐徽,王先友编著.锂离子电池.湖南:中南工业大学出版社,2002:P1
    [11]赖琼钰,卢集政,邹宏如.摇椅锂离子二次电池及其嵌入式电极材料.化学研究与应用,1998,10,21
    [12]A.Schalkwijk, B.Scrosati. Advances in Lithium-Ion Battery. ISBN: 0-306-47356-9,2002:P15
    [13]徐仲榆,郑洪河.锂离子蓄电池碳负极/电解液的相容性研究进展Ⅱ电解液组成与碳负极/电解液的相容性.电源技术,2000,5,295
    [14]D.Aurbach, K.Gamolsky, B.Markovsky, et al. On the use of vinylene carbonate(VC) as an additive to electrolyte solutions for Li-ion batteries. Electrochem. Acta,2002,47,1423
    [15]H.Ota, Y.Sakata, A.Inoue, et al. Analysis of vinylene carbonate derived SEI layers on graphite anode. J. Electrochem. Soc.2004,151,1659
    [16]A.Koji, H.Yoshitake, T.Kitakura, et al. Additives-containing functional electrolytes for suppressing electrolyte decomposition in lithium-ion batteries. Electrochimica Acta,2004,49,4613
    [17]A.Koji, M.Yasuo, U.Akira. Nonaqueous electrolytic Solution and lithium secondary batteries. WO:02059999,2002
    [18]T.Masatoshi, Y.Zensaku, A.Koji. Lithium secondary battery. EP:1065744, 2001
    [19]A.Koji, M.Yasuo, U.Akira. Lithium Secondary battery and nonaqueous electrolyte for the same. JP:2002298910,2002
    [20]O.Kenji, S.Noriko, S.Hitoshi. Nonaqueous electrolytic solution and secondary battery containing the same. EP:1286409,2003
    [21]H.Ota, A.Kominato, W.J.Chun, et al. Effect of cyclic phosphate additive in non-flammable electrolyte. J. Power Sources,2003,119,393
    [22]J.Arai. A novel non-flammable electrolyte containing methyl nonafluobutyl ether for lithium ion secondary batteries. J. Applied Electrochemistry,2002,32, 1071
    [23]L.B.Hu, H.Wu, F.L.Mantia, et al. Thin, Flexible Secondary Li-Ion Paper Batteries. ACS Nano,2010,4,5843
    [24]L.F.Cui, L.B.Hu, J.W.Choi, et al. Light-Weight Free-Standing Carbon Nanotube-Silicon Films for Anodes of Lithium Ion Batteries. ACS Nano,2010, 4,3671
    [25]W.Wang, P.N.Kumta. Nanostructured Hybrid Silicon/Carbon Nanotube Heterostructures:Reversible High-Capacity Lithium-Ion Anodes. ACS Nano, 2010,4,2233
    [26]K.Mizushima, P.C. Jones, P.J. Wiseman, et al. LixCoO2 (0    [27]J.H.Shim, S.Lee, S.S.Park. Effects of MgO Coating on the Structural and Electrochemical Characteristics of LiCoO2 as Cathode Materials for Lithium Ion Battery. Chemistry of Materials.2014, DOI:10.1021
    [28]T.Ohzuku, Y.Makimura. Layered Lithium Insertion Material of LiNi0.5Mn0.5O2: A Possible Alternative to LiCoO2 for Advanced Lithium-Ion Batteries. Chemistry Letters.2001,8,744
    [29]W.S.Yoon, C.P.Grey, M.Balasubramanian, et al. In situ X-ray absorption spectroscopic study on LiNi0.5Mn0.5O2 cathode material during electrochemical cycling. Chemistry of Materials,2003,15,3161
    [30]J.Breger, Y.S.Meng, Y.Hinuma, et al. Effect of high voltage on the structure and electrochemistry of LiNi0.5Mn0.5O2:A joint experimental and theoretical study. Chemistry of Materials,2006,184768
    [31]N.Yabuuchi, S.Kumar, H.H.Li, et al. Changes in the Crystal Structure and Electrochemical Properties of LixNi0.5Mn0.5O2 during Electrochemical Cycling to High Voltages. Journal of the Electrochemical Society,2007,154,566
    [32]M.S.Whittingham. Electrical energy storage and intercalation chemistry. Science,1976,1921126
    [33]K.S.Kang, Y.S.Meng, J.Breger, et al. Electrodes with high power and high capacity for rechargeable lithium batteries. Science,2006,311,977
    [34]N.Yabuuchi, Y.T.Kim, H.H.Li, et al. Thermal Instability of Cycled LixNi0.5M0o.5O2 Electrodes:An in Situ Synchrotron X-ray Powder Diffraction Study. Chemistry of Materials,2008,20,4936
    [35]T.Ohzuku, Y.Makimura. Layered lithium insertion material of LiNi1/3Co1/3Mn1/3O2 for lithium-ion batteries. Chemistry Letters,2001,30,642
    [36]M.H.Lee, Y.Kang, S.T.Myung, et al. Synthetic optimization of LiNi1/3Co1/3Mn1/3O2 via co-precipitation. Electrochimica Acta,2004,50,939
    [37]P.S.Whitfield, I.J.Davidson, L.M.D.Cranswick, et al. Investigation of possible superstructure and cation disorder in the lithium battery cathode material LiMn1/3Ni1/3Co1/3O2 using neutron and anomalous dispersion powder diffraction. Solid State Ionics,2005,176,463
    [38]K.M.Shaju, P.G.Bruce. Macroporous Li(Ni1/3Co1/3Mn1/3)O2:A High-Power and High-Energy Cathode for Rechargeable Lithium Batteries. Advanced Materials, 2006,18,2330
    [39]N.Yabuuchi, T.Ohzuku. Electrochemical behaviors of LiMn1/3Ni1/3Co1/3O2 in lithium batteries at elevated temperatures. Journal of Power Sources,2005,146, 636
    [40]Z.Li, N. A.Chernova, M.Roppolo, et al. Comparative Study of the Capacity and Rate Capability of LiNiyMnyCo1-2yO2(y=0.5,0.45,0.4,0.33). Journal of the Electrochemical Society,2011,158,516
    [41]Z.H.Lu, D.D.MacNeil, J.R.Dahn. Layered Cathode Materials Li[NixLi1/3-2x/3Mn2/3-x/3]O2 for Lithium-Ion Batteries. Electrochemical and Solid-State Letters,2001,4,191
    [42]Z.H.Lu, L.Y.Beaulieu, R.A. Donaberger, et al. Synthesis, Structure, and Electrochemical Behavior of Li[NixLi1/3-2x/3Mn2/3-x/3]O2. Journal of the Electrochemical Society,2002,149, A778
    [43]B.Xu, C.R.Fell, M.F.Chi, et al. Identifying surface structural changes in layered Li-excess nickel manganese oxides in high voltage lithium ion batteries:A joint experimental and theoretical study. Energy & Environmental Science,2011,4, 2223
    [44]C.P.Grey, W.S.Yoon, J.Reed, et al. Electrochemical Activity of Li in the Transition-Metal Sites of 03 Li [Li(1-2x)/3Mn(2-x)/3Nix]O2. Electrochemical and Solid-State Letters,2004,7, A290
    [45]C.R.Fell, K.J.Carroll, M.F.Chi, et al. Electrochemical kinetics of the Li[Li0.23Co0.3Mn0.47]O2 cathode material studied by GITT and EIS. Journal of the Electrochemical Society,2010,157, Al2O2
    [46]M.M.Thackeray, W.I.F.David, P.G.Bruce, et al. Lithium insertion into manganese spinels. Materials Research Bulletin,1983,18,461
    [47]R.J.Gummow, A.Dekock, M.M.Thackeray. Improved capacity retention in rechargeable 4 V lithium/lithium-manganese oxide (spinel) cells. Solid State Ionics,1994,69,59
    [48]K.S.Lee, S.T.Myung, H.J.Bang, et al. Co-precipitation synthesis of spherical Li1.05M0.05Mn1.9O4 (M=Ni, Mg, Al) spinel and its application for lithium secondary battery cathode. Electrochimica Acta,2007,52,5201
    [49]Y.J.Lee, S.H.Park, C.Eng, et al. Cation Ordering and Electrochemical Properties of the Cathode Materials LiZnxMn2-xO4,0    [50]L.Hernan, J.Morales, L.Sanchez, et al. Use of Li-M-Mn-O [M=Co, Cr, Ti] spinels prepared by a sol-gel method as cathodes in high-voltage lithium batteries. Solid State Ionics,1999,118,179
    [51]J.H.Kim, S.T.Myung, C.S.Yoon, et al. Comparative Study of LiNi0.5Mn1.5O4.δ and LiNi0.5Mn1.5O4 Cathodes Having Two Crystallographic Structures:Fd3m and P4332. Chemistry of Materials,2004,16,906
    [52]G.H.Li, H.Ikuta, T.Uchida, et al. The Spinel Phases LiMyMn2-yO4(M=Co, Cr, Ni) as the Cathode for Rechargeable Lithium Batteries. Journal of the Electrochemical Society,1996,143,178
    [53]J.Molenda, J.Marzec, K.Swierczek, et al. The effect of 3d substitutions in the manganese sublattice on the charge transport mechanism and electrochemical properties of manganese spinel. Solid State Ionics,2004,171,215
    [54]T.Ohzuku, S.Takeda, M.Iwanaga. Solid-state redox potentials for Li[Me1/2Mn3/2]O4 (Me:3d-transition metal) having spinel-framework structures: a series of 5 volt materials for advanced lithium-ion batteries. Journal of Power Sources,1999,81,90
    [55]R.Singhal, S.R.Das, M.S.Tomar, et al. Synthesis and characterization of Nd doped LiMn2O4 cathode for Li-ion rechargeable batteries. Journal of Power Sources,2007,164,857
    [56]J.Tu, X.B.Zhao, D.G.Zhuang, et al. Studies of cycleability of LiMn2O4 and LiLa0.01Mn1.99O4 as cathode materials for Li-ion battery. Physica B:Condensed Matter,2006,382,129
    [57]S.T.Yang, J.H.Jia, L.Ding, et al. Studies of structure and cycleability of LiMn2O4 and LiNd0.01Mn1.99O4 as cathode for Li-ion batteries. Electrochimica Acta,2003,48,569
    [58]K.M.Shaju, P.G.Bruce. Nano-LiNi0.5Mn1.5O4 spinel:a high power electrode for Li-ion batteries. Dalton Transactions,2008,40,5471-5475
    [59]Y.Talyosef, B.Markovsky, R.Lavi, et al. Comparing the behavior of nano-and microsized particles of LiMn1.5Ni0.5O4 spinel as cathode materials for Li-ion batteries. Journal of the Electrochemical Society,2007,154, A682
    [60]A.K.Padhi, K.S.Nanjundaswamy, J.B.Goodenough. Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. Journal of the Electrochemical Society,1997,144,1188
    [61]A.K.Padhi, K.S.Nanjundaswamy, C.Masquelier, et al. Effect of structure on the Fe3+/Fe2+ redox couple in iron phosphates. Journal of the Electrochemical Society,1997,144,1609
    [62]D.Morgan, A.Van, G. Ceder. Li conductivity in LixMPO4(M=Mn, Fe, Co, Ni) olivine materials. Electrochemical and Solid-State Letters,2004,7, A30
    [63]C.A.J.Fisher, V.M.Hart Prieto, M.S.Islam. Lithium Battery Materials LiMPO4 (M= Mn, Fe, Co, and Ni):Insights into Defect Association, Transport Mechanisms, and Doping Behavior. Chemistry of Materials,2008,20,5907
    [64]S.Nishimura, G.Kobayashi, K.Ohoyama, et al. Experimental visualization of lithium diffusion in LixFePO4. Nature Materials,2008,7,707
    [65]A.Yamada, S.C.Chung. Crystal Chemistry of the Olivine-Type Li(MnyFei_y)PO4 and (MnyFe1-y)PO4 as Possible 4 V Cathode Materials for Lithium Batteries. Journal of the Electrochemical Society,2001,148, A960
    [66]J.Wolfenstine, J.Allen. LiNiPO4-LiCoPO4 solid solutions as cathodes. Journal of Power Sources,2004,136,150
    [67]J.Wolfenstine, J.Allen. Ni3+/Ni2+redox potential in LiNiPO4. Journal of Power Sources,2005,142,389
    [68]N.Ravet, Y.Chouinard, J.F.Magnan, et al. Electroactivity of natural and synthetic triphylite. Journal of Power Sources,2001,97,503-507
    [69]H.Huang, S.C.Yin, L.F.Nazar. Approaching theoretical capacity of LiFePO4 at room temperature at high rates. Electrochemical and Solid-State Letters,2001,4, A170
    [70]B.Kang, G.Ceder. Battery materials for ultrafast charging and discharging. Nature,2009,458,190
    [71]K.Zaghib, M.Dontigny, A.Guerfi, et al. Safe and fast-charging Li-ion battery with long shelf life for power applications. J. Power Sources,2011,196,3949
    [72]R.K.B.Gover, P.Burns, A.Bryan, et al. LiVPO4F:A new active material for safe lithium-ion batteries. Solid State Ionics,2006,177,2635
    [73]T.N.Ramesh, K.T.Lee, B.L.Ellis, et al. Tavorite Lithium Iron Fluorophosphate Cathode Materials:Phase Transition and Electrochemistry of LiFePO4F-Li2FePO4F. Electrochemical and Solid-State Letters,2010,13, A43
    [74]P.Barpanda, M.Ati, B.C.Melot, et al. A 3.90 V iron-based fluorosulphate material for lithium-ion batteries crystallizing in the triplite structure. Nat. Mater.,2011,10,772
    [75]J.M.Tarascon, N.Recham, M.Armand, et al. Hunting for Better Li-Based Electrode Materials via Low Temperature Inorganic Synthesis. Chem. Mater., 2010,22,724
    [76]B.C.Melot, G.Rousse, J.N.Chotard, et al. Magnetic Structure and Properties of the Li-Ion Battery Materials FeSO4F and LiFeSO4F. Chem. Mater.,2011,23, 2922
    [77]C.V.Subban, M.Ati, G.Rousse, A.M.Abakumov et al. Preparation, Structure, and Electrochemistry of Layered Polyanionic Hydroxysulfates:LiMSO4OH (M=Fe, Co, Mn) Electrodes for Li-Ion Batteries. J. Am. Chem. Soc.,2013,135,3653
    [78]B.C.Melot, J.M.Tarascon. Design and Preparation of Materials for Advanced Electrochemical Storage. Ace. Chem. Res.,2013,46,1226
    [79]N.Recham, J.N.Chotard, J.C.Jumas, et al. Ionothermal Synthesis of Li-Based Fluorophosphates Electrodes. Chem. Mater.,2009,22,1142
    [80]R.Tripathi, T.N.Ramesh, B.L.Ellis, et al. Scalable synthesis of tavorite LiFeSO4F and NaFeSO4F cathode materials. Angew. Chem.,2010,122,8920
    [81]R.Tripathi, G.R.Gardiner, M.S.Islam, et al. Alkali-ion conduction paths in LiFeSO4F and NaFeSO4F tavorite-type cathode materials. Chem. Mater.,2011, 23,2278
    [82]B.L.Ellis, T.N.Ramesh, L.J.Davis, et al. Structure and Electrochemistry of Two-Electron Redox Couples in Lithium Metal Fluorophosphates Based on the Tavorite Structure. Chem. Mater.,2011,23,5138
    [83]B.L.Ellis, T.N.Ramesh, W.N.Rowan-Weetaluktuk, et al. Solvothermal synthesis of electroactive lithium iron tavorites and structure of Li2FePO4F. J. Mater. Chem.,2012,22,4759
    [84]B.L.Ellis and L.F.Nazar. Anion-Induced Solid Solution Electrochemical Behavior in Iron Tavorite Phosphates. Chem. Mater.,2012,24,966
    [85]N.Marx, L.Croguennec, D.Carlier, et al. The structure of tavorite LiFePO4(OH) from diffraction and GGA+U studies and its preliminary electrochemical characterization. Dalton Trans.,2010,39,5108
    [86]N.Marx, L.Croguennec, D.Carlier, et al. Structural and Electrochemical Study of a New Crystalline Hydrated Iron (Ⅲ) Phosphate FePO4·H2O Obtained from LiFePO4(OH) by Ion Exchange. Chem. Mater.,2010,22,1854
    [87]J.M.A.Mba, L.Croguennec, N.I.Basir, et al. Lithium Insertion or Extraction from/into Tavorite-Type LiVPO4F:An In Situ X-ray Diffraction Study. J. Electrochem. Soc.,2012,159,1171
    [88]N.Marx, L.Bourgeois, D.Carlier, et al. Iron (Ⅲ) Phosphates Obtained by Thermal Treatment of the Tavorite-Type FePO4-H2O Material:Structures and Electrochemical Properties in Lithium Batteries. Inorg. Chem.,2012,51,3146
    [89]M.Jean, A.Tranchant, R.Messina. Reactivity of lithium intercalated into Petroleum coke in carbonate electrolytes. J. Eleetroehemieal. Soc.,1996,143, 39
    [90]H.Tanaka, M.Kurihara, J.Y.Xu, et al. Influence of Ar-H2-SF6 thermal plasma treatment of MCMB powders on the anode properties of a lithium ion rechargeable battery. Thin Solid Films,2006,506-507,311-315
    [91]K.Tatsumi, K.Zaghib, Y.Sawada. Anode Performance of vapor grown carbon fibers in secondary lithium-ion batteries. J. Eleetroehem. Soc.,1995,142,1090
    [92]Y.S.Wu, Y.H.Wang, Y.H.Lee. Performance enhancement of spherical natural graphite by phenol resin in lithium ion batteries. J. Alloy. Compd.,2006,426, 218
    [93]J.S.Kim, W.Y.Yoon, Y.K.Soo. Charge-discharge properties of surface-modified carbon by resin coating in Li-ion battery. J. Power Sources,2002,104,175
    [94]W.Mao, J.Wang, Z.Xu, et al. Effects of the oxidation treatment with K.2FeO4 on the physical properties and electrochemical performance of a natural graphite as electrode material for lithium ion batteries. Electrochem. Commun.,2006,8, 1326
    [95]Q.Wang, H.Li, L.Chen, et al. Novel spherical microporous carbon as anode material for Li-ion batteries. Solid State Ionics,2002,152-153,43
    [96]J.Hu, L.Hong, X.Huang. Influence of micropore structure on Li-storage capacity in hard carbon spherules. Solid State Ionics,2005,176,1151
    [97]G.T.Fey, C.L.Chen. High-capacity carbons for lithium-ion batteries prepared from rice husk. J. Power Sources,2001,97-98,47
    [98]M.Jean, C.Desnoyer, A.Tranchant, et al. Electrochemical and structural studies of petroleum coke in carbonate-based electrolytes. Journal of Electrochemical Society,1995,142,2122
    [99]K.Tatsumi, T.Akai, T.Imamura, et al. Li-nuclear Magnetic resonance observation of lithium insertion into mesocarbon microbeads. Journal of Electrochemical Society,1996,143,1923
    [100]J.H.Ryu, J.W.Kim, Y.E.Sung, et al. Failure modes of silicon powder negative electrode in lithium secondary batteries. Electrochem. Solid-State Lett.,2004,7, A306
    [101]H.Li, X.Huang, L.Chen, et al. The crystal structural evolution of nano-Si anode caused by lithium insertion and extraction at room temperature. Solid State Ionics,2000,135,181
    [102]L.F.Cui, R.Ruffo, C.K.Chan, et al. Crystalline-amorphous core-shell silicon nanowires for high capacity and high current battery electrodes, Nano Letters, 2009,9,491
    [103]L.Ji, X.Zhang. Fabrication of porous carbon/Si composite nanofibers as high-capacity battery electrodes. Electrochem. Commun.,2009,11,1146
    [104]L.B.Chen, J.Y.Xie, H.C.Yu, et al. Si-Al thin film anode material with superior cycle performance and rate capability for lithium ion batteries, Electrochim. Acta,2008,53,8149
    [105]L.B.Chen, J.Y.Xie, H.C.Yu, et al. Amorphous Si thin film anode with high capacity and long cycling life for lithium ion batteries. J. Appl. Electrochem., 2009,39,1157
    [106]L.B.Chen, K.Wang, X.H.Xie, et al. Effect of vinylene carbonate (VC) as electrolyte additive on electrochemical performance of Si film anode for lithium ion batteries. J. Power Scources,2007,174,538
    [107]L.B.Chen, K.Wang, X.H.Xie, et al. Enhancing electrochemical performance of silicon film Anode by vinylene carbonate electrolyte additive. Electrochem. Solid-State Lett.,2006,9, A512
    [108]S.H.Ng, J.Z.Wang, D.Wexler, et al. Highly reversible lithium storage in spheroidal carbon-coated silicon nanocomposites as anodes for lithium ion batteries. Angew. Chem. Int. Ed.,2006,45,6896
    [109]W.Wang, P.N.Kumta. Nanostructured hybrid silicon/carbon nanotube heterostructures:reversible high-capacity lithium-ion anodes. ACS Nano,2010, 4,2233
    [110]C.K.Chan, H.L.Peng, G.Liu, et al. High-performance lithium battery anodes using silicon nanowires. Nature Nanotechnology,2008,3,31
    [111]L.F.Cui, Y.Yang, C.M.Hsu, et al. Carbon-silicon core-shell nanowires as high capacity electrode for lithium ion batteries. Nano Lett.,2009,9,3370
    [112]H.F.Xiang, K.Zhang, GJi, et al. Graphene/nanosized silicon composites for lithium battery anodes with improved cycling stability. CARBON,2011,49, 1787
    [113]S.L.Chou, J.Z.Wang, M.Choucair, et al. Enhanced reversible lithium storage in a nanosize silicon/graphene composite. Electrochemistry Communications,2010, 12,303
    [114]X.Zhou, Y.X.Yin, L.J.Wan, et al. Self-Assembled Nanocomposite of Silicon Nanoparticles Encapsulated in Graphene through Electrostatic Attraction for Lithium-Ion Batteries. Adv. Energy Mater.,2012,2,1086
    [115]J.Y.Luo, X.Zhao, J.S.Wu, et al. Crumpled Graphene-Encapsulated Si Nanoparticles for Lithium Ion Battery Anodes. J. Phys. Chem. Lett.,2012,3, 1824
    [116]X.Zhou, Y.X.Yin, A.M.Cao, et al. Efficient 3D Conducting Networks Built by Graphene Sheets and Carbon Nanoparticles for High-Performance Silicon Anode. Appl. Mater. Interfaces,2012,4,2824
    [117]L.W.Ji, H.H.Zheng, A.Ismach, et al. Graphene/Si multilayer structure anodes for advanced half and full lithium-ion cells. Nano Energy,2012,1,164
    [118]J.Z.Wang, C.Zhong, S.L.Chou, et al. Flexible free-standing graphene-silicon composite film for lithium-ion batteries. Electrochemistry Communications, 2010,12,1467
    [119]B.Wang, X.L.Li, X.F.Zhang, et al. Adaptable Silicon-Carbon Nanocables Sandwiched between Reduced Graphene Oxide Sheets as Lithium Ion Battery Anodes. ACS Nano,2013,7,1437
    [120]Z.G.Yang, D.Choi, S.Kerisit, et al. Nanostructures and lithium electrochemical reactivity of lithium titanites and titanium oxides:A review. J. Power Sources, 2009,192,588
    [121]T.Froschl, U.Hormann, P.Kubiak, et al. High surface area crystalline titanium dioxide:potential and limits in electrochemical energy storage and catalysis. Chem. Soc. Rev.2012,41,5313
    [122]J.Z.Chen, L.Yang, Y.F.Tang. Electrochemical lithium storage of TiO2 hollow microspheres assembled by nanotubes. J. Power Sources,2010,195,6893
    [123]C.Lai, G.R.Li, Y.Y.Dou, et al. Mesoporous polyaniline or polypyrrole/anatase TiO2 nanocomposite as anode materials for lithium-ion batteries. Electrochim. Acta,2010,55,4567
    [124]M.Mancini, P.Kubiak, J.Geserick, et al. Mesoporous anatase TiO2 composite electrodes:Electrochemical characterization and high rate performances. J. Power Sources,2009,189,585
    [125]K.Saravanan, K.Ananthanarayanan, P.Balaya. Mesoporous TiO2 with high packing density for superior lithium storage. Energy Environ. Sci.,2010,3,939
    [126]M.Inaba, Y.Oba, F.Niina, et al. TiO2(B) as a promising high potential negative electrode for large-size lithium-ion batteries. J. Power Sources,2009,189,580
    [127]T.Beuvier, M.Richard-Plouet, M.M.Granvalet, et al. TiO2(B) nanoribbons as negative electrode material for lithium ion batteries with high rate performance. Inorg. Chem.,2010,49,8457
    [128]Z.Wei, Z.Liu, R.R.Jiang, et al. TiO2 nanotube array film prepared by anodization as anode material for lithium ion batteries. Solid State Electrochem., 2010,14,1045
    [129]H.S.Kim, S.H.Kang, Y.H.Chung, et al. Conformal Sn coated TiO2 nanotube arrays and its electrochemical performance for high rate lithium-ion batteries. Electrochem. Solid-State Lett.,2010,13, A15
    [130]M.V.Reddy, R.Jose, T.H.Teng, et al. Preparation and electrochemical studies of electrospun TiO2 nanofibers and molten salt method nanoparticles. Electrochim. Acta,2010,55,3109
    [131]H.Q.Li, S.K.Martha, R.R.Unocic, et al. High cyclability of ionic liquid-produced TiO2 nanotube arrays as an anode material for lithium-ion batteries. J. Power Sources,2012,218,88
    [132]S.H.Nam, H.S.Shim, Y.S.Kim, et al. Ag or Au nanoparticle-embedded one-dimensional composite TiO2 nanofibers prepared via electrospinning for use in lithium-ion batteries. ACS Appl. Mater. Interfaces,2010,2,2046
    [133]Y.Ren, L.J.Hardwick, P.G.Bruce. Lithium Intercalation into Mesoporous Anatase with an Ordered 3D Pore Structure. Angew. Chem., Int. Ed.,2010,49, 2570
    [134]J.Y.Shin, D.Samuelis, J.Maier. Sustained Lithium-Storage Performance of Hierarchical, Nanoporous Anatase TiO2 at High Rates:Emphasis on Interfacial Storage Phenomena. Adv. Funct. Mater.,2011,21,3464
    [135]H.E.Wang, H.Cheng, C.P.Liu, et al. Facile synthesis and electrochemical characterization of porous and dense TiO2 nanospheres for lithium-ion battery applications. J. Power Sources,2011,196,6394
    [136]Y.M.Jiang, K.X.Wang, X.X.Guo, et al. Mesoporous titania rods as an anode material for high performance lithium-ion batteries. J. Power Sources,2012, 214,298
    [137]W.H.Ryu, D.H.Nam, Y.S.Ko, et al. Electrochemical performance of a smooth and highly ordered TiO2 nanotube electrode for Li-ion batteries. Electrochim. Acta,2012,61,19
    [138]S.K.Panda, Y.Yoon, H.S.Jung, et al. Nanoscale size effect of titania (anatase) nanotubes with uniform wall thickness as high performance anode for lithium-ion secondary battery. J. Power Sources,2012,204,162
    [139]Z.X.Yang, G.D.Du, Q.Meng, et al. Synthesis of uniform TiO2@carbon composite nanofibers as anode for lithium ion batteries with enhanced electrochemical performance. J. Mater. Chem.,2012,22,5848
    [140]P.Y.Chang, C.H.Huang, R.A.Doong. Ordered mesoporous carbon-TiO2 materials for improved electrochemical performance of lithium ion battery. Carbon,2012,50,4259
    [141]J.X.Qiu, P.Zhang, M.Ling, et al. Photocatalytic synthesis of TiO2 and reduced graphene oxide nanocomposite for lithium ion battery. ACS Appl. Mater. Interfaces,2012,4,3636
    [142]H.Q.Cao, B.J.Li, J.X.Zhang, et al. Synthesis and superior anode performance of TiO2@reduced graphene oxide nanocomposites for lithium ion batteries. J. Mater. Chem.,2012,22,9759
    [143]H.C.Tao, L.Z.Fan, X.Q.Yan, et al. In situ synthesis of TiO2-graphene nanosheets composites as anode materials for high-power lithium ion batteries. Electrochim. Acta,2012,69,328
    [144]D.Q.Zhang, M.C.Wen, P.Zhang, et al. Microwave-induced synthesis of porous single-crystal-like TiO2 with excellent lithium storage properties. Langmuir, 2012,28,4543
    [145]I.A.Courtney, J.R.Dahn. Electrochemical and in situ X-ray diffraction studies of the reaction of lithium with tin oxide composites. J. Electrochem. Soc.,1997, 144,2045
    [146]I.A.Courtney, W.R.McKinnon, J.R.Dahn. On the aggregation of tin in SnO composite glasses caused by the reversible reaction with lithium. J. Electrochem. Soc.,1999,146,59
    [147]H.Uchiyama, E.Hosono, I.Honma, et al. A nanoscale meshed electrode of single-crystalline SnO for lithium-ion rechargeable batteries. Electrochem. Commun.,2008,10,52
    [148]I.A.Courtney, J.R.Dahn. Key Factors Controlling the Reversibility of the Reaction of Lithium with SnO2 and Sn2 BPO6 Glass. J. Electrochem. Soc.,1997, 144,2943
    [149]J.J.Zhu, Z.H.Lu, S.T.Aruna, et al. Sonochemical synthesis of SnO2 nanoparticles and their preliminary study as Li insertion electrodes Chem. Mater.,2000,12,2557
    [150]G.D.Du, C.Zhong, P.Zhang, Z.P.Guo, et al. Tin dioxide/carbon nanotube composites with high uniform SnO2 loading as anode materials for lithium ion batteries. Electrochim. Acta,2010,55,2582
    [151]S.B.Yang, H.H.Song, H.X.Yi, et al. Carbon nanotube capsules encapsulating SnO2 nanoparticles as an anode material for lithium ion batteries. Electrochim. Acta,2009,55,521
    [152]Z.H.Wen, Q.Wang, Q.Zhang, et al. In Situ Growth of Mesoporous SnO2 on Multiwalled Carbon Nanotubes:A Novel Composite with Porous-Tube Structure as Anode for Lithium Batteries. Adv. Funct. Mater.,2007,17,2772
    [153]C.Li, W.Wei, S.M.Fang, et al. A novel CuO-nanotube/SnO2 composite as the anode material for lithium ion batteries. J. Power Sources,2010,195,2939
    [154]W.Xu, N.L.Canfield, D.Y.Wang, et al. A three-dimensional macroporous Cu/SnO2 composite anode sheet prepared via a novel method Original Research Article. J. Power Sources,2010,195,7403
    [155]S.L.Chou, J.Z.Wang, H.K.Liu, et al. A facile route to carbon-coated SnO2 nanoparticles combined with a new binder for enhanced cyclability of Li-ion rechargeable batteries. Electrochem. Commun.,2009,11,242
    [156]W.J.Lee, M.H.Park, Y.Wang, et al. Nanoscale Si coating on the pore walls of SnO2 nanotube anode for Li rechargeable batteries. Chem. Commun.,2010,46, 622
    [157]B.Zhao, G.H.Zhang, J.S.Song, et al. Bivalent tin ion assisted reduction for preparing graphene/SnO2 composite with good cyclic performance and lithium storage capacity. Electrochim. Acta,2011,56,7340
    [158]P.Poizot, S.Laruelle, S.Grugeon, et al. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature,2000,407,496
    [159]P.Poizot, S.Laruelle, S.Grugeon, et al. Searching for new anode materials for the Li-ion technology:time to deviate from the usual path. J. Power Sources,2001, 97-98,235
    [160]S.Grugeon, S.Laruelle, L.Dupont, et al. An update on the reactivity of nanoparticles Co-based compounds towards Li. Solid State Sci.,2003,5,895
    [161]F.Badway, I.Plitz, S.Grugeon, et al. Metal oxides as negative electrode materials in Li-ion cells. Electrochem. Solid-State Lett.,2002,5, A115
    [162]G.X.Wang, Y.Chen, K.Konstantinov, et al. Investigation of cobalt oxides as anode materials for Li-ion batteries. J. Power Sources,2002,109,142
    [163]G.H.Chen, B.J.Hwang, J.S.Do, et al. An understanding of anomalous capacity of nano-sized CoO anode materials for advanced Li-ion battery. Electrochem. Commun.,2010,12,496
    [164]W.L.Yao, J.Yang, J.L.Wang, et al. Multilayered cobalt oxide platelets for negative electrode material of a lithium-ion battery. J. Electrochem. Soc.,2008, 155, A903
    [165]J.Jiang, J.P.Liu, R.M.Ding, et al. Direct Synthesis of CoO Porous Nanowire Arrays on Ti Substrate and Their Application as Lithium-Ion Battery Electrodes. J. Phys. Chem. C,2010,114,929
    [166]H.J.Zhang, H.H.Tao, Y.Jiang, et al. Ordered CoO/CMK-3 nanocomposites as the anode materials for lithium-ion batteries. J. Power Sources,2010,195,2950
    [167]H.Qiao, L.F.Xiao, Z.Zheng, et al. One-pot synthesis of CoO/C hybrid microspheres as anode materials for lithium-ion batteries. J. Power Sources, 2008,185,486
    [168]B.Sun, H.Liu, P.Munroe, H.Ahn, et al. Nanocomposites of CoO and a mesoporous carbon (CMK-3) as a high performance cathode catalyst for lithium-oxygen batteries. Nano Res.,2012,5,460
    [169]S.L.Xiong, J.S.Chen, X.W.Lou, H. C. Zeng. Mesoporous Co3O4 and CoO@C Topotactically Transformed from Chrysanthemum-like Co(CO3)0.5(OH)·0.11H20 and Their Lithium-Storage Properties. Adv. Funct. Mater.,2012,22,861
    [170]C.X.Peng, B.D.Chen, Y.Qin, et al. Facile ultrasonic synthesis of CoO quantum dot/graphene nanosheet composites with high lithium storage capacity. ACS Nano,2012,6,1074
    [171]L.J.Zhang, P.Hu, X.Y.Zhao, et al. Controllable synthesis of core-shell Co@CoO nanocomposites with a superior performance as an anode material for lithium-ion batteries. J. Mater. Chem.,2011,21,18279
    [172]F.D.Wu, Y.Wang. Self-assembled echinus-like nanostructures of mesoporous CoO nanorod@ CNT for lithium-ion batteries. J. Mater. Chem.,2011,21,6636
    [173]K.M.Nam, Y.C.Choi, S.C.Jung, et al. [100] Directed Cu-doped h-CoO nanorods: elucidation of the growth mechanism and application to lithium-ion batteries. Nanoscale,2012,4,473
    [174]T.Kokubu, Y.Oaki, E.Hosono, et al. Biomimetic Solid-Solution Precursors of Metal Carbonate for Nanostructured Metal Oxides:MnO/Co and MnO-CoO Nanostructures and Their Electrochemical Properties. Adv. Funct. Mater.,2011, 21,3673
    [175]Y.Qi, N.Du, H.Zhang, et al. Nanostructured hybrid cobalt oxide/copper electrodes of lithium-ion batteries with reversible high-rate capabilities. J. Alloys Compd.,2012,521,83
    [176]M.V.Reddy, G.Prithvi, K.P.Loh, et al. Li Storage and Impedance Spectroscopy Studies on Co3O4, CoO, and CoN for Li-Ion Batteries. J. Phys. Chem. C,2014, 6,680
    [177]X.H.Huang, J.P.Tu, B.Zhang, et al. Electrochemical properties of NiO-Ni nanocomposite as anode material for lithium ion batteries. J. Power Sources, 2006,161,541
    [178]E.Hosono, S.Fujihara, I.Honma, et al. The high power and high energy densities Li ion storage device by nanocrystalline and mesoporous Ni/NiO covered structure. Electrochem. Commun.,2006,8,284
    [179]B.Varghese, M.V.Reddy, Z.Y.Wu, et al. Fabrication of NiO nanowall electrodes for high performance lithium ion battery. Chem. Mater.,2008,20,3360
    [180]X.H.Huang, J.P.Tu, C.Q.Zhang, et al. Spherical NiO-C composite for anode material of lithium ion batteries. Electrochim. Acta,2007,52,4177
    [181]D.W.Su, M.Ford, G.X.Wang. Mesoporous NiO crystals with dominlntly exposed {110} reactive facets for ultrafast lithium storage. Sci. Rep.,2012,2,924
    [182]C.Largeot, C.Portet, J.Chmiola, et al. Relation between the ion size and pore size for an electric double-layer capacitor. J. Am. Chem. Soc.,2008,130,2730
    [183]S.GKandalkar, D.S.Dhawale, C.K.Kim, et al. Chemical synthesis of cobalt oxide thin film electrode for supercapacitor application. Synth. Met.2010,160, 1299
    [184]R.Kotz and M.Carlen. Principles and applications of electrochemical capacitors. Electrochim. Acta,2000,45,2483
    [185]B.E.Conway. Electrochemical Supercapacitors. Kluwer Academic/Plenum Press, New York,1999
    [186]H.Lee, M.S.Cho, I.H.Kim, et al. RuOx/polypyrrole nanocomposite electrode for electrochemical capacitors. Synth. Met.,2010,160,1055
    [187]D.Choi and P.N.Kumta. Nanocrystalline TiN derived by a two-step halide approach for electrochemical capacitors. J. Electrochem. Soc.,2006,153, A2298
    [188]E.Frackowiak, S.Delpeux, K.Jurewicz, et al. Enhanced capacitance of carbon nanotubes through chemical activation. Chem. Phys. Lett.,2002,361,35
    [189]V.Ruiz, C.Blanco, E.R.Piriero, et al. Effects of thermal treatment of activated carbon on the electrochemical behaviour in supercapacitors. Electrochim. Acta, 2007,52,4969
    [190]Y.R.Ahn, M.Y.Song, S.M.Jo, et al. Electrochemical capacitors based on electrodeposited ruthenium oxide on nanofibre substrates. Nanotechnology, 2006,17,2865
    [191]C.C.Hu, Y.H.Huang and K. H. Chang. Annealing effects on the physicochemical characteristics of hydrous ruthenium and ruthenium-iridium oxides for electrochemical supercapacitors. J. Power Sources,2002,108,117
    [192]J.Yan, T.Wei, J.Cheng, et al. Fast and reversible surface redox reaction of grapheme-MnO2 composites as supercapacitor electrodes. Mater. Res. Bull., 2010,45,210
    [193]S.G.Kandalkar, J.L.Gunjakar and C.D.Lokhande. Preparation of cobalt oxide thin films and its use in supercapacitor application. Appl. Surf. Sci.,2008,254, 5540
    [194]N.Miura, S.Oonishi and K.R.Prasad. Indium Tin Oxide/Carbon Composite Electrode Material for Electrochemical Supercapacitors. Electrochem. Solid-State Lett.,2004,7,247
    [195]C.C.Hu, C.M.Huang and K.H.Chang. Anodic deposition of porous vanadium oxide network with high power characteristics for pseudocapacitors. J. Power Sources,2008,185,1594
    [196]M.Nakayama, A.Tanaka and Y.Sato. Electrodeposition of manganese and molybdenum mixed oxide thin films and their charge storage properties. Langmuir,2005,21,5907
    [197]C.Peng, J.Jin and G.Chen. A comparative study on electrochemical co-deposition and capacitance of composite films of conducting polymers and carbon nanotubes. Electrochim. Acta,2007,53,525
    [198]Y.Zhang, H.Feng, X.Wu, et al. Progress of electrochemical capacitor electrode materials:A review. Int. J. Hydrogen Energy,2009,34,4889
    [199]M.Endo, T.Maeda, T.Takeda, et al. Capacitance and pore-size distribution in aqueous and nonaqueous electrolytes using various activated carbon electrodes. J. Electrochem. Soc.,2001,148, A910
    [200]B.Fang and L.Binder, J. Power Sources. A modified activated carbon aerogel for high-energy storage in electric double layer capacitors.2006,163,616
    [201]S.Shiraishi, H.Kurihara, K.Okabe, et al. Electric double layer capacitance of highly pure single-walled carbon nanotubes (HiPcoTM BuckytubesTM) in propylene carbonate electrolytes. Electrochem. Commun.,2002,4,593
    [202]C.Portet, Z.Yang, Y.Korenblit, et al. Electrical double-layer capacitance of zeolite-templated carbon in organic electrolyte. J. Electrochem. Soc.,2009,156, Al
    [203]B.Xu, F.Wu, R.Chen, et al. Highly mesoporous and high surface area carbon:A high capacitance electrode material for EDLCs with various electrolytes. Electrochem. Commun.,2008,10,795
    [204]E.Frackowiak. Carbon materials for supercapacitor application. Phys. Chem. Chem. Phys.,2007,9,1774
    [205]E.R.Pinero, K.Kierzek, J.Machnikowski, et al. Relationship between the nanoporous texture of activated carbons and their capacitance properties in different electrolytes. Carbon,2006,44,2498
    [206]C.O.Ania, V.Khomenko, E.R.Pinero, et al. The large electrochemical capacitance of microporous doped carbon obtained by using a zeolite template. Adv. Funct. Mater.,2007,17,1828
    [207]I.H.Kim and K.B.Kim. Electrochemical characterization of hydrous ruthenium oxide thin-film electrodes for electrochemical capacitor applications. J. Electrochem. Soc.,2006,153, A383
    [208]Q.X.Jia, S.G.Song, X.D.Wu, et al. Epitaxial growth of highly conductive RuO2 thin films on (100) Si. Appl. Phys. Lett.,1996,68,1069
    [209]J.P.Zheng, P.J.Cygan and T.R.Jow. Hydrous ruthenium oxide as an electrode material for electrochemical capacitors. J. Electrochem. Soc.,1995,142,2699
    [210]N.Wu, S.Kuo and M.Lee. Preparation and optimization of RuO2-impregnated SnO2 xerogel supercapacitor. J. Power Sources,2002,104,62
    [211]S.Trasatti. Physical electrochemistry of ceramic oxides Electrochim. Acta,1991, 36,225
    [212]J.P.Zheng and T.R.Jow. High energy and high power density electrochemical capacitors. J. Power Sources,1996,62,155
    [213]C.C.Hu and Y.H.Huang. Effects of preparation variables on the deposition rate and physicochemical properties of hydrous ruthenium oxide for electrochemical capacitors. Electrochim. Acta,2001,46,3431
    [214]Y.U.Jeong and A.Manthiram. Amorphous tungsten oxide/ruthenium oxide composites for electrochemical capacitors. J. Electrochem. Soc.,2001,148, A189
    [215]Y.Takasu, T.Nakamura, H.Ohkawauchi, et al. Dip-Coated Ru-V Oxide Electrodes for Electrochemical Capacitors. J. Electrochem. Soc.,1997,144, 2601
    [216]Y.Takasu and Y.Murakami. Design of oxide electrodes with large surface area. Electrochim. Acta,2000,45,4135
    [217]J.M.Miller, B.Dunn, T.D.Tran, et al. Deposition of ruthenium nanoparticles on carbon aerogels for high energy density supercapacitor electrodes. J. Electrochem. Soc.,1997,144, L309
    [218]L.Z.Fan, Y.S.Hu, J.Maier, et al. High Electroactivity of Polyaniline in Supercapacitors by Using a Hierarchically Porous Carbon Monolith as a Support. Adv. Funct. Mater.,2007,17,3083
    [219]S.Devaraj and N.Munichandraiah. High capacitance of electrodeposited MnO2 by the effect of a surface-active agent. Electrochem. Solid-State Lett.,2005,8, A373
    [220]H.Lee and J.Goodenough. Supercapacitor behavior with KC1 electrolyte. J. Solid State Chem.,1999,144,220
    [221]C.C.Hu and T.W.Tsou. Ideal capacitive behavior of hydrous manganese oxide prepared by anodic deposition. Electrochem. Commun.,2002,4,105
    [222]Z.Xun, C.Cai, W.Xing, et al. Electrocatalytic oxidation of dopamine at a cobalt hexacyanoferrate modified glassy carbon electrode prepared by a new method. J. Electroanal. Chem.,2003,545,19
    [223]V.Srinivasan and J.W.Weidner. Capacitance studies of cobalt oxide films formed via electrochemical precipitation. J. Power Sources,2002,108,15
    [224]F.F.Tao, C.L.Gao, Z.H.Wen, et al. Cobalt oxide hollow microspheres with micro-and nano-scale composite structure:Fabrication and electrochemical performance. J. Solid State Chem.,2009,182,1055
    [225]S.G.Kandalkar, J.L.Gunjakar and C.D.Lokhande. Preparation of cobalt oxide thin films and its use in supercapacitor application. Appl. Surf. Sci.,2008,254, 5540
    [226]Y.Shan and L.Gao. Formation and characterization of multi-walled carbon nanotubes/Co304 nanocomposites for supercapacitors. Mater. Chem. Phys. 2007,103,206
    [227]F.Zhang, C.Z.Yuan, J.J.Zhu, J.Wang, et al. Flexible Films Derived from Electrospun Carbon Nanofibers Incorporated with CO3O4 Hollow Nanoparticles as Self-Supported Electrodes for Electrochemical Capacitors. Advanced Functional Materials,2013,23,3909
    [228]H.W.Liu, Y.X.Yang, S.J.Shen, et al. Ag Doped Co3O4 Nanowire Arrays as an Electrode Material for Electrochemical Capacitors. Applied Mechanics and Materials,2012,157,268
    [229]R.B.Rakhi, W.Chen, M.N.Hedhili, et al. Enhanced Rate Performance of Mesoporous CO3O4 Nanosheet Supercapacitor Electrodes by Hydrous RuO2 Nanoparticle Decoration. ACS Appl. Mater. Interfaces,2014,6,4196
    [230]C.Z.Yuan, L.Yang, L.R.Hou, et al. Flexible Hybrid Paper Made of Monolayer CO3O4 Microsphere Arrays on rGO/CNTs and Their Application in Electrochemical Capacitors. Advanced Functional Materials,2012,22,2560
    [231]V.Gupta, T.Kusahara, H.Toyama, et al. Potentiostatically deposited nanostructured a-Co(OH)2:A high performance electrode material for redox-capacitors. Electrochem. Commun.,2007,9,2315
    [232]F.Fusalba, P.Gouerec, D.Villers, et al. Electrochemical characterization of polyaniline in nonaqueous electrolyte and its evaluation as electrode material for electrochemical supercapacitors. J. Electrochem. Soc.,2001,148, A1
    [233]W.J.Zhou, M.W.Xu, D.D.Zhao, et al. Electrodeposition and characterization of ordered mesoporous cobalt hydroxide films on different substrates for supercapacitors. Microporous Mesoporous Mater.,2009,117,55
    [234]Y.G.Wang and Y.Y.Xia. Electrochemical capacitance characterization of NiO with ordered mesoporous structure synthesized by template SBA-15. Electrochim. Acta,2006,51,3223
    [235]J.Cheng, G.P.Cao and Y.S.Yang. Characterization of sol-gel-derived NiOx xerogels as supercapacitors. J. Power Sources,2006,159,734
    [236]GX.Pan, X.H.Xia, F.Cao, et al. Chen. Fabrication of porous Co/NiO core/shell nanowire arrays for electrochemical capacitor application. Electrochemistry Communications,2013,34,146
    [237]D.H.Shin, J.S.Lee, J.Jun, et al. Fabrication of amorphous carbon-coated NiO nanofibers for electrochemical capacitor applications. J. Mater. Chem. A,2014, 2,3364
    [238]B.H.Qu, L.L.Hu, Y.J.Chen, et al. Rational design of Au-NiO hierarchical structures with enhanced rate performance for supercapacitors. J. Mater. Chem. A,2013,1,7023
    [239]C.Y.Cao, W.Guo, Z.M.Cui, et al. Microwave-assisted gas/liquid interfacial synthesis of flowerlike NiO hollow nanosphere precursors and their application as supercapacitor electrodes. J. Mater. Chem.,2011,21,3204
    [240]C.Masquelier, L.Croguennec. Polyanionic (Phosphates, Silicates, Sulfates) Frameworks as Electrode Materials for Rechargeable Li (or Na) Batteries. Chem. Rev.,2013,113,6552
    [241]Y.Wang, P.He and H.Zhou. Olivine LiFePO4:development and future. Energ. Environ. Sci.,2011,4,805
    [242]Z.Gong and Y.Yang. Recent advances in the research of polyanion-type cathode materials for Li-ion batteries. Energ. Environ. Sci.,2011,4,3223
    [243]B.L.Ellis, W.R.M.Makahnouk, Y.Makimura, et al. A multifunctional 3.5 V iron-based phosphate cathode for rechargeable batteries. Nat. Mater.,2007,6, 749
    [244]B.L.Ellis, K.T.Lee and L.F.Nazar. Positive Electrode Materials for Li-Ion and Li-Batteries. Chem. Mater.,2010,22,691
    [245]H.K.Song, K.T.Lee, M.G.Kim, et al. Recent progress in nanostructured cathode materials for lithium secondary batteries. Adv. Funct. Mater.,2010,20,3818
    [246]P.Barpanda, S.I.Nishimura and A.Yamada. High-Voltage Pyrophosphate Cathodes. Adv. Energ. Mater.,2012,2,841
    [247]T.Mueller, G.Hautier, A.Jain, et al. Evaluation of tavorite-structured cathode materials for lithium-ion batteries using high-throughput computing. Chem. Mater.,2011,23,3854
    [248]N.R.Khasanova, O.A.Drozhzhin, D.A.Storozhilova, et al. New form of Li2FePO4F as cathode material for Li-ion batteries. Chem. Mater.,2012,24, 4271
    [249]S.Yang, P.Y.Zavalij and M.S.Whittingham. Hydrothermal synthesis of lithium iron phosphate cathodes. Electrochem. Commun.2001,3,505
    [250]Y.G.Guo, J.S.Hu and L.J.Wan. Nanostructured materials for electrochemical energy conversion and storage devices. Adv. Mater.,2008,20,2878
    [251]A.S.Arico, P.Bruce, B.Scrosati, et al. Nanostructured materials for advanced energy conversion and storage devices. Nat. Mater.,2005,4,366
    [252]P.G.Bruce, B.Scrosati and J.Tarascon. Nanomaterials for rechargeable lithium batteries. Angew. Chem. Int. Ed.,2008,47,2930
    [253]A.Pan, H.B.Wu, L.Yu, et al. Template-Free Synthesis of VO2 Hollow Microspheres with Various Interiors and Their Conversion into V2O5 for Lithium-Ion Batteries Angew. Chem.,2013,125,2282
    [254]J.S.Chen, Y.L.Tan, C.M.Li, et al. Constructing hierarchical spheres from large ultrathin anatase TiO2 nanosheets with nearly 100% exposed (001) facets for fast reversible lithium storage. J. Am. Chem. Soc.,2010,132,6124
    [255]H.Li, Z.Wang, L.Chen, et al. Research on Advanced Materials for Li-ion Batteries. Adv. Mater.,2009,21,4593
    [256]S.Chen, W.Xing, J.Duan, et al. Nanostructured morphology control for efficient supercapacitor electrodes. J. Mater. Chem. A,2013,1,2941
    [257]C.Sun, S.Rajasekhara, J.B.Goodenough, et al. Monodisperse porous LiFePO4 microspheres for a high power Li-ion battery cathode. J. Am. Chem. Soc.,2011, 133,2132
    [258]L.Wang, X.He, W.Sun, J.Wang, et al. Crystal Orientation Tuning of LiFePO4 Nanoplates for High Rate Lithium Battery Cathode Materials. Nano Lett.,2012, 12,5632
    [259]C.A.Fisher and M.S.Islam. Lithium Battery Materials LiMPO4 (M= Mn, Fe, Co, and Ni):Insights into Defect Association, Transport Mechanisms, and Doping Behavior. J. Mater. Chem.,2008,18,1209
    [260]B.Ellis, W.H.Kan, W.R.M.Makahnouk, et al. Synthesis of nanocrystals and morphology control of hydrothermally prepared LiFePO4. J. Mater Chem.,2007, 17,3248
    [261]Z.Lu, H.Chen, R.Robert, et al. Citric acid-and ammonium-mediated morphological transformations of olivine LiFePO4 particles. Chem. Mater., 2011,23,2848
    [262]J.Zhu, J.Fiore, D.Li, et al. Solvothermal Synthesis, Development, and Performance of LiFePO4 Nanostructures. Cryst. Growth Des.,2013,13,4659
    [263]C.Nan, J.Lu, L.Li, et al. Size and shape control of LiFePO4 nanocrystals for better lithium ion battery cathode materials. Nano Res.,2013,6,469
    [264]X.Duan, J.Lian, J.Ma, et al. Shape-Controlled Synthesis of Metal Carbonate Nanostructure via Ionic Liquid-Assisted Hydrothermal Route:The Case of Manganese Carbonate. Cryst. Growth Des.,2010,10,4449
    [265]X.Duan, T.Kim, D.Li, et al. Understanding the Effect Models of Ionic Liquids in the Synthesis of NH4-DW and γ-AlOOH Nanostructures and Their Conversion into Porous y-Al2O3. Chem. Eur. J.,2013,19,5924
    [266]X.Duan, D.Li, H.Zhang, et al. Crystal-Facet Engineering of Ferric Giniite by Using Ionic-Liquid Precursors and Their Enhanced Photocatalytic Performances under Visible-Light Irradiation. Chem. Eur. J.,2013,19,7231
    [267]X.Duan, J.Ma, J.Lian, et al. The art of using ionic liquids in the synthesis of inorganic nanomaterials. CrystEngComm,2014,16,2550
    [268]H.Ma, F.Cheng, J.Chen, et al. Nest-like Silicon Nanospheres for High-Capacity Lithium Storage. Adv. Mater.,2007,19,4067
    [269]Z.Yang, D.Han, D.Ma, et al. Fabrication of monodisperse CeO2 hollow spheres assembled by nano-octahedra. Cryst. Growth Des.,2009,10,291
    [270]G.Jia, H.You, K.Liu, et al. Highly uniform Gd2O3 hollow microspheres: template-directed synthesis and luminescence properties. Langmuir,2009,26, 5122
    [271]C.Z.Yuan, L.R.Hou, Y.L.Feng, et al. Sacrificial template synthesis of short mesoporous NiO nanotubes and their application in electrochemical capacitors. Electrochimica Acta,2013,88,507
    [272]J.M.Ma, A.Manthiram. Precursor-directed formation of hollow CO3O4 nanospheres exhibiting superior lithium storage properties. RSC Adv.,2012,2, 3187
    [273]J.M.Ma, J.Q.Yang, L.F.Jiao, et al. NiO Nanomaterials:controlled fabrication, formation mechanism and the application in lithium-ion battery. CrystEngComm,2012,14,453
    [274]D.Xie, Q.M.Su, W.W.Yuan, et al. Synthesis of porous NiO-wrapped graphene nanosheets and their improved lithium storage properties. J. Phys. Chem. C, 2013,117,24121
    [275]D.W.Su, M.Ford, G.X.Wang. Mesoporous NiO crystals with dominantly exposed{110} reactive facets for ultrafast lithium storage. Sci. Rep.,2012,2, 924
    [276]X.L.Sun, C.L.Yan, Y.Chen, et al. Three-dimensionally "curved" NiO nanomembranes as ultrahigh rate capability anodes for Li-ion batteries with long cycle lifetimes. Adv. Energy Mater., DOI:10.1002/aenm.201300912(2013)
    [277]G.M.Zhou, D.W.Wang, L.C.Yin, et al. Oxygen bridges between NiO nanosheets and graphene for improvement of lithium storage. ACS Nano,2012,6,3214
    [278]F. G. Morin. Electrical Properties of NiO. Phys. Rev. B,1954,93,1199
    [279]P.Lukenheimer, A.Loidl, C.R.Ottermann, et al. Correlated barrier hopping in NiO films. Phys. Rev. B,1991,44,5927
    [280]P.L.Taberna, S.Mitra, P.Poizot, et al. High rate capabilities Fe3O4-based Cu nano-architectured electrodes for lithium-ion battery applications. Nat. Materials,2006,5,567
    [281]J.Fan, T.Wang, C.Yu, et al. Ordered, nanostructured tin-based oxides/carbon composite as the negative-electrode material for lithium-ion batteries. Adv. Mater.,2004,16,1432
    [282]F.Y.Cheng, Z.L.Tao, J.L.Chen. Template-directed materials for rechargeable lithium-ion batteries. J. Chem. Mater.,2008,20,667
    [283]Y.Z.Su, S.Li, D.Q.Wu, et al. Two-dimensional carbon-coated graphene/metal oxide hybrids for enhanced lithium storage. ACS Nano,2012,6,8349
    [284]L.L.Wang, J.W.Liang, Y.C.Zhu, et al. Synthesis of Fe3O4@C core-shell nanorings and their enhanced electrochemical performance for lithium-ion batteries. Nanoscale,2013,5,3627
    [285]T.Y.Wang, Z.Peng, Y.H.Wang, et al. MnO nanoparticle@mesoporous carbon composites grown on conducting substrates featuring high-performance lithium-ion battery, supercapacitor and sensor. Sci. Rep.,2013,3,2693
    [286]L.W.Su, Z.Zhou, M.M.Ren. Core double-shell Si@SiO2@C nanocomposites as anode materials for Li-ion batteries. Chem. Commun.,2010,46,2590
    [287]M.M.Rahman, S.L.Chou, C.Zhong, et al. Spray pyrolyzed NiO-C nanocomposite as an anode material for the lithium-ion battery with enhanced capacity retention. Solid State Ionics,2010,180,1646
    [288]X.Sun, Y.D.Li. Colloidal carbon spheres and their core/shell structures with noble-metal nanoparticles. Angew. Chem. Int. Ed.,2004,43,597
    [289]N.Q.Wu, L.Fu, M.Su, et al. Interaction of fatty acid monolayers with cobalt nanoparticles. Nano Letters,2004,4,383
    [290]G.Kataby, M.Cojocaru, R.Prozorov, et al. Blocking temperatures of amorphous iron nanoparticles coated by various surfactants. Applied Surface Science,2002, 201,191
    [291]L.Zhang, R.He, H.C.Gu. Oleic acid coating on the monodisperse magnetite nanoparticles. Applied Surface Science,2006,253,2611
    [292]B.Varghese, M.V.Reddy, Z.Yanwu. Fabrication of NiO nanowall electrodes for high performance lithium ion battery. Chem. Mater.,2008,20,3360
    [293]X.F.Li, A.Dhanabalan, K.Bechtold, et al. Binder-free porous core-shell structured Ni/NiO configuration for application of high performance lithium ion batteries. Electrochem. Commun.,2010,12,1222
    [294]C.Wang, D.L.Wang, Q.M.Wang, et al. Fabrication and lithium storage performance of three-dimensional porous NiO as anode for lithium-ion battery. J. Power Sources,2010,195,7432
    [295]M.V.Reddy, T.Yu, C.H.Sow, et al. α-Fe2O3 nanoflakes as an anode material for Li-ion batteries. Adv. Funct. Mater.,2007,17,2792
    [296]P.Poizot, S.Laruelle, S.Grugeon, et al. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature,2000,407,496
    [297]J.Fang, Y.F.Yuan, L.K.Wang, et al. Hierarchical ZnO@NiO core-shell nanorod array as high performance anode material for lithium-ion batteries. Mater. Lett., 2013,111,1
    [298]J.L.Zhong, O.B.Chae, W.Shi, et al. Ultrathin NiO nanoflakes perpendicularly oriented on carbon nanotubes as lithium ion battery anode. J. Mater. Res.,2013, 28,2577
    [299]V.Aravindan, P.S.Kumar, J.Sundaramurthy, et al. Electrospun NiO nanofibers as high performance anode material for Li-ion batteries. J. Power Sources,2013, 227,284
    [300]X.G.Liu, S.W.Or, C.G.Jin, et al. NiO/C nanocapsules with onion-like carbon shell as anode material for lithium ion batteries. Carbon,2013,60,215
    [301]X.N.Fu, D.Chen, M.Wang, et al. Synthesis of porous CoFe2O4 octahedral structures and studies on electrochemical Li storage behavior. Electrochim. Acta,2014,116,164
    [302]S.Grugeon, S.Laruelle, R.H.Urbina, et al. Particle size effects on the electrochemical performance of copper oxides toward lithium. J. Electrochem. Soc.,2001,148, A285
    [303]S.Yang, H.H.Song, X.H.Chen. Electrochemical performance of expanded mesocarbon microbeads as anode material for lithium-ion batteries. Electrochem. Commun.,2006,8,137
    [304]H.Xiang, K.Zhang, G.Ji, et al. Graphene/nanosized silicon composites for lithium battery anodes with improved cycling stability. Carbon,2011,49,1787
    [305]杜霞,薛卫东,赵睿,等.石墨烯/硅负极材料的制备及其电化学性能的研究.化工科技,2013,21,17
    [306]J.K.Lee, K.B.Smith, C.M.Hayner, et al. Silicon nanoparticles-graphene paper composites for Li ion battery anodes. Chemical Communications,2010,46, 2025
    [307]S.L.Chou, J.Z.Wang, M.Choucair, et al. Enhanced reversible lithium storage in a nanosize silicon/graphene composite. Electrochemistry Communications,2010, 12,303
    [308]S.Yang, G.Li, Q.Zhu, et al. Covalent binding of Si nanoparticles to graphene sheets and its influence on lithium storage properties of Si negative electrode. Journal of Materials Chemistry,2012,22,3420
    [309]X.Zhao, C.M.Hayner, M.C.Kung, et al. In-Plane Vacancy-Enabled High-Power Si-Graphene Composite Electrode for Lithium-Ion Batteries. Adv. Energy Mater.,2011,1,1079
    [310]J.K.Lee, K.B.Smith, C.M.Hayner, et al. Silicon nanoparticles-graphene paper composites for Li ion battery anodes. Chem. Commun.,2010,46,2025
    [311]X.S.Zhou, Y.X.Yin, L.J.Wan, et al. Facile synthesis of silicon nanoparticles inserted in graphene sheets as improved anode materials for lithium-ion batteries. Chem. Comm.,2012, DOI:510.1039/b000000x
    [312]H.F.Xiang, K.Zhang, G.Ji, et al. Graphene/nanosized silicon composites for lithium battery anodes with improved cycling stability. Carbon,2011,49,1787
    [313]S.B.Yang, X.L.Feng, S.Ivanovici, et al. Fabrication of Graphene-Encapsulated Oxide Nanoparticles:Towards High-Performance Anode Materials for Lithium Storage. Angew. Chem. Int. Ed.,2010,49,8408
    [314]A.S.Arico, P.Bruce, B.Scrosati, et al. Nanostructured materials for advanced energy conversion and storage devices. Nat. Mater.,2005,4,366
    [315]X.W.Lou, L.A.Archer, Z.C.Yang. Hollow Micro-/Nanostructures:Synthesis and Applications. Adv. Mater.,2008,20,3987
    [316]J.R.Miller, P.Simon. Electrochemical capacitors for energy management. Science,2008,321,651
    [317]J.Zhu, G.H.Zhang, X.Z.Yu, et al. Graphene double protection strategy to improve the SnO2 electrode performance anodes for lithium-ion batteries. Nanoenergy,2014,3,80
    [318]P.Simon, Y.Gogotsi. Materials for electrochemical capacitors. Nat. Mater., 2008,7,845
    [319]Y. Gogotsi and P. Simon. True performance metrics in electrochemical energy storage. Science,2011,334,917
    [320]W.F.Wei, X.W.Cui, W.X.Chen, et al. Manganese oxide-based materials as electrochemical supercapacitor electrodes. Ivey, Chem. Soc. Rev.,2011,40, 1697
    [321]G.Q.Zhang and X.W.Lou. General Solution Growth of Mesoporous NiCo2O4 Nanosheets on Various Conductive Substrates as High-Performance Electrodes for Supercapacitors. Adv. Mater.,2013,25,976
    [322]J.P.Liu, J.Jiang, M.Bosmanc, et al. Three-dimensional tubular arrays of MnO2-NiO nanoflakes with high areal pseudocapacitance. J. Mater. Chem., 2012,22,2419
    [323]J.P.Liu, J.Jiang, C.W.Cheng, et al. Co3O4 Nanowire@MnO2 Ultrathin Nanosheet Core/Shell Arrays:A New Class of High-Performance Pseudocapacitive Materials. Adv. Mater.,2011,23,2076
    [324]X.Z.Yu, B.A.Lu, Z.Xu. Super Long-Life Supercapacitors Based on the Construction of Nanohoneycomb-Like Strongly Coupled CoMoO4-3D Graphene Hybrid Electrodes. Adv. Mater.,2014,26,1044
    [325]C.Z.Yuan, L.Chen, B.Gao, et al. Facile synthesis and self-assembly of hierarchical porous NiO nano/micro spherical superstructures for high performance supercapacitors. J. Mater. Chem.,2009,19,246
    [326]W.Sugimoto, H.Iwata, Y.Yasunaga, et al. Preparation of ruthenic acid nanosheets and utilization of its interlayer surface for electrochemical energy storage. Angew. Chem. Int. Ed.,2003,42,4092
    [327]Z.S.Wu, D.W.Wang, W.Ren, et al. Anchoring Hydrous RuO2 on Graphene Sheets for High-Performance Electrochemical Capacitors. Adv. Funct. Mater.2010,10,3595
    [328]G.H.Zhang, T.H.Wang, X.Z.Yu, et al. Nanoforest of hierarchical Co3O4@NiCo2O4 nanowire arrays for high-performance supercapacitors. Nano Energy,2013,2,586
    [329]D.Guo, H.M.Zhang, X.Z.Yu, et al. Facile synthesis and excellent electrochemical properties of CoMoO4 nanoplate arrays as supercapacitors. J. Mater. Chem. A,2013,1, 7247
    [330]X.Wang, X.Li, X.Sun, F.Li, et al. Nanostructured NiO electrode for high rate Li-ion batteries. J. Mater. Chem.,2011,21,3571
    [331]J.H.Kim, K.Zhu, Y.Yan, et al. Microstructure and pseudocapacitive properties of electrodes constructed of oriented NiO-TiO2 nanotube arrays. Nano Lett.,2010,10, 4099
    [332]G.H.Zhang, Y.J.Chen, B.H.Qu, et al. Synthesis of mesoporous NiO nanospheres as anode materials for lithium ion batteries. Electrochim. Acta,2012,80,140
    [333]X.W.Lou, D.Deng, J.Y.Lee, et al. A. Archer. Self-Supported Formation of Needlelike CO3O4 Nanotubes and Their Application as Lithium-Ion Battery Electrodes. Advanced Materials,2008,20,258
    [334]T.Y.Wei, C.H.Chen, K.H.Chang, et al. Cobalt oxide aerogels of ideal supercapacitive properties prepared with an epoxide synthetic route. Chem. Mater.,2009,21,3228
    [335]H.N. Zhang, Y.J. Chen, W.W. Wang, et al. Hierarchical Mo-decorated CO3O4 nanowire arrays on Ni foam substrates for advanced electrochemical capacitors. J. Mater. Chem. A,2013,1,8593
    [336]S.Chen, J.Zhu, Q.Han, et al. Shape-controlled synthesis of one-dimensional MnO2 via a facile quick-precipitation procedure and its electrochemical properties. Cryst. Growth Des.,2009,9,4356
    [337]J.Zhang, J.Jiang, X.S.Zhao. A high-performance asymmetric supercapacitor fabricated with graphene-based electrodes. J. Phys. Chem. C,2011,115,6448
    [338]B.Liu, B.Y.Liu, Q.F.Wang, et al. New Energy Storage Option:Toward ZnCo2O4 Nanorods/Nickel Foarn Architectures for High-Performance Supercapacitors. Appl. Mater. Interfaces,2013,5,10011
    [339]L.Yang, S.Cheng, Y.Ding, et al. Hierarchical Network Architectures of Carbon Fiber Paper Supported Cobalt Oxide Nanonet for High-Capacity Pseudocapacitors. Nano Lett.,2012,12,321
    [340]Y.Sharma, N.Sharma, G.V.S.Rao, et al. Chowdari. Nanophase ZnCo2O4 as a High Performance Anode Material for Li-Ion Batteries. Adv. Funct. Mater.2007,17,2855
    [341]N.Du, Y.F.Xu, H.Zhang, et al. Porous ZnCo2O4 nanowires synthesis via sacrificial templates:high-performance anode materials of Li-ion batteries. Inorg. Chem.2011,50, 3320
    [342]B.Liu, J.Zhang, X.F.Wang, et al. Hierarchical three-dimensional ZnCo2O4 nanowire arrays/carbon cloth anodes for a novel class of high-performance flexible lithium-ion batteries. Nano Lett.,2012,12,3005
    [343]L.L.Hu, B.H.Qu, C.C.Li, et al. Facile synthesis of uniform mesoporous ZnCo2O4 microspheres as a high-performance anode material for Li-ion batteries. J. Mater. Chem. A,2013,1,5596
    [344]K.Karthikeyan, D.Kalpana, N.G.Renganathan. Synthesis and characterization of nanomaterial for symmetric supercapacitor applications. Ionics 2009,15,107
    [345]B.Liu, D.S.Tan, X.F.Wang, et al. Flexible, Planar-Integrated, All-Solid-State Fiber Supercapacitors with an Enhanced Distributed-Capacitance Effect. Small.2013,9, 1998
    [346]T.Y.Wei, C.H.Chen, H.C.Chien, et al. A cost-effective supercapacitor material of ultrahigh specific capacitances:spinel nickel cobaltite aerogels from an epoxide-driven sol-gel process. Adv. Mater.2010,22,347
    [347]X.H.Lu, X.Huang, S.L.Xie, et al. Controllable synthesis of porous nickel-cobalt oxide nanosheets for supercapacitors. J. Mater. Chem.,2012,22,13357
    [348]B.A.Lu, T.Li, H.Zhao, et al. Graphene-based composite materials beneficial to wound healing. Nanoscale,2012,4,2978
    [349]J.Zhu, D.N.Lei, G.H.Zhang, et al. Carbon and graphene double protection strategy to improve the SnOx electrode performance anodes for lithium-ion batteries. Nanoscale, 2013,5,5499
    [350]H.L.Wang, Q.M.Gao, L.Jiang. Facile approach to prepare nickel cobaltite nanowire materials for supercapacitors. Small,2011,7,2454
    [351]W.M.Zhang, X.L.Wu, J.S.Hu, et al. Carbon Coated Fe3O4 Nanospindles as a Superior Anode Material for Lithium-Ion Batteries. Adv. Funct. Mater.2008,18,3941
    [352]D.Li, Y.Xia. Fabrication of titania nanofibers by electrospinning. Nano Lett.,2003,3, 555
    [353]L.W.Ji, Z.Lin, B.K.Guo, et al. Assembly of Carbon-SnO2 Core-Sheath Composite Nanofibers for Superior Lithium Storage. Chem. Eur. J.,2010,16,11543
    [354]L.L.Li, S.J.Peng, Y.L.Cheah, et al. Electrospun eggroll-like CaSnO3 nanotubes with high lithium storage performance. Nanoscale,2013,5,134

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700