新型碳材料—碳纳米管及石墨烯的制备、修饰与初步应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碳材料在宇宙中广泛存在,其奇异独特的物性和多种性随人类文明的进步而逐渐被认识和利用。本文通过对两种纳米碳材料-碳纳米管(CNT)和石墨烯的制备、修饰和初步应用进行探讨,系统地研究了CNT和石墨烯这两种新型的材料,并通过一系列的测试手段对两者进行平行研究,比较两者的不同性能。具体研究内容如下:
     (1)在CNT的修饰及初步应用研究中,通过多步反应的方法对CNT进行纯化,同时引入羧基和羟基等官能团,使修饰后的CNT分散性大大加强。通过酰氯化和氨基化进一步对羧基化CNT进行修饰,制备得到氨基化CNT;利用原子转移活性聚合技术制得活性大分子引发剂,再在CNT上原位接枝聚苯乙烯-聚丙烯酰胺双亲性嵌段共聚物;通过原位聚合的方法制备带正电和负电的聚电解质/CNT复合材料,并分别在平面和球体上进行层层自组装;通过熔融混合环氧树脂与氨基化CNT制备复合材料。制备过程中控制温度、浓度比例提高复合材料的热学、力学性能。利用差示扫描量热仪、热失重分析、弯曲强度测试等研究不同氨基化CNT对环氧树脂的热学、力学性能影响;利用混合还原剂原位还原的方法将Pt-Co催化剂沉积在CNT表面,从而制备新型直接氧化甲醇的催化剂,并对其催化性能和抗一氧化碳中毒性能进行研究。
     (2)在石墨烯的制备、修饰及初步应用研究中,将石墨与过氧化苯甲酰反应制得氧化石墨,超声制得氧化石墨烯(GOS)后原位还原制得石墨烯并对其反应机理进行研究;利用原子转移活性聚合技术制得活性大分子引发剂,再在石墨烯上原位接枝聚苯乙烯-聚丙烯酰胺双亲性嵌段共聚物,对其水溶性和油溶性进行研究;通过将GOS与溴代正丁烷反应制备烷基修饰亲油性石墨烯;通过两步二酰亚胺活化酰胺化制备了亲水性和亲油性的化学修饰石墨烯;通过原位聚合的方法制备带正电和负电的聚电解质/石墨烯复合材料,并进行层层自组装研究;高温下通过将乙酰丙酮铁在1-甲基毗咯烷酮溶剂中,在GOS表面沉积磁性纳米粒子制备GOS/磁性纳米粒子的复合材料,并对其磁学性能进行研究;通过原位还原的方法制备银纳米粒子/化学改性石墨烯的复合材料并对其表面增强拉曼效应及杀菌性能进行研究;利用混合还原剂原位还原的方法将Pt-Co催化剂沉积在石墨烯上制备新型直接氧化甲醇的催化剂,并对其催化性能和抗一氧化碳中毒性能进行研究;通过两步二酰亚胺活化酰胺化将牛血清白蛋白共价接枝到GOS表面并对其生物活性进行研究。
Carbon is a basic and important element on earth. Carbon nanostructures in zero, one and two dimensions offer great potential in a broad range of applications. In this paper, we studied the preparation, modification and primary application of two carbon nanomaterials:carbon nanotubes (CNTs) and graphene. The detail research contents and results are summarized as follows:
     (1) Through series of steps, the raw material of CNTs were purified and carboxyl and hydroxyl were introduced, which greatly improved solubility and stability of CNTs dispersion. Functionalization of CNTs with amine groups was achieved after such steps as carboxylation, acylation and amidation; The grafting of polystyrene-polyacrylamide block copolymer to single walled carbon nanotubes (SWCNTs) was achieved by in situ living free radical polymerization. The resulting dispersions were stable and had homogeneous dark ink-like appearance, consisting mainly of long isolated nanotubes and thin bundles; Anionic and cationic CNTs/polyelectrolytes, prepared by covalent modification of CNTs with poly(acrylic acid) and poly(acrylamide), were used for the layer-by-layer (LBL) self-assembly of CNTs on different substrates, such as glass and PS colloids; Nanotube-reinforced epoxy composites were prepared by mixing amino-functionalized CNTs with epoxy resin. Differential scanning calorimetry, thermogravimetric analysis and bending tests were used to investigate the thermal and mechanical properties of the composites. The results showed that different kinds of amino-functionalized CNTs would have different effects on the thermal and mechanical properties of the composites; Catalyst of Pt-Co supported on single-walled carbon nanotubes (SWCNTs) is prepared using mixed reducing agents. Under same Pt loading mass and experimental conditions, the SWCNTs-Pt-Co catalyst showed higher electro catalytic activity and improved resistance to CO poisoning than the SWCNTs-Pt catalyst.
     (2) A massively scalable, fast and facile method for preparation of graphene oxide sheets (GOS) and graphene nanoplatelets was achieved. The basic strategy involved the preparation of graphite oxide (GO) from graphite through reaction with benzoyl peroxide, complete exfoliation of GO into GOS, followed by their in-situ reduction to individual graphene nanoplatelets. The mechanism of GOS producing is mainly the generation of oxygen-containing groups on graphene sheets; The grafting of polystyrene-polyacrylamide (PS-PAM) block copolymer to graphene nanoplatelets was achieved by in situ living free radical polymerization. This method is beneficial because the amphiphilic property of the block copolymer can help to stabilize graphene nanoplatelets in both polar and non-polar solvents; Organophilic chemically functionalized graphene (OCFG) sheets were achieved through such steps as complete exfoliation of GO into GOS, followed by reacting with 1-Bromobutane to get OCFG sheets; hydrophilic and organophilic chemically modified graphene sheets were prepared through a two-step diimide-activated amidation. The dispersions are homogeneous and exhibit long-term stability, which facilitate their combination with polymers to yield homogeneous composites; graphene nanoplatelets were self-assembled through LBL method. Anionic and cationic graphene-containing polyelectrolytes, prepared by covalent modification of graphene sheets with poly (acrylic acid) and poly (acryl amide), were used in the cyclic dispersion procedures; Magnetic GOS were prepared by attaching magnetic nanoparticles to GOS through high temperature reaction of ferric triacetylacetonate with GOS in 1-methyl-2-pyrrolidone; Catalyst of Pt-Co binding on GOS was prepared using mixed reducing agents and their activity in the electro-oxidation of methanol was studied. It was found that the presence of GOS leads to higher activity, which might be due to the increase of electrochemically accessible surface areas and easier charge-transfer at the interfaces. An in situ chemical synthesis approach was proposed to prepare Ag/chemically converted graphene (CCG) nanocomposites. The reducing process of GOS was accompanied by generation of Ag nanoparticles. Raman signals of CCG in such nanocomposites are greatly increased by the attached silver nanoparticles, displaying surface-enhanced Raman scattering activity. In addition, it was found that the antibacterial activity of Ag nanoparticle still exists, which is promising to be used as graphene-based biomaterials; GOS were functionalized by bovine serum albumin (BSA) via diimide-activated amidation under ambient conditions. The obtained GOS-BSA conjugates are highly water-soluble, forming brown-colored aqueous solutions. Results of cyclic volatammograms showed that the protein in the GOS-BSA conjugates retains its bioactivity.
引文
[1]Kroto, H. W.; Heath, J. R.; O'Brien, S. C.; Curl, R. F.; Smalley, R. E. C60:buckminster fullerene. [J] Nature 1985,318(6042):162-163.
    [2]Iijima, S. Helical microtubules of graphitic carbon. [J] Nature 1991,354(6348):56-58.
    [3]Ijima, S.; Ichihashi, T. Single-shell carbon nanotubes of I-nm diameter. [J] Nature 1993, 363(6430):603-605.
    [4]Ajayan, P. M. Nanotubes from carbon. [J] Chem. Rev.1999,99(7):1787-1799.
    [5]Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. [J] Science 2004, 306(5696):666-669.
    [6]Novoselov, K. S.; Jiang, D.; Schedin, F.; Booth, T. J.; Khotkevich, V. V.; Morozov, S. V.; Geim, A. K. Two-dimensional atomic crystals. [J] PNAS 2005,102(30):10451-10453.
    [7]Geim, A. K.; Novoselov, K. S. The rise of graphene. [J] Nat. Mat.2007,6(3):183-191.
    [8]Pichler, T. Molecular Nanostructures:Carbon ahead. [J] Nat. Mat.2007,6(5):332-333.
    [9]Rao, C. N. R.; Biswas, K.; Subrahmanyam, K. S.; Govindaraj, A. Graphene, the new nanocarbon. [J] J Mater. Chem.2009,19(17):2457-2469.
    [10]Brumfiel, G. Graphene gets ready for the big time. [J] Nature 2009,458(7237):390-391.
    [11]Wildoer, J. W. G.; Venema, L. C.; Rinzier, A. G.; Smalley, R. E.; Dekker, C. Electronic structure of atomically resolved carbon nanotubes. [J] Nature 1998,391(6662):59-62.
    [12]Odom, T. W.; Huang, J.; Kim, P.; Lieber, C. M. Structure and electronic properties of carbon nanotubes. [J] J Phys. Chem. B 2000,104(13):2794-2809.
    [13]Hagen, A.; Hertel, T. Quantitative analysis of optical spectra from individual single-wall carbonnanotubes. [J] Nano Lett.2003,3(3):383-388.
    [14]Saito, R.; Dresselhaus, G.; Dresselhaus, M. S. Electronic structure of double-layer graphene tubules. [J] J Appl. Phys.1993,73(2):494-500.
    [15]Treacy, M. M. J.; Ebbesen, T. W.; Gibson, J. M. Exceptionally high Young's modulus observed for individual carbon nanotubes. [J] Nature 1996,381 (6584);678-680.
    [16]Yakobson, B. I.; Brabec, C. J.; Bernholc, J. Nanomechanics of carbon tubes:instabilities beyond linear response. [J] Phys. Rev. Lett.1996,76(14):2511-2514.
    [17]Hone, J.; Whitney, M.; Zettl, A. Thermal conductivity of single-walled carbon nanotubes. [J] Synthetic Met.1999,103(1-3):2498-2499.
    [18]Dai, H.; Wong, E. W.; Lieber, C. M. Probing electrical transport in nanomaterials:conductivity of individual carbon nanotubes. [J] Science 1996,272(5261):523-526.
    [19]Paulson, S.; Helser, A.; Nardelli, M. B.; Taylor, R. M.; Falvo, M.; Superfine, R.; Washburn, S. Tunable resistance of a carbon nanotube-graphite interface. [J] Science 2000,290(5497):1742-1744.
    [20]Robertson N.; McGowan C. A. A comparison of potential molecular wires as components for molecular electronics. [J] Chem. Soc. Rev.2003,32(2):96-103
    [21]Baughman, R. H.; Zakhidov, A. A.; De Heer, W. A. Carbon nanotubes-the route toward applications. [J] Science 2002,297(5582):787-792.
    [22]Bachilo, S. M.; Strano, M. S.; Kittrell, C.; Hauge, R. H.; Smalley, R. E.; Weisman, R. B. Structure-assigned optical spectra of single-walled carbon nanotubes. [J] Science 2002, 298(5602):2361-2366.
    [23]O'Connell, M. J.; Bachilo, S. M.; Huffman, C. B.; Moore, V. C.; Strano, M. S.; Haroz, E. H.; Rialon, K. L.; Boul, P. J.; Noon, W. H.; Kittrell, C.; Ma, J.; Hauge, R. H.; Weisman, R. B.; Smalley, R. E. Band gap fluorescence from individual single-walled carbon nanotubes. [J] Science 2002, 297(5581):593-596.
    [24]Hartschuh, A.; Pedrosa, H. N.; Novotny, L.; Krauss, T. D. Simultaneous fluorescence and raman scattering from single carbon nanotubes. [J] Science 2003,301(5638):1354-1357.
    [25]Misewich, J. A.; Avouris, P.; Martel, R.; Tsang, J. C.; Heinze, S.; Tersoff, J. Electrically induced optical emission from a carbon nanotube FET. [J] Science 2003,300(5620):783-786.
    [26]Ando, Y.; Zhao, X.; Inoue, S.; Iijima, S. Mass production of multiwalled carbon nanotubes by hydrogen arc discharge. [J] J Cryst. Growth 2002,237:1926-1930.
    [27]Zhao, T.; Liu, Y. Large scale and high purity synthesis of single-walled carbon nanotubes by arc discharge at controlled temperatures. [J] Carbon 2004,42(12-13):2765-2768.
    [28]Nikolaev, P.; Bronikowski, M. J.; Bradley, R. K.; Rohmund, F.; Colbert, D.T.; Smith, K. A.; Smalley, R. E. Gas-phase catalytic growth of single-walled carbon nanotubes from carbon monoxide. [J] Chem. Phys. Lett.1999,313(1):91-97.
    [29]Jose-Yacaman, M.; Miki-Yoshida, M.; Rendon, L.; Santiesteban, J. G. Catalytic growth of carbon microtubules with fullerene structure. [J] Appl. Phys. Lett.1993,62(2):202-204.
    [30]Guo, T.; Nikolaev, P.; Thess, A.; Colbert, D. T.; Smalley, R. E. Catalytic growth of single-walled nanotubes by laser vaporization. [J] Chem. Phys. Lett.1995,243(1):49-54
    [31]Geohegan, D. B.; Schittenhelm, H.; Fan, X.; Pennycook, S. J.; Puretzky, A. A.; Guillorn, M. A.; Blom, D. A.; Joy, D. C. Condensed phase growth of single-wall carbon nanotubes from laser annealed nanoparticulates. [J] Appl. Phys. Lett.2001,78(21):3307-3309.
    [32]Kokai, F.; Takahashi, K.; Kasuya, D.; Yudasaka, M.; Iijima, S. Growth of single-wall carbon nanotubes dependent on laser power density and ambient gas pressure during room-temperature CO2 laser vaporization. [J] Appl. Phys. A-Mater.2001,73(4):401-407.
    [33]Ma, R. Z.; Wei, B. Q.; Xu, C. L.; Liang, J.; Wu, D. H. The morphology changes of carbon nanotubes under laser irradiation. [J] Carbon 2000,38(4):636-638.
    [34]Yokomichi, H.; Sakai, F.; Ichihara, M.; Kishimoto, N. Carbon nanotubes synthesized by thermal chemical vapor deposition using M(NO3)n·mH2O as catalyst. [J] Physica B 2002,323(1-4):311-313.
    [35]Wang, Y. Y.; Gupta, S.; Nemanich, R. J. Role of thin Fe catalyst in the synthesis of double-and single-wall carbon nanotubes via microwave chemical vapor deposition. [J] Appl. Phys. Lett.2004, 85(13):2601-2603.
    [36]Lee, G. W.; Jurng, J.; Hwang, J. Synthesis of carbon nanotubes on a catalytic metal substrate by using an ethylene inverse diffusion flame. [J] Carbon 2004,42(3):682-685.
    [37]Vander Wal, R. L.; Berger, G. M.; Hall, L. J. Single-walled carbon nanotube synthesis via a multi-stage flame configuration. [J] J Phys. Chem. B 2002,106(14):3564-3567
    [38]Vander Wal, R. L.; Ticich, T. M. Flame and furnace synthesis of single-walled and multi-walled carbon nanotubes and nanofibers. [J] J Phys. Chem. B 2001,105(42):10249-10256.
    [39]Sen, R.; Suzuki, S.; Kataura, H.; Achiba, Y. Growth of single-walled carbon nanotubes from the condensed phase. [J] Chem. Phys. Lett.2001,349(5,6):383-388.
    [40]Shelimov, K.B.; Esenaliev, R. O.; Rinzler, A. G.; Huffman, C. B.; Smalley, R. E. Purification of single-wall carbon nanotubes by ultrasonically assisted filtration. [J] Chem. Phys. Lett.1998, 282(5,6):429-434
    [41]Bandow, S.; Rao, A. M.; Williams, K. A.; Thess, A.; Smalley, R. E.; Eklund, P. C. Purification of single-wall carbon nanotubes by microfiltration. [J] J Phys. Chem. B 1997,101(44):8839-8842.
    [42]Tsang, S. C.; Harris, P. J. F.; Green, M. L. H. Thinning and opening of carbon nanotubes by oxidation using carbon dioxide. [J] Nature 1993,362(6420):520-522.
    [43]Tohji, K.; Goto, T.; Takahashi, H.; Shinoda, Y.i; Shimizu, N.; Jeyadevan, B.; Matsuoka, I.; Saito, Y.; Kasuya, A.; Ohsuna, t.; Hiraga, K.; Nisshina, Y. Purifying single-walled nanotubes. [J] Nature 1996,383(6602):679.
    [44]Tsang, S. C.; Chen, Y. K.; Harris, P. J. F.; Green, M. L. H. A simple chemical method of opening and filling carbon nanotubes. [J] Nature 1994,372(6502):159-162.
    [45]Vaccarini, L.; Goze, C.; Aznar, R.; Micholet, V.; Journet, C.; Bernier, P. Purification procedure of carbon nanotubes. [J] Synthetic Met.1999,103(1-3):2492-2493.
    [46]Monthioux, M.; Smith, B. W.; Burteaux, B.; Claye, A.; Fischer, J. E.; Luzzi, D. E. Sensitivity of single-wall carbon nanotubes to chemical processing:an electron microscopy investigation. [J] Carbon 2001,39(8):1251-1272.
    [47]Liu, B.; Wagberg, T.; Olsson, E.; Yang, R.; Li, H.; Zhang, S.; Yang, H.; Zou, G.; Sundqvist, B. Synthesis and characterization of single-walled nanotubes produced with Ce/Ni as catalysts. [J] Chem. Phys. Lett.2000,320(3,4):365-372.
    [48]Andrews, R.; Jacques, D.; Qian, D.; Dickey, E. C. Purification and structural annealing of multiwalled carbon nanotubes at graphitization temperatures. [J] Carbon 2001,39(11):1681-1687.
    [49]Curran, S. A.; Ajayan, P. M.; Blau, W. J.; Carroll, D. L.; Coleman, J. N.; Dalton, A. B.; Davey, A. P.; Drury, A.; McCarthy, B.; Maier, S.; Strevens, A. A composite from poly(m-phenylenevinylene-co-2,5-dioctoxy-p-phenylenevinylene) and carbon nanotubes. [J] Adv. Mater.1998,10(14):1091-1093.
    [50]Coleman, J. N.; Dalton, A.B.; Curran, S.; Rubio, A.; Davey, A. P.; Drury, A.; McCarthy, B.; Lahr, B.; Ajayan, P. M.; Roth, S.; Barklie, R. C.; Blau, W. J. Phase separation of carbon nanotubes and turbostratic graphite using a functional organic polymer. [J] Adv. Mater.2000,12(3):213-216.
    [51]Hiura, H.; Ebbesen, T. W.; Tanigaki, K. Opening and purification of carbon nanotubes in high yields. [J] Adv. Mater.1995,7(3):275-276.
    [52]Rinzler, A. G.; Liu, J.; Dai, H.; Nikolaev, P.; Huffman, C. B.; Rodriguez-Macias, F. J.; Boul, P. J.; Lu, A. H.; Heymann, D.; Colbert, D. T.; Lee, R. S.; Fischer, J. E.; Rao, A. M.; Eklund, P. C.; Smalley, R. E. Large-scale purification of single-wall carbon nanotubes. Process, product, and characterization. [J] Appl. Phys. A-Mater.1998,67(1):29-37
    [53]Ivanov, V.; Fonesca, A.; Nagy, J. B.; Lucas, A.; Lambin, P.; Bernaerts, D.; Zhang, X. B. Catalytic production and purification of nanotubules having fullerene-scale diameters. [J] Carbon 1995, 33(12):1727-1738.
    [54]Bonard, J. M.; Stora, T.; Salvetat, J. P.; Maier, F.; Stockli, T.; Duschl, C.; Forro, L.; De Heer, W. A.; Chatelain, A. Purification and size-selection of carbon nanotubes. [J] Adv. Mater.1997,9(10): 827-831.
    [55]Hou, P. X.; Bai, S.; Yang, Q. H.; Liu, C.; Cheng, H. M. Multi-step purification of carbon nanotubes. [J] Carbon 2002,40(1):81-85.
    [56]Ikazaki, F.; Ohshima, S.; Uchida, K.; Kuriki, Y.; Hayakawa, H.; Yumura, M.; Takahashi, K.; Tojima, K. Chemical purification of carbon nanotubes by use of graphite intercalation compounds. [J] Carbon 1994,32(8):1539-1542.
    [57]Sarbajit B.; Tirandai H.;Stanislaus S.W. Covalent surface chemistry of single-walled carbon nanotubes. [J] Adv. Mater.2005,17(1),17-29
    [58]Xing, Y.; Li, L.; Chusuei, C. C.; Hull, R. V. Sonochemical Oxidation of Multiwalled Carbon Nanotubes. [J] Langmuir 2005,21(9):4185-4190.
    [59]Wang, Y.; Iqbal, Z.; Mitra, S. Microwave-induced rapid chemical functionalization of single-walled carbon nanotubes. [J] Carbon 2005,43(5):1015-1020.
    [60]Zhao, B.; Hu, H.; Niyogi, S.; Itkis, M. E.; Hamon, M. A.; Bhowmik, P.; Meier, M. S.; Haddon, R. C. Chromatographic purification and properties of soluble single-walled carbon nanotubes. [J] J Am. Chem. Soc.2001,123(47):11673-11677.
    [61]Hamon, M. A.; Chen, J.; Hu, H.; Chen, Y.; Itkis, Misha E.; Rao, A. M.; Eklund, P. C.; Haddon, R. C. Dissolution of single-walled carbon nanotubes. [J] Adv. Mater.1999,11(10):834-840
    [62]Georgakilas, V.; Tagmatarchis, N.; Pantarotto, D.; Bianco, A.; Briand, J.; Prato, M. Amino acid functional ization of water soluble carbon nanotubes. [J] Chem. Commun.2002,24:3050-3051.
    [63]Khabashesku, V. N.; Billups, W. E.; Margrave, J. L. Fluorination of single-wall carbon nanotubes and subsequent derivatization reactions. [J] Accounts Chem. Res.2002,35(12):1087-1095.
    [64]Mickelson, E. T.; Chiang, I. W.; Zimmerman, J. L.; Boul, P. J.; Lozano, J.; Liu, J.; Smalley, R. E.; Hauge, R. H.; Margrave, J. L. Solvation of fluorinated single-wall carbon nanotubes in alcohol solvents. [J] J Phys. Chem. B 1999,103(21):4318-4322.
    [65]Mickelson, E. T.; Huffman, C. B.; Rinzler, A. G.; Smalley, R. E.; Hauge, R. H.; Margrave, J. L. Fluorination of single-wall carbon nanotubes. [J] Chem. Phys. Lett.1998,296(1,2):188-194.
    [66]Sun, Y.; Wilson, S. R.; Schuster, D. I. High dissolution and strong light emission of carbon nanotubes in aromatic amine solvents. [J] J Am. Chem. Soc.2001,123(22):5348-5349.
    [67]Wong, S. S.; Woolley, A. T.; Joselevich, E.; Cheung, C. L.; Lieber, C. M. Covalently-functionalized single-walled carbon nanotube probe tips for chemical force microscopy. [J] J Am. Chem. Soc.1998,120(33):8557-8558.
    [68]Boul, P. J.; Liu, J.; Mickelson, E. T.; Huffman, C. B.; Ericson, L. M.; Chiang, I. W.; Smith, K. A.; Colbert, D. T.; Hauge, R. H.; Margrave, J. L.; Smalley, R. E. Reversible sidewall functionalization of buckytubes. [J] Chem. Phys. Lett.1999,310(3,4):367-372.
    [69]Peng, H.; Reverdy, P.; Khabashesku, V. N.; Margrave, J. L. Sidewall functionalization of single-walled carbon nanotubes with organic peroxides. [J] Chem. Commun.2003,3:362-363.
    [70]Ying, Y.; Saini, R.; Liang, F.; Sadana, A. K.; Billups, W. E. Functionalization of carbon Nanotubes by Free Radicals. [J] Org. Lett.2003,5(9):1471-1473.
    [71]Lu, X.; Yuan, Q.; Zhang, Q. Sidewall epoxidation of single-walled carbon nanotubes:a theoretical prediction. [J] Org. Lett.2003,5(19):3527-3530.
    [72]Wei, Z.; Wan, M.; Lin, T.; Dai, L. Polyaniline nanotubes doped with sulfonated carbon nanotubes made via a self-assembly process. [J] Adv. Mater.2003,15(2):136-139.
    [73]Lim, J. K.; Yun, W. S.; Yoon, M.; Lee, S. K.; Kim, C. H.; Kim, K.; Kim, S. K. Selective thiolation of single-walled carbon nanotubes. [J] Synthetic Met.2003,139(2):521-527.
    [74]Moore, V. C.; Strano, M. S.; Haroz, E. H.; Hauge, R. H.; Smalley, R. E.; Schmidt, J.h; Talmon, Y. Individually suspended single-walled carbon nanotubes in various surfactants. [J] Nano Lett.2003, 3(10):1379-1382.
    [75]Islam, M. F.; Rojas, E.; Bergey, D. M.; Johnson, A. T.; Yodh, A. G. High weight fraction surfactant solubilization of single-wall carbon nanotubes in water. [J] Nano Lett.2003,3(2):269-273.
    [76]Li, L.; Nicholas, R. J.; Chen, C.; Darton, R. C.; Baker, S. C. Comparative study of photoluminescence of single-walled carbon nanotubes wrapped with sodium dodecyl sulfate, surfactin and polyvinylpyrrolidone. [J] Nanotechnology 2005,16(5):202-205.
    [77]Wenseleers, W.; Vlasov,I.I.; Goovaerts, E.; Obraztsova, E. D.; Lobach, A. S.; Bouwen, A. Efficient isolation and solubilization of pristine single-walled nanotubes in bile salt micelles. [J] Adv. Funct. Mater.2004,14(11):1105-1112.
    [78]Zhang, J.; Lee, J. K.; Wu, Y.; Murray, R. W. Photoluminescence and electronic interaction of anthracene derivatives adsorbed on sidewalls of single-walled carbon nanotubes. [J] Nano Lett.2003, 3(3):403-407.
    [79]Besteman, K.; Lee, J.; Wiertz, F G. M.; Heering, H A.; Dekker, C. Enzyme-coated carbon nanotubes as single-molecule biosensors. [J] Nano Lett.2003,3(6):727-730
    [80]Chambers, G.; Carroll, C.; Farrell, G. F.; Dalton, A. B.; McNamara, Mary; In Het Panhuis, M.; Byrne, H. J. Characterization of the interaction of gamma cyclodextrin with single-walled carbon nanotubes. [J] Nano Lett.2003,3(6):843-846.
    [81]Chen, J.; Dyer, M. J.; Yu, M. Cyclodextrin-mediated soft cutting of single-walled carbon nanotubes. [J] J Am. Chem. Soc.2001,123(25):6201-6202.
    [82]Kim, T.; Doe, C.; Kline, S. R.; Choi, S. Water-redispersible isolated single-walled carbon nanotubes fabricated by in situ polymerization of micelles. [J] Adv. Mater.2007,19(7):929-933.
    [83]Star, A.; Stoddart, J. F.; Steuerman, D.; Diehl, M.; Boukai, A.; Wong, E. W.; Yang, X.; Chung, S.; Choi, H.; Heath, J. R. Preparation and properties of polymer-wrapped single-walled carbon nanotubes. [J] Angew. Chem. Int. Edit.2001,40(9):1721-1725.
    [84]Star, A.; Steuerman, D. W.; Heath, J. R.; Stoddart, J. F. Starched carbon nanotubes. [J] Angew. Chem. Int. Edit.2002,41(14):2508-2512.
    [85]. O'Connell, M. J.; Boul, P.; Ericson, L. M.; Huffman, C.; Wang, Y.; Haroz, E.; Kuper, C.; Tour, J.; Ausman, K. D.; Smalley, R. E. Reversible water-solubilization of single-walled carbon nanotubes by polymer wrapping. [J] Chem. Phys. Lett.2001,342(3,4):265-271.
    [86]Tang, B. Z.; Xu, H. Preparation, alignment, and optical properties of soluble poly(phenylacetylene)wrapped carbon nanotubes. [J] Macromolecules 1999,32(8):2569-2576.
    [87]Sinani, V. A.; Gheith, M. K.; Yaroslavov, A. A.; Rakhnyanskaya, A. A.; Sun, K.; Mamedov, A. A.; Wicksted, J. P.; Kotov, N. A. Aqueous dispersions of single-wall and multiwall carbon nanotubes with designed amphiphilic polycations. [J] J Am. Chem. Soc.2005,127(10):3463-3472.
    [88]Azamian, B. R.; Davis, J. J.; Coleman, K. S.; Bagshaw, C. B.; Green, M. L. H. Bioelectrochemical single-walled carbon nanotubes. [J] J J Am. Chem. Soc.2002, 124(43):12664-12665.
    [89]Dieckmann, G. R.; Dalton, A. B.; Johnson, P. A.; Razal, J.; Chen, J.; Giordano, G. M.; Munoz, E.; Musselman, I. H.; Baughman, R. H.; Draper, R. K. Controlled assembly of carbon nanotubes by designed amphiphilic peptide helices. [J] J Am. Chem. Soc.2003,125(7):1770-1777.
    [90]Chen, R. J.; Zhang, Y. Wang, D.; Dai, H. Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization. [J] J Am. Chem. Soc.2001,123(16):3838-3839.
    [91]Shvartzman-Cohen, R.; Nativ-Roth, E.; Baskaran, E.; Levi-Kalisman, Y.; Szleifer, I.; Yerushalmi-Rozen, R. Selective dispersion of single-walled carbon nanotubes in the presence of polymers:the role of molecular and colloidal length scales. [J] J Am. Chem. Soc.2004, 126(45):14850-14857.
    [92]Kim, O.; Je, J.; Baldwin, J. W.; Kooi, S.; Pehrsson, P. E.; Buckley, L. J. Solubilization of single-wall carbon nanotubes by supramolecular encapsulation of helical amylose. [J] J Am. Chem. Soc.2003,125(15):4426-4427.
    [93]Lee, J. U.; Huh, J.; Kim, K. H.; Park, C.; Jo, W. H. Aqueous suspension of carbon nanotubes via non-covalent functionalization with oligothiophene-terminated poly(ethylene glycol). [J] Carbon 2007, 45(5):1051-1057.
    [94]Zheng, M.; Jagota, A.; Semke, E. D.; Diner, B. A.; Mclean, R. S.; Lustig, S. R.; Richardson, R. E.; Tassi, N. G. DNA-assisted dispersion and separation of carbon nanotubes. [J] Nat. Mater.2003, 2(5):338-342.
    [95]Hasegawa, T.; Fujisawa, T.; Numata, M.; Umeda, M.; Matsumoto, T.; Kimura, T.; Okumura, S.; Sakurai, K.; Shinkai, S. Single-walled carbon nanotubes acquire a specific lectin-affinity through supramolecular wrapping with lactose-appended schizophyllan. [J] Chem. Commun.2004,19: 2150-2151.
    [96]Dodziuk, H.; Ejchart, A.; Anczewski, W.; Ueda, H.; Krinichnaya, E.; Dolgonos, G.; Kutner, W. Water solubilization, determination of the number of different types of single-wall carbon nanotubes and their partial separation with respect to diameters by complexation with cyclodextrin. [J] Chem. Commun.2003,8:986-987.
    [97]Ikeda, A.; Hayashi, K.; Konishi, T.; Kikuchi, J. Solubilization and debundling of purified single-walled carbon nanotubes using solubilizing agents in an aqueous solution by high-speed vibration milling technique. [J] Chem. Commun.2004,11:1334-1335.
    [98]Liu, Y.; Liang, P.; Zhang, H.; Guo, D. Cation-controlled aqueous dispersions of alginic-acid-wrapped multi-walled carbon nanotubes. [J] Small 2006,2(7):874-878.
    [99]Ajayan, P. M.; Stephan, O.; Redlich, Ph.; Colliex, C. Carbon nanotubes as removable templates for metal oxide nanocomposites and nanostructures. [J] Nature 1995),375(6532):564-567.
    [100]Liu, T.; Phang, I. Y.; Shen, L.; Chow, S. Y.; Zhang, W. Morphology and mechanical properties of multiwalled carbon nanotubes reinforced nylon-6 composites. [J] Macromolecules 2004, 37(19):7214-7222.
    [101]Dai, H.; Hafner, J. H.; Rinzler, A. G.; Colbert, D. T.; Smalley, R. E. Nanotubes as nanoprobes in scanning probe microscopy. [J] Nature 1996,384(6605):147-150.
    [102]Azehara, H.; Tokumoto, H. Analysis of the number of hydrogen bond groups of a multiwalled carbon nanotube probe tip for chemical force microscopy. [J] Appl. Surf. Sci.2009,256(4):987-990.
    [103]Wong, S. S.; Woolley, A. T.; Odom, T. W.; Huang, J.; Kim, P.; Vezenov, D. V.; Lieber, C. M. Single-walled carbon nanotube probes for high-resolution nanostructure imaging. [J] Appl. Phys. Lett. 1998,73(23):3465-3467.
    [104]Stevens, R.; Nguyen, C.; Cassell, A.; Delzeit, L.; Meyyappan, M.; Han, J. Improved fabrication approach for carbon nanotube probe devices. [J] Appl. Phys. Lett.2000,77(21):3453-3455.
    [105]Nguyen, C. V.; Chao, K.; Stevens, R. M. D.; Delzeit, L.; Cassell, A.; Han, J.; Meyyappan, M. Carbon nanotube tip probes:stability and lateral resolution in scanning probe microscopy and application to surface science in semiconductors. [J] Nanotechnology 2001,12(3):363-367.
    [106]Hafner, J. H.; Cheung, C. L.; Lieber, C. M. Growth of nanotubes for probe microscopy tips. [J] Nature 1999,398(6730):761-762.
    [107]De Heer, W. A.; Chatelain, A.; Ugarte, D. A carbon nanotube field-emission electron source. [J] Science 1995,270(5239):1179-1180.
    [108]Collins, P. G.; Zettl, A.; Bando, H.; Thess, A.; Smalley, R. E. Nanotube nanodevice. [J] Science 1997,278(5335):100-103.
    [109]Hamada, N.; Sawada, S.; Oshiyama, A. New one-dimensional conductors:graphitic microtubules. [J] Phys. Rev. Lett.1992,68(10):1579-1581.
    [110]Bonard, J.; Salvetat, J.; Stockli, T.; Forro, L.; Chatelain, A. Field emission from carbon nanotubes. Perspectives for applications and clues to the emission mechanism. [J] Appl. Phys. A-Mater.1999,69(3):245-254.
    [111]Dillon, A. C.; Jones, K. M.; Bekkedahl, T. A.; Kiang, C. H.; Bethune, D. S.; Heben, M. J. Storage of hydrogen in single-walled carbon nanotubes. [J] Nature 1997,386(6623):377-379.
    [112]Baughman, R. H.; Cui, C.; Zakhidov, A. A.; Iqbal, Z.; Barisci, J. N.; Spinks, G.M.; Wallace, G. G.; Mazzoldi, A.; De Rossi, d.; Rinzler, A. G.; Jaschinski, O.; Roth, S.; Kertesz, M. Carbon nanotube actuators. [J] Science 1999,284(5418):1340-1344.
    [113]Cumings, J.; Collins, P. G.; Zettl, A. Peeling and sharpening multiwall nanotubes. [J] Nature 2000,406(6796):586.
    [114]Konatham, D.; Striolo, A. Molecular design of stable graphene nanosheets dispersions. [J] Nano Lett.2008,8(12):4630-4641.
    [115]OuYang, F.; Huang, B.; Li, Z.; Xiao, J.; Wang, H.; Xu, H. Chemical functionalization of graphene nanoribbons by carboxyl groups on stone-wales defects. [J] J Phys. Chem. C 2008,112(31): 12003-12007.
    [116]Meyer, J. C.; Geim, A. K.; Katsnelson, M. I.; Novoselov, K. S.; Booth, T. J.; Roth, S. The structure of suspended graphene sheets. [J] Nature 2007,446(7131):60-63.
    [117]Ishigami, M.; Chen, J. H.; Cullen, W. G.; Fuhrer, M. S.; Williams, E. D. Atomic structure of graphene on SiO2. [J] Nano Lett.2007,7(6):1643-1648.
    [118]Mkhoyan, K. A.; Contryman, A. W.; Silcox, J.; Stewart, D. A.; Eda, G.; Mattevi, C.; Miller, S.; Chhowalla,M. Atomic and electronic structure of graphene-oxide. [J] Nano Lett.2009,9(3):1058-1063.
    [119]Gomez-Navarro, C.; Burghard, M.; Kern, K. Elastic properties of chemically derived single graphene sheets. [J] Nano Lett.2008,8(7):2045-2049.
    [120]Park, S.; Lee, K.; Bozoklu, G.; Cai, W.; Nguyen, S. T.; Ruoff, R. S. Graphene oxide papers modified by divalent ions-enhancing mechanical properties via chemical cross-linking. [J] ACS Nano 2008,2(3):572-578.
    [121]Margine, E. R.; Bocquet, M. L.; Blase, X. Thermal stability of graphene and nanotube covalent functionalization. [J] Nano Lett.2008,8(10):3315-3319.
    [122]Ritter, K. A.; Lyding, J. W. The influence of edge structure on the electronic properties of graphene quantum dots and nanoribbons. [J] Nat. Mater.2009,8(3):235-242.
    [123]Craciun, M. F.; Russo, S.; Yamamoto, M.; Oostinga, J. B.; Morpurgo, A. F.; Tarucha, S. Trilayer graphene is a semimetal with a gate-tunable band overlap. [J] Nat. Nanotechnol.2009, 4(6):383-388.
    [124]Moreno-Moreno, M.; Castellanos-Gomez, A.; Rubio-Bollinger, G.; Gomez-Herrero, J.; Agrait, N. Ultralong natural graphene nanoribbons and their electrical conductivity. [J] Small 2009,5(8):924-927.
    [125]Jung,I.; Dikin, D. A.; Park, S.; Cai, W.; Mielke, S. L.; Ruoff, R. S. Effect of water vapor on electrical properties of individual reduced graphene oxide sheets. [J] J Phys. Chem. C 2008, 112(51):20264-20268.
    [126]Liu, N.; Luo, F.; Wu, H.; Liu, Y.; Zhang, C.; Chen, J. One-step ionic-liquid-assisted electrochemical synthesis of ionic-liquid-functionalized graphene sheets directly from graphite. [J] Adv. Funct. Mater.2008,18(10):1518-1525.
    [127]Dikin, D. A.; Stankovich, S.; Zimney, E. J.; Piner, R. D.; Dommett, G. H. B.; Evmenenko, G.; Nguyen, S. T.; Ruoff, R. S. Preparation and characterization of graphene oxide paper. [J] Nature 2007, 448(7152):457-460.
    [128]Gomez-Navarro, C.; Weitz, R. T.; Bittner, A. M.; Scolari, M.; Mews, A.; Burghard, M.; Kern, K. Electronic transport properties of individual chemically reduced graphene oxide sheets. [J] Nano Lett. 2007,7(11):3499-3503.
    [129]Wang, J.; Hernandez, Y.; Lotya, M.; Coleman, J. N.; Blau, W. J. Broadband nonlinear optical response of graphene dispersions. [J] Adv. Mater.2009,21(23):2430-2435.
    [130]Xu, Y.; Liu, Z.; Zhang, X.; Wang, Y.; Tian, J.; Huang, Y.; Ma, Y.; Zhang, X.; Chen, Y. A graphene hybrid material covalently functionalized with porphyrin:synthesis and optical limiting property. [J] Adv. Mater.2009,21(12):1275-1279.
    [131]Zhou, Y.; Bao, Q.; Tang, L. A. L.; Zhong, Y.; Loh, Kian P. Hydrothermal dehydration for the "green" reduction of exfoliated graphene oxide to graphene and demonstration of tunable optical limiting properties. [J] Chem. Mater.2009,21(13):2950-2956.
    [132]Wu, Z.; Pei, S.; Ren, W.; Tang, D.; Gao, L.; Liu, B.; Li, F.; Liu, C.; Cheng, H. Field emission of single-layer graphene films prepared by electrophoretic deposition. [J] Adv. Mater.2009, 21(17):1756-1760.
    [133]Park, S.; An, J.; Piner, R. D.; Jung, I.; Yang, D.; Velamakanni, A.; Nguyen, S. T.; Ruoff, R. S. Aqueous suspension and characterization of chemically modified graphene sheets. [J] Chem. Mater. 2008,20(21):6592-6594.
    [134]Park, S.; An, J.; Jung, I.; Piner, R. D.; An, S. J.; Li, X.; Velamakanni, A.; Ruoff, R. S. Colloidal suspensions of highly reduced graphene oxide in a wide variety of organic solvents. [J] Nano Lett.2009,9(4):1593-1597.
    [135]Cai, D.; Song, M. Preparation of fully exfoliated graphite oxide nano platelets in organic solvents. [J] J Mater. Chem.2007,17(35):3678-3680.
    [136]Hernandez, Y.; Nicolosi, V.; Lotya, M.; Blighe, F. M.; Sun, Z.; De, S.; McGovern, I. T.; Holland, B.; Byrne, M.; Gun'Ko, Y. K.; Boland, J. J.; Niraj, P.; Duesberg, G.; Krishnamurthy, S.; Goodhue, R.; Hutchison, J.; Scardaci, V.; Ferrari, A. C.; Coleman, J. N. High-yield production of graphene by liquid-phase exfoliation of graphite. [J] Nat. Nanotechnol.2008,3(9):563-568.
    [137]Niyogi, S.; Bekyarova, E.; Itkis, M. E.; McWilliams, J. L.; Hamon, M. A.; Haddon, R. C. Solution properties of graphite and graphene. [J] J Am. Chem. Soc.2006,128(24):7220-7721.
    [138]Lotya, M.; Hernandez, Y.; King, P. J.; Smith, R. J.; Nicolosi, V.; Karlsson, L. S.; Blighe, F. M.; De, S.; Wang, Z.; McGovern, I. T.; Duesberg, G. S.; Coleman, J. N. Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions. [J] J Am. Chem. Soc.2009, 131(10):3611-3620.
    [139]Chae, S. J.; Guenes, F.; Kim, K. K.; Kim, E. S.; Han, G. H.; Kim, S. M.; Shin, H.; Yoon, S.; Choi, J.; Park, M. H.; Yang, C. W.; Pribat, D.; Lee, Y. H. Synthesis of large-area graphene layers on poly-nickel substrate by chemical vapor deposition:wrinkle formation. [J] Adv. Mater.2009, 21(22):2328-2333.
    [140]Obraztsov A.N. Chemical vapour deposition:making graphene on a large scale. [J] Nat. Nanotechnol.2009,4(4):212-213.
    [141]Si, Y.; Samulski, E. T. Synthesis of water soluble graphene. [J] Nano Lett.2008, 8(6):1679-1682.
    [142]Schniepp, H. C.; Li, J.; McAllister, M. J.; Sai, H.; Herrera-Alonso, M.; Adamson, D. H.; Prud'homme, R. K.; Car, R.; Saville, D. A.; Aksay, I. A. Functionalized single graphene sheets derived from splitting graphite oxide. [J] J Phys. Chem. B 2006,110(17):8535-8539.
    [143]Li, D.; Mueller, M. B.; Gilje, S.; Kaner, R. B.; Wallace, G. G. Processable aqueous dispersions of graphene nanosheets. [J] Nat. Nanotechnol.2008,3(2):101-105.
    [144]Stankovich, S.; Piner, R. D.; Chen, X.; Wu, N.; Nguyen, S. T.; Ruoff, R. S. Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly(sodium 4-styrenesulfonate). [J] J Mater. Chem.2006,16(2):155-158.
    [145]McAllister, M. J.; Li, J.; Adamson, D. H.; Schniepp, H. C.; Abdala, A. A.; Liu, J.; Herrera-Alonso, M.; Milius, D. L.; Car, R.; Prud'homme, R. K.; Aksay, I. A. Single sheet functionalized graphene by oxidation and thermal expansion of graphite. [J] Chem. Mater.2007, 19(18):4396-4404.
    [146]Stankovich, Sa.; Dikin, D. A.; Piner, R. D.; Kohlhaas, K. A.; Kleinhammes, A.; Jia, Y.; Wu, Y.; Nguyen, S. T.; Ruoff, R. S. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. [J] Carbon 2007,45(7):1558-1565.
    [147]Xu, Y.; Bai, H.; Lu, G.; Li, C.; Shi, G. Flexible graphene films via the filtration of water-soluble noncovalent functionalized graphene sheets. [J] J Am. Chem. Soc.2008, 130(18):5856-5857.
    [148]Worsley, K. A.; Ramesh, P.; Mandal, S. K.; Niyogi, S.; Itkis, M. E.; Haddon, R. C. Soluble graphene derived from graphite fluoride. [J] Chem. Phys. Lett.2007,445(1-3):51-56.
    [149]Subrahmanyam, K. S.; Vivekchand, S. R. C.; Govindaraj, A.; Rao, C. N. R. A study of graphenes prepared by different methods:characterization, properties and solubilization. [J] J Mater. Chem.2008,18(13):1517-1523.
    [150]Wang, G.; Yang, J.; Park, J.; Gou, X.; Wang, B.; Liu, H.; Yao, J. Facile synthesis and characterization of graphene nanosheets. J Phys. Chem. C 2008,112(22):8192-8195
    [151]Gilje, S.; Han, S.; Wang, M.; Wang, K. L.; Kaner, R. B. A chemical route to graphene for device applications. [J] Nano Lett.2007,7(11):3394-3398.
    [152]Kim, C.; Min, B.; Jung, W. Preparation of graphene sheets by the reduction of carbon monoxide. [J] Carbon 2009,47(6):1610-1612.
    [153]Valles, C.; Drummond, C.; Saadaoui, H.; Furtado, C. A.; He, M.; Roubeau, O.; Ortolani, L.; Monthioux, M.arc; Penicaud, A. Solutions of negatively charged graphene sheets and ribbons. [J] J Am. Chem. Soc.2008,130(47):15802-15804.
    [154]Viculis, L. M.; Mack, J. J.; Mayer, O. M.; Hahn, H. T.; Kaner, R. B. Intercalation and exfoliation routes to graphite nanoplatelets. [J] J Mater. Chem.2005,15(9):974-978.
    [155]Juang, Z.; Wu, C.; Lo, C.; Chen, W.; Huang, C.; Hwang, J.; Chen, F.; Leou, K.; Tsai, C. Synthesis of graphene on silicon carbide substrates at low temperature. [J] Carbon 2009, 47(8):2026-2031.
    [156]Shukla, A.; Kumar, R.; Mazher, J.; Balan, A. Graphene made easy:high quality, large-area samples. [J] Solid State Communications 2009,149(17-18):718-721.
    [157]Kosynkin, D. V.; Higginbotham, A. L.; Sinitskii, A.; Lomeda, J. R.; Dimiev, A.; Price, B. K.; Tour, J. M. Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. [J] Nature 2009,458(7240):872-876.
    [158]Terrones, M. Materials science:nanotubes unzipped. [J] Nature 2009,458(7240):845-846.
    [159]Gu, W.; Zhang, W.; Li, X.; Zhu, H.; Wei, J.; Li, Z.; Shu, Q.; Wang, C.; Wang, K.; Shen, W.i; Kang, F.; Wu, D. Graphene sheets from worm-like exfoliated graphite. [J] J Mater. Chem.2009, 19(21):3367-3369.
    [160]Geng, Y.; Wang, S. J.; Kim, J. Preparation of graphite nanoplatelets and graphene sheets. [J] J Colloid Interf. Sci.2009,336(2):592-598.
    [161]Hassan, H. M. A.; Abdelsayed, V.; Khder, A. E. R. S.; AbouZeid, K. M.; Terner, J.; El-Shall, M. S.; Al-Resayes, S. I.; El-Azhary, A. A. Microwave synthesis of graphene sheets supporting metal nanocrystals in aqueous and organic media. [J] J Mater. Chem.2009,19(23):3832-3837.
    [162]Guan, L.; Li, J. Transforming carbon nanotubes to few-layer graphene with the assistance of encapsulated ferrocene. [J] J Phys. Chem. C 2009,113(18):7481-7483.
    [163]Nethravathi, C.; Rajamathi, M. Chemically modified graphene sheets produced by the solvothermal reduction of colloidal dispersions of graphite oxide. [J] Carbon 2008,46(14):1994-1998.
    [164]Herrera-Alonso, M.; Abdala, A. A.; McAllister, M. J.; Aksay,I. A.; Prud'homme, R. K. Intercalation and stitching of graphite oxide with diaminoalkanes. [J] Langmuir 2007, 23 (21):10644-10649.
    [165]Matsuo, Y.; Tabata, T.; Fukunaga, T.; Fukutsuka, T.; Sugie, Y. Preparation and characterization of silylated graphite oxide. [J] Carbon 2005,43(14):2875-2882.
    [166]Lomeda, J. R.; Doyle, C. D.; Kosynkin, D. V.; Hwang, W.; Tour, J. M. Diazonium functionalization of surfactant-wrapped chemically converted graphene sheets. [J] J Am. Chem. Soc. 2008,130(48):16201-16206.
    [167]Yang, H.; Shan, C.; Li, F.; Han, D.; Zhang, Q.; Niu, L. Covalent functionalization of polydisperse chemically-converted graphene sheets with amine-terminated ionic liquid. [J] Chem. Commun.2009,26:3880-3882.
    [168]Sundaram, R. S.; Gomez-Navarro, C.; Balasubramanian, K.; Burghard, M.; Kern, K. Electrochemical modification of graphene. [J] Adv. Mater.2008,20(16):3050-3053.
    [169]Stankovich, S.; Piner, R. D.; Nguyen, S.T.; Ruoff, R. S. Synthesis and exfoliation of isocyanate-treated graphene oxide nanoplatelets. [J] Carbon 2006,44(15):3342-3347.
    [170]Li, Y.; Wu, Y. Coassembly of graphene oxide and nanowires for large-area nanowire alignment. [J] J Am. Chem. Soc.2009,131(16):5851-5857.
    [171]Wang, G.; Shen, X.; Wang, B.; Yao, J.; Park, J. Synthesis and characterisation of hydrophilic and organophilic graphene nanosheets. [J] Carbon 2009,47(5):1359-1364.
    [172]Su, Q.; Pang, S.; Alijani, V.; Li, C.; Feng, X.; Muellen, K. Composites of graphene with large aromatic molecules. [J] Adv. Mater.2009,21(31):3191-3195.
    [173]Liang, Y.; Wu, D.; Feng, X.; Muellen, K. Dispersion of graphene sheets in organic solvent supported by ionic interactions. [J] Adv. Mater.2009,21 (17):1679-1683.
    [174]Gao, L.; Ren, W.; Liu, B.; Wu, Z.; Jiang, C.; Cheng, H. Crystallographic tailoring of graphene by nonmetal SiOx nanoparticles. [J] J Am. Chem. Soc.2009,131(39):13934-13936.
    [175]Lu, Y. H.; Chen, W.; Feng, Y. P.; He, P. M. Tuning the electronic structure of graphene by an organic molecule. [J] J Phys. Chem. B 2009,113(1):2-5.
    [176]Bai, H.; Xu, Y.; Zhao, L.; Li, C.; Shi, G. Non-covalent functionalization of graphene sheets by sulfonated polyaniline. [J] Chem. Commun.2009,13:1667-1669.
    [177]Li, F.; Yang, H.; Shan, C.; Zhang, Q.; Han, D.; Ivaska, A.; Niu, L. The synthesis of perylene-coated graphene sheets decorated with Au nanoparticles and its electrocatalysis toward oxygen reduction. [J] J Mater. Chem.2009,19(23):4022-4025.
    [178]Ramesha, G. K.; Sampath, S. Electrochemical reduction of oriented graphene oxide films:an in situ raman spectroelectrochemical study. [J] J Phys. Chem. C 2009,113(19):7985-7989.
    [179]Feng, X.; Liu, K.; Xie, X.; Zhou, R.; Zhang, L.; Li, Q.; Fan, S.; Jiang, K. Thermal analysis study of the growth kinetics of carbon nanotubes and epitaxial graphene layers on them. [J] J Phys. Chem. C 2009,113(22):9623-9631.
    [180]Li, G.; Luican, A.; Andrei, E. Y.Scanning tunneling spectroscopy of graphene on graphite. [J] Phys. Rev. Lett.2009,102(17):176804/1-176804/4
    [181]Carlsson, J. M.; Hanke, F.; Linic, S.; Scheffler, M. Two-step mechanism for low-temperature oxidation of vacancies in graphene. [J] Phys. Rev. Lett.2009,102(16):166104/1-166104/4.
    [182]Krauss, B.; Lohmann, T.; Chae, D.; Haluska, M.; Von Klitzing, K.; Smet, J. H. Laser-induced disassembly of a graphene single crystal into a nanocrystalline network. [J] Phys. Rev. B 2009,79(16): 165428/1-165428/9.
    [183]Hiebel, F.; Mallet, P.; Varchon, F.; Magaud, L.; Veuillen, J. Scanning tunneling microscopy investigation of the graphene/6H-SiCinterface. [J] Solid State Commun.2009,149(27-28):1157-1160.
    [184]Rochefort, A.; Yang, D.; Sacher, E. Stabilization of platinum nanoparticles on graphene by non-invasive functionalization. [J] Carbon 2009,47(9):2233-2238.
    [185]Leenaerts, O.; Partoens, B.; Peeters, F. M. Adsorption of small molecules on graphene. [J] Microelectron. J 2009,40(4-5):860-862.
    [186]Wintterlin, J.; Bocquet, M. Graphene on metal surfaces. [J] Surf. Sci.2009, 603(10-12):1841-1852.
    [187]Ryu, S.; Han, M. Y.; Maultzsch, J.; Heinz, T. F.; Kim, P.; Steigerwald, M. L.; Brus, L. E. Reversible basal plane hydrogenation of graphene. [J] Nano Lett.2008,8(12):4597-4602.
    [188]Dayen, J.; Mahmood, A.; Golubev, D. S.; Roch-Jeune, I.; Salles, P.; Dujardin, E. Side-gated transport in focused-ion-beam-fabricated multilayered graphene nanoribbons. [J] Small 2008, 4(6):716-720.
    [189]Allen, M. J.; Fowler, J. D.; Tung, V. C.; Yang, Y.; Weiller, B. H.; Kaner, R. B. Temperature dependent Raman spectroscopy of chemically derived graphene. [J] Appl. Phys. Lett.2008, 93(19):193119/1-193119/3.
    [190]Kudin, K. N.; Ozbas, B.; Schniepp, H. C.; Prud'homme, R. K.; Aksay, I. A.; Car, R. Raman spectra of graphite oxide and functionalized graphene sheets. [J] Nano Lett.2008,8(1):36-41.
    [191]Du, A. J.; Smith, S. C.; Lu, G. Q. Formation of single-walled carbon nanotube via the interaction of graphene nanoribbons:Ab initio density functional calculations. [J] Nano Lett.2007,7,3349-3354
    [192]Wang, X.; Tabakman, S. M.; Dai, H. Atomic layer deposition of Metal Oxides on Pristine and Functionalized Graphene. [J] J Am. Chem. Soc.2008,130(26):8152-8153.
    [193]Yan, J.; Zhang, Y.; Goler, S.; Kim, P.; Pinczuk, A. Raman scattering and tunable electron-phonon coupling in single layer graphene. [J] Solid State Commun.2007,143(1-2):39-43.
    [194]Ni, Z. H.; Wang, H. M.; Kasim, J.; Fan, H. M.; Yu, T.; Wu, Y. H.; Feng, Y. P.; Shen, Z. X. Graphene thickness determination using reflection and contrast spectroscopy. [J] Nano Lett.2007, 7(9):2758-2763.
    [195]Ferrari, A. C. Raman spectroscopy of graphene and graphite:disorder, electron-phonon coupling, doping and nonadiabatic effects. [J] Solid State Commun.2007,143(1-2):47-57.
    [196]Paredes, J. I.; Villar-Rodil, S.; Solis-Fernandez, P.; Martinez-Alonso, A.; Tascon, J. M. D. Atomic force and scanning tunneling microscopy imaging of gaphene nanosheets derived from graphite oxide. [J] Langmuir 2009,25(10):5957-5968.
    [197]Tung, V. C.; Chen, L.; Allen, M. J.; Wassei, J. K.; Nelson, K.; Kaner, R. B.; Yang, Y. Low-temperature solution processing of graphene-carbon nanotube hybrid materials for High-Performance Transparent Conductors. [J] Nano Lett.2009,9(5):1949-1955.
    [198]Eda, G.; Chhowalla, M. Graphene-based composite thin films for electronics. [J] Nano Lett.2009, 9(2):814-818.
    [199]Pang, S.; Tsao, H. N.; Feng, X.; Muellen, K. Patterned graphene electrodes from solution-processed graphite oxide films for organic field-effect transistors. [J] Adv. Mater.2009, 21(34):3488-3491.
    [200]Robinson, J. T.; Zalalutdinov, M.; Baldwin, J. W.; Snow, E. S.; Wei, Z.; Sheehan, P.; Houston, B. H. Wafer-scale reduced graphene oxide films for nanomechanical devices. [J] Nano Lett.2008, 8(10):3441-3445.
    [201]Eda, G.; Lin, Y.; Miller, S.; Chen, C.; Su, W.; Chhowalla, M. Transparent and conducting electrodes for organic electronics from reduced graphene oxide. [J] Appl. Phys. Lett.2008, 92(23):233305/1-233305/3.
    [202]Becerril, H. A.; Mao, J.; Liu, Z.; Stoltenberg, R. M.; Bao, Z.; Chen, Y. Evaluation of solution-processed reduced graphene oxide films as transparent conductors. [J] ACS Nano 2008, 2(3):463-470.
    [203]Wang, C.; Li, D.; Too, C. O.; Wallace, G. G. Electrochemical properties of graphene paper electrodes used in lithium batteries. [J] Chem. Mater.2009,21(13):2604-2606.
    [204]Wang, G.; Shen, X.; Yao, J.; Park, J. Graphene nanosheets for enhanced lithium storage in lithium ion batteries. [J] Carbon 2009,47(8):2049-2053.
    [205]Kim, K. S.; Zhao, Y.; Jang, H.; Lee, S. Y.; Kim, J. M.; Kim, K. S.; Ahn, J.; Kim, P.; Choi, J.; Hong, Byung Hee. Large-scale pattern growth of graphene films for stretchable transparent electrodes. [J] Nature 2009,457(7230):706-710.
    [206]Hong, W.; Xu, Y.; Lu, G.; Li, C.; Shi, G. Transparent graphene/PEDOT-PSS composite films as counter electrodes of dye-sensitized solar cells. [J] Electrochem. Commun.2008,10(10):1555-1558.
    [207]Yoo, E.; Kim, J.; Hosono, E.; Zhou, H.; Kudo, T.; Honma, I. Large reversible Li storage of graphene nanosheet families for Use in Rechargeable Lithium Ion Batteries. [J] Nano Lett.2008, 8(8):2277-2282.
    [208]Wang, X.; Zhi, L.; Muellen, K. Transparent, conductive graphene electrodes for dye-sensitized solar cells. [J] Nano Lett.2008,8(1):323-327.
    [209]Liu, Q.; Liu, Z.; Zhang, X.; Yang, L.; Zhang, N.; Pan, G.; Yin, S.; Chen, Y.; Wei, J. Polymer photovoltaic cells based on solution-processable graphene and P3HT. [J] Adv. Funct. Mater.2009, 19(6):894-904.
    [210]Das, B.; Prasad, K. E.; Ramamurty, U.; Rao, C. N. R. Nano-indentation studies on polymer matrix composites reinforced by few-layer graphene. [J] Nanotechnology 2009, 20(12):125705/1-125705/5.
    [211]Wei, T.; Luo, G.; Fan, Z.; Zheng, C.; Yan, J.; Yao, C.; Li, W.; Zhang, C. Preparation of graphene nanosheet/polymer composites using in situ reduction-extractive dispersion. [J] Carbon 2009, 47(9):2296-2299.
    [212]Nethravathi, C.; Nisha, T.; Ravishankar, N.; Shivakumara, C.; Rajamathi, M. Graphene-nanocrystalline metal sulphide composites produced by a one-pot reaction starting from graphite oxide. [J] Carbon 2009,47(8):2054-2059.
    [213]Villar-Rodil, S.; Paredes, J. I.; Martinez-Alonso, A.; Tascon, J. M. D. Preparation of graphene dispersions and graphene-polymer composites in organic media. [J] J Mater. Chem.2009, 19(22):3591-3593.
    [214]Wang, H.; Hao, Q.; Yang, X.; Lu, L.; Wang, X. Graphene oxide doped polyaniline for supercapacitors. [J] Electrochem. Commun.2009,11(6):1158-1161.
    [215]Zhou, X.; Huang, X.; Qi, X.; Wu, S.; Xue, C.; Boey, F. Y. C.; Yan, Q.; Chen, P.; Zhang, H. In situ synthesis of metal nanoparticles on single-layer graphene oxide and reduced graphene oxide surfaces. [J] J Phys. Chem. C 2009,113(25):10842-10846.
    [216]Ansari, S.; Giannelis, E. P. Functionalized graphene sheet-poly(vinylidene fluoride) conductive nanocomposites. [J] J Polym. Sci. Polym. Phys.2009,47(9):888-897.
    [217]Liang, J.; Huang, Y.; Zhang, L.; Wang, Y.; Ma, Y.; Guo, T.; Chen, Y. Molecular-level dispersion of graphene into poly(vinyl alcohol) and effective reinforcement of their nanocomposites. [J] Adv. Funct. Mater.2009,19(14):2297-2302.
    [218]Vickery, J. L.; Patil, A. J.; Mann, S. Fabrication of graphene-polymer nanocomposites with higher-order three-dimensional architectures. [J] Adv. Mater.2009,21(21):2180-2184.
    [219]Liang, J.; Xu, Y.; Huang, Y.; Zhang, L.; Wang, Y.; Ma, Y.; Li, F.; Guo, T.; Chen, Y. Infrared-triggered actuators from graphene-based nanocomposites. [J] J Phys. Chem. C 2009, 113(22):9921-9927.
    [220]Xu, Y.; Wang, Y.; Liang, J.; Huang, Y.; Ma, Y.; Wan, X.; Chen, Y. A hybrid material of graphene and poly (3,4-ethyldioxythiophene) with high conductivity, flexibility, and transparency. [J] Nano Res.2009,2(4):343-348.
    [221]Ramanathan, T.; Abdala, A. A.; Stankovich, S.; Dikin, D. A.; Herrera-Alonso, M.; Piner, R. D.; Adamson, D. H.; Schniepp, H. C.; Chen, X.; Ruoff, R. S.; Nguyen, S. T.; Aksay, I. A.; Prud'Homme, R. K.; Brinson, L. C. Functionalized graphene sheets for polymer nanocomposites. [J] Nat. Nanotechnol. 2008,3(6):327-331.
    [222]Xu, C.; Wang, X.; Zhu, J. Graphene-metal particle nanocomposites. [J] J Phys. Chem. C 2008, 112(50):19841-19845.
    [223]Stankovich, S.; Dikin, D. A.; Dommett, G. H. B.; Kohlhaas, K. M.; Zimney, E. J.; Stach, E. A.; Piner, R. D.; Nguyen, S. T.; Ruoff, R. S. Graphene-based composite materials. [J] Nature 2006, 442(7100):282-286.
    [224]Steurer, P.; Wissert, R.; Thomann, R.; Muelhaupt, R. Functionalized graphenes and thermoplastic nanocomposites based upon expanded graphite oxide. [J] Macromol. Rapid Comm. 2009,30(4-5):316-327.
    [225]Verdejo, R.; Saiz-Arroyo, C.; Carretero-Gonzalez, J.; Barroso-Bujans, F.; Rodriguez-Perez, M. A.; Lopez-Manchado, M. A. Physical properties of silicone foams filled with carbon nanotubes and functionalized graphene sheets. [J] Eur Polym J 2008,44(9):2790-2797.
    [226]Nethravathi, C.; Viswanath, B.; Shivakumara, C.; Mahadevaiah, N.; Rajamathi, M. The production of smectite clay/graphene composites through delamination and co-stacking. [J] Carbon 2008,46(13):1773-1781.
    [227]Alwarappan, S.; Erdem, A.; Liu, C.; Li, C. Probing the electrochemical properties of graphene nanosheets for biosensing applications. [J] J Phys. Chem. C 2009,113(20):8853-8857.
    [228]Zhou, M.; Zhai, Y.; Dong, S. Electrochemical sensing and biosensing platform based on chemically reduced graphene oxide. [J] Anal. Chem.2009,81(14):5603-5613.
    [229]Lu, C.; Yang, H.; Zhu, C.; Chen, X.; Chen, G. A graphene platform for sensing biomolecules. [J] Angew. Chem. Int. Edit.2009,48(26):4785-4787.
    [230]Patil, A. J.; Vickery, J. L.; Scott, T. B.; Mann, S. Aqueous stabilization and self-assembly of graphene sheets into layered bio-nanocomposites using DNA. [J] Adv. Mater.2009, 21(31):3159-3164.
    [231]Yang, X.; Zhang, X.; Ma, Y.; Huang, Y.; Wang, Y.; Chen, Y. Superparamagnetic graphene oxide-Fe3O4 nanoparticles hybrid for controlled targeted drug carriers. [J] J Mater. Chem.2009, 19(18):2710-2714.
    [232]Sun, X.; Liu, Z.; Welsher, K.; Robinson, J. T.; Goodwin, A.; Zaric, S.; Dai, H. Nano-graphene oxide for cellular imaging and drug delivery. [J] Nano Res.2008,1(3):203-212.
    [233]Yang, X.; Zhang, X.; Liu, Z.; Ma, Y.; Huang, Y.; Chen, Y. High-efficiency loading and controlled release of doxorubicin hydrochloride on graphene oxide. [J] J Phys. Chem. C 2008, 112(45):17554-17558.
    [234]Liu, Z.; Robinson, J. T.; Sun, X.; Dai, H. PEGylated nano-graphene oxide for delivery of water insoluble cancer drugs. [J] J. Am. Chem. Soc.,2008,130(33):10876-10877
    [235]Kitano, M.; Yamaguchi, D.; Suganuma, S.; Nakajima, K.; Kato, H.; Hayashi, S.; Hara, M. Adsorption-enhanced hydrolysis of 1,4-glucan on graphene-based amorphous carbon bearing SO3H, COOH, and OH groups. [J] Langmuir 2009,25(9)5068-:5075.
    [236]Li, J.; Guo, S.; Zhai, Y.; Wang, E. Nafion-graphene nanocomposite film as enhanced sensing platform for ultrasensitive determination of cadmium. [J] Electrochem. Commun.2009, 11(5):1085-1088.
    [237]Robinson, J. T.; Perkins, F. K.; Snow, E. S.; Wei, Z.; Sheehan, P. E. Reduced graphene oxide molecular sensors. [J] Nano Lett.2008,8(10):3137-3140.
    [238]Ang, P. K.; Chen, W.; Wee, A.T.S.; Loh, K. P. Solution-gated epitaxial graphene as pH Sensor. [J] J Am. Chem. Soc.2008,130(44):14392-14393.
    [239]Fowler, J.D.; Allen, M. J.; Tung, V. C.; Yang, Y.; Kaner, R. B.; Weiller, B. H. Practical chemical sensors from chemically derived graphene. [J] ACS Nano 2009,3(2):301-306.
    [240]Scheuermann, G. M.; Rumi, L.; Steurer, P.; Bannwarth, W.; Mulhaupt, R. Palladium nanoparticles on graphite oxide and its functionalized graphene derivatives as highly active catalysts for the Suzuki-Miyaura coupling reaction. [J] J Am. Chem. Soc.2009,131(23):8262-8270.
    [241]Yoo, E.; Okata, T.; Akita, T.; Kohyama, M.; Nakamura, J.; Honma, I. Enhanced electrocatalytic activity of Pt subnanoclusters on graphene nanosheet surface. [J] Nano Lett.2009, 9(6):2255-2259.
    [242]Nika, D. L.; Ghosh, S.; Pokatilov, E. P.; Balandin, A. A. Lattice thermal conductivity of graphene flakes:comparison with bulk graphite. [J] Appl. Phys. Lett.2009,94(20): 203103/1-203103/3.
    [243]Kou, R.; Shao, Y.; Wang, D.; Engelhard, M. H.; Kwak, J. H.; Wang, J.; Viswanathan, V. V.; Wang, C.; Lin, Yuehe; Wang, Y.; Aksay, I. A.; Liu, J. Enhanced activity and stability of Pt catalysts on functionalized graphene sheets for electrocatalytic oxygen reduction. [J] Electrochem. Commun. 2009, 11(5):954-957.
    [244]Si, Y.; Samulski, E. T. Exfoliated graphene separated by platinum nanoparticles. [J] Chemi. Mater.2008,20(21):6792-6797.
    [245]Niu, L.; Ryu, S.;Tomasik, M. R.; Stolyarova, E.; Jung, N.; Hybertsen, M. S.; Steigerwald, M. L. Brus, L. E.; Flynn, G. W. Graphene oxidation:thickness-dependent etching and strong chemical doping. [J] Nano Lett.2008,8(7):1965-1970.
    [246]Muszynski, R.; Seger, B.; Kamat, P. V. Decorating graphene sheets with gold nanoparticles. [J] J Phys. Chem. C 2008,112(14):5263-5266
    [247]Calizo, I.; Balandin, A. A.; Bao, W.; Miao, F.; Lau, C. N. Temperature dependence of the Raman spectra of graphene and graphene multilayers. [J] Nano Lett.2007,7(9):2645-2649.
    [248]Li, Z.; Zhang, W.; Luo, Y.; Yang, J.; Hou, J. G. How graphene is cut upon oxidation? [J] J Am. Chem. Soc.2009,131(18):6320-6321.
    [249]Mattevi, C.; Eda, G.; Agnoli, S.; Miller, S.; Mkhoyan, K. A.; Celik,O.; Mastrogiovanni, D.; Granozzi, G.; Garfunkel, E.; Chhowalla, M. Evolution of electrical, chemical, and structural properties of transparent and conducting chemically derived graphene thin films. [J] Adv. Funct. Mater. 2009,19(16):2577-2583.
    [250]Tang, L.; Wang, Y.; Li, Y.; Feng, H.; Lu, J.; Li, J. Preparation, structure, and electrochemical properties of reduced graphene sheet films. [J] Adv. Funct. Mater.2009,19(17):2782-2789.
    [251]Li, X.; Zhang, G.; Bai, X.; Sun, X.; Wang, X.; Wang, E.; Dai, H. Highly conducting graphene sheets and Langmuir-Blodgett films. [J] Nat. Nanotechnol.2008,3(9):538-542.
    [252]Watcharotone, S.; Dikin, D. A.; Stankovich, S.; Piner, R.; Jung, I.; Dommett, G. H. B.; Evmenenko, G.; Wu, S.; Chen, S.; Liu, C.; Nguyen, S. T.; Ruoff, R. S. Graphene-silica composite thin films as transparent conductors. [J] Nano Lett.2007,7(7):1888-1892
    [253]Allen, M.J.; Tung, V.t C.; Gomez, L.; Xu, Z.; Chen, L.; Nelson, K. S.; Zhou, C.; Kaner, R. B.; Yang, Y. Soft transfer printing of chemically converted graphene. [J] Adv. Mater.2009, 21(20):2098-2102.
    [254]Kong, B.; Geng, J.; Jung, H. Layer-by-layer assembly of graphene and gold nanoparticles by vacuum filtration and spontaneous reduction of gold ions. [J] Chem. Commun.2009,16:2174-2176.
    [255]Li, D.; Windl, W.; Padture, N. P. Toward site-specific stamping of graphene. [J] Adv. Mater.2009,21(12):1243-1246.
    [256]Luechinger, N. A.; Booth, N.; Heness, G.; Bandyopadhyay, S.; Grass, R. N.; Stark, W. J. Surfactant-free, melt-processable metal-polymer hybrid materials:use of graphene as a dispersing agent. [J] Adv. Mater.2008,20:3044-3049
    [257]Szabo, T.; Bakandritsos, A.; Tzitzios, V.; Devlin, E.; Petridis, D.; Dekany, I. Magnetically modified single and turbostratic stacked graphenes from tris(2,2'-bipyridyl) iron(Ⅱ) ion-exchanged graphite oxide. [J] J Phys. Chem. B 2008,112(46):14461-14469.
    [258]Fan, F. F.; Park, S.; Zhu, Y.; Ruoff, R. S.; Bard, A. J. Electrogenerated chemiluminescence of partially oxidized highly oriented pyrolytic graphite surfaces and of graphene oxide nanoparticles. [J] J Am. Chem. Soc.2009,131(3):937-939.
    [1]Dong, S.; Zhang, X.; Tu, J.; Wang, C.; Liu, M. A new type nano metre material-carbon nanotube. [J] Materials Science& Engineering(Chinese) 1998,16 (12):20-23.
    [2]Hone, J.; Whitney, M.; Zettl, A. Thermal conductivity of single-walled carbon nanotubes. [J] Synthetic Met.1999,103(1):2498-2499.
    [3]Sun, X.; Zhao, W. Prediction of stiffness and strength of single-walled carbon nanotubes by molecular-mechanics based finite element approach. [J] Mat. Sci. Eng A-Struct.2005,390(1):366-371.
    [4]Eugen, U.; Andrew, G.; Franz, K.; Maik, L.; Wolfgang, H. Electrochemical functionalization of multi-walled carbon nanotubes for solvation and purification. [J] Curr. Appl. Phys.2002,2:107-111
    [5]Valentini, L.; Puglia, D.; Armentano, I.; Kenny, J. M. Sidewall functionalization of single-walled carbon nanotubes through CF4 plasma treatment and subsequent reaction with aliphatic amines. [J] Chem. Phys. Lett.2005,403(4):385-389.
    [6]Yamaguchi, I.; Yamamoto, T. Soluble self-doped single-walled carbon nanotube. [J] Mater. Lett. 2004,58(5):598-603.
    [7]Chen, W.; Tao, X.; Xue, P.; Cheng, X. Enhanced mechanical properties and morphological characterizations of poly(vinyl alcohol)-carbon nanotube composite films. [J] Appl. Surf. Sci.2005, 252(5):1404-1409.
    [8]Yang, Z.; Li, X.; Li, J.; Wang, H.; Fang, H.; Chen, Z. Study on the purificatiion of carbon nanotubes. [J] Cent--Southuniversity.Technology (Chinese) 1999,30(4):389-391
    [9]Chen, X. H.; Chen, C. S.; Chen, Q.; Cheng, F. Q.; Zhang, G.; Chen, Z. Z.. Non-destructive purification of multi-walled carbon nanotubes produced by catalyzed CVD. [J] Mater. Lett.2002, 57(3):734-738.
    [10]Huang, W.; Wang, Y.; Luo, G.; Wei, F.99.9% purity multi-walled carbon nanotubes by vacuum high-temperature annealing. [J] Carbon 2003,41(13):2585-2590.
    [11]Zhang, D.; Dai, K.; Fang, J.; Can, W.; Shi, L. Research on modifications of carbon nanotubes. [J] Chemical engineering mineral& processing 2004,3:14-17
    [12]Park, Y.; Choi, Y. C.; Kim, K. S.; Chung, D; Bae, D. J.; An, K. H.; Lim, S. C.; Zhu, X. Y.; Lee, Y. H. High yield purification of multiwalled carbon nanotubes by selective oxidation during thermal annealing. [J] Carbon 2001,39(5):655-661.
    [13]Chen, J.; Hamon, M. A.; Hu, H.; Chen, Y.; Rao, A. M.; Eklund, P. C.; Haddon, R. C. Solution properties of single-walled carbon nanotubes. [J] Science 1998,282(5386):95-98.
    [14]Wang, Z.; Jia, Z.; Zhang, Z.; Xu, C.; Liang, J.; Zhu, S.IR-Spectrum studies of effects of nitric acid treatment on carboxyl groups on multiwalled carbon nanotubes. [J] Carbon Technology (Chinese) 1999, 5:14-16
    [15]Zhang, D.; Shi, L.; Fang, J.; Li, X.; Dai, Ki. Preparation and modification of carbon nanotubes. [J] Mater. Lett.2005,59(29):4044-4047.
    [16]Dettlaff-Weglikowska, U.; Benoit, J.; Chiu, P.; Graupner, R.; Lebedkin, S.; Roth, S. Chemical functionalization of single-walled carbon nanotubes. [J] Curr. Appl. Phys.2002,2:497-501
    [17]Huang, W.; Fernando, S.; Allard, L. F.; Sun, Yg. Solubilization of single-walled carbon nanotubes with diamine-terminated oligomeric poly(ethylene glycol) in different functionalization reactions. [J] Nano Lett.2003,3(4):565-568.
    [18]Kuan, H.; Ma, C. M.; Chang, W.; Yuen, S.; Wu, H.; Lee, T. Synthesis, thermal, mechanical and rheological properties of multiwall carbon nanotube/waterborne polyurethane nanocomposite. [J] Compos. Sci. Technol.2005,65(11):1703-1710.
    [19]Stevens, J. L.; Huang, A. Y.; Peng, H.; Chiang, I. W.; Khabashesku, V. N.; Margrave, J. L. Sidewall amino-functionalization of single-walled carbon nanotubes through fluorination and subsequent reactions with terminal diamines. [J] Nano Lett.2003,3(3):331-336.
    [20]Peng, H.; Alemany, L. B.; Margrave, J. L.; Khabashesku, V. N. Sidewall carboxylic acid functionalization of single-walled carbon nanotubes. [J] J. Am. Chem. Soc.2003, 125(49):15174-15182.
    [21]Liu, M.; Yang, Y.; Zhu, T.; Liu, Z. Chemical modification of single-walled carbon nanotubes with peroxytrifluoroacetic acid. [J] Carbon 2005,43(7):1470-1478.
    [22]Wang, Y.; Iqbal, Z.; Malhotra, S. V. Functionalization of carbon nanotubes with amines and enzymes. [J] Chem. Phys. Lett.2005,402(1):96-101.
    [23]Sun, X.; Zhao, W. Prediction of stiffness and strength of single-walled carbon nanotubes by molecular-mechanics based finite element approach. [J] Mat. Sci. Eng A-Struct.2005,390(1):366-371.
    [24]Wang, H.; Zhou, W.; Ho, D. L.; Winey, K. I.; Fischer, J.E.; Glinka, C. J.; Hobbie, E. K. Dispersing single-walled carbon nanotubes with surfactants:A small angle neutron scattering study. [J] Nano Lett.2004,4(9):1789-1793.
    [25]lslam, M. F.; Rojas, E.; Bergey, D. M.; Johnson, A. T.; Yodh, A. G. High Weight Fraction Surfactant Solubilization of Single-Wall Carbon Nanotubes in Water. [J] Nano Lett.2003, 3(2):269-273.
    [26]Moore, V. C.; Strano, M. S.; Haroz, E. H.; Hauge, R. H.; Smalley, R. E.; Schmidt, J.; Talmon, Y. Individually suspended single-walled carbon nanotubes in various surfactants. [J] Nano Lett.2003, 3(10):1379-1382.
    [27]Gigliotti, B.; Sakizzie, B.; Bethune, D. S.; Shelby, R. M.; Cha, J. N. Sequence-independent helical wrapping of single-walled carbon nanotubes by long genomic DNA. [J] Nano Lett.2006, 6(2):159-164.
    [28]Takahashi, T.; Tsunoda, K.; Yajima, H.; Ishii, T. Isolation of single-wall carbon nanotube bundles through gelatin wrapping and unwrapping processes. [J] Chemistry Letters 2002,7:690-691.
    [29]Star, A.; Stoddart, J. F.; Steuerman, D.; Diehl, M.; Boukai, A.; Wong, E. W.; Yang, X.; Chung, S.; Choi, H.; Heath, J. R. Preparation and properties of polymer-wrapped single-walled carbon nanotubes. [J] Angew Chem. Int. Ed.2001,40(9):1721-1725.
    [30]Rouse, J. H.; Lillehei, P. T.; Sanderson, J.; Siochi, E. J. Polymer/single-walled carbon nanotube films assembled via donor-acceptor interactions and their use as scaffolds for silica deposition. [J] Chem. Mater.2004,16(20):3904-3910.
    [31]Kang, Y.; Taton, T. A. Micelle-encapsulated carbon nanotubes:A route to nanotube composites. [J] J. Am. Chem. Soc.2003,125(19):5650-5651.
    [32]Richard, C.; Balavoine, F.; Schultz, P.; Ebbesen, T.W.; Mioskowski, C. Supramolecular self-assembly of lipid derivatives on carbon nanotubes. [J] Science 2003,300(5620):775-778.
    [33]Barisci, J. N.; Tahhan, M.; Wallace, G. G.; Badaire, S.; Vaugien, T.; Maugey, M.; Poulin, P. Properties of carbon nanotube fibers spun from DNA-stabilized dispersions. [J] Adv. Funct. Mater. 2004,14(2):133-138.
    [34]Andersson, C.; Grennberg, Ha. Reproducibility and efficiency of carbon nanotube end-group generation and functionalization. [J] Eur. J. Org. Chem.2009,26:4421-4428
    [35]Saini, R. K.; Chiang,I. W.; Peng, H.; Smalley, R. E.; Billups, W. E.; Hauge, R. H.; Margrave, J. L. Covalent sidewall functionalization of single wall carbon nanotubes. [J] J. Am. Chem. Soc. 2003,125(12):3617-3621.
    [36]Yuen, S.; Ma, C.M.; Chuang, C.; Yu, K.; Wu, S.; Yang, C.; Wei, M. Effect of processing method on the shielding effectiveness of electromagnetic interference of MWCNT/PMMA composites. [J] Compos. Sci. Technol.2008,68(3):963-968.
    [37]Yuen, S.; Ma, C. M.; Teng, C.; Wu, H.; Kuan, H.; Chiang, C. Molecular motion, morphology, and thermal properties of multiwall carbon nanotube/polysilsesquioxane composite. J Polym. Sci. Pol. Phys. 2008,46(5):472-482.
    [38]Yuen, S.; Ma, C. M.; Lin, Y.; Kuan, H. Preparation, morphology and properties of acid and amine modified multiwalled carbon nanotube/polyimide composite. [J] Compos. Sci. Technol.2007, 67(11):2564-2573.
    [39]Yuen, S.; Ma, C. M.; Chiang, C.; Lin, Y.; Teng, C. Preparation and morphological, electrical, and mechanical properties of polyimide-grafted MWCNT/polyimide composite. [J] J Polym. Sci. Pol. Chem.2007,45(15):3349-3358.
    [40]Yuen, S.; Ma, C. M.; Chiang, C.; Teng, C.; Yu, Y. Poly(vinyltriethoxysilane) modified MWCNT/polyimide nanocomposites-preparation, morphological, mechanical, and electrical properties. [J] J Polym. Sci. Pol. Chem.2008,46(3):803-816.
    [41]Liang, F.; Beach, J. M.; Kobashi, K.; Sadana, A. K.; Vega-Cantu, Y. I.; Tour, J. M.; Billups, W. E. In situ polymerization initiated by single-walled carbon nanotube salts. [J] Chem. Mater. 2006,18(20):4764-4767.
    [42]Wang, S.; Liang, R.; Wang, B.; Zhang, C. Epoxide-terminated carbon nanotubes. [J] Carbon 2007, 45(15):3047-3049.
    [43Guo, G.; Yang, D.; Wang, C.; Yang, S. "Fishing" polymer brushes on single-walled carbon nanotubes by in-situ free radical polymerization in a poor solvent. [J] Macromolecules 2006, 39(26):9035-9040.
    [44]Cotiuga, I.; Picchioni, F.; Agarwal, U. S.; Wouters, D.; Loos, J.; Lemstra, P. J. Block-copolymer-assisted solubilization of carbon nanotubes and exfoliation monitoring through viscosity. [J] Macromol. Rapid Comm.2006,27(13):1073-1078.
    [45]Shin, H.; Min, B. G.; Jeong, W.; Park, C. Amphiphilic block copolymer micelles:new dispersant for single wall carbon nanotubes. [J] Macromol. Rapid Comm.2005,26(18):1451-1457.
    [46]Kitano, H.; Tachimoto, K.; Nakaji-Hirabayashi, T.; Shinohara, H. Wrapping of single-walled carbon nanotubes with A-B-A block telomers. [J] Macromol. Chem. Phys.2004,205(15):2064-2071.
    [47]Dror, Y.; Pyckhout-Hintzen, W.; Cohen, Y. Conformation of polymers dispersing single-walled carbon nanotubes in water:A small-angle neutron scattering study. [J] Macromolecules 2005, 38(18):7828-7836.
    [48]Bahun, G. J.; Wang, C.; Adronov, A. Solubilizing single-walled carbon nanotubes with pyrene-functionalized block copolymers. [J] J Polym. Sci. Pol. Chem.2006,44(6):1941-1951.
    [49]Lee, J.; Liao, Y. Synthesis of polymeric nanofiber and polymeric nanosphere by living free radical polymerization. [J] J. Appl. Polym. Sci.2006,101(5):3550-3558.
    [50]Sinani, V. A.; Gheith, M. K.; Yaroslavov, A. A.; Rakhnyanskaya, A. A.; Sun, K.; Mamedov, A.A.; Wicksted, J. P.; Kotov, N. A. Aqueous dispersions of single-wall and multiwall carbon nanotubes with designed amphiphilic polycations. [J] J Am. Chem. Soc.2005,127(10):3463-3472.
    [51]Rouse, J. H.; Lillehei, P. T. Electrostatic assembly of polymer/single walled carbon nanotube multilayer films. [J] Nano Lett.2003,3(1):59-62.
    [52]Qin, S.; Qin, D.; Ford, W. T.; Herrera, J. E.; Resasco, D. E.; Bachilo, S. M.; Weisman, R. B. Solubilization and purification of single-wall carbon nanotubes in water by in situ radical polymerization of sodium 4-styrenesulfonate. [J] Macromolecules 2004,37(11):3965-3967.
    [53]Strano, M. S.; Moore, V. C.; Miller, M. K.; Allen, M. J.; Haroz, E. H.; Kittrell, C.; Hauge, R.H.; Smalley, R. E. The role of surfactant adsorption during ultrasonication in the dispersion of single-walled carbon nanotubes. [J] J Nanosci. Nanotechno.2003,3(1):81-86.
    [54]Liu, Y.; Guan, W.; Li, X.; Huang, M. Synthesis of polyacrylamide-wrapped carbon nanotubes and their lubrication properties as water-based fluids. [J] J Appl. Polym. Sci.2007,106(1):1-4.
    [55]Kim, J. A.; Seong, D. G.; Kang, T. J.; Youn, J. R. Effects of surface modification on rheological and mechanical properties of CNT/epoxy composites. [J] Carbon 2006,44(10):1898-1905.
    [56]Gojny, F. H.; Schulte, K. Functionalization effect on the thermo-mechanical behavior of multi-wall carbon nanotube/epoxy-composites. [J] Compos. Sci. Technol.2004,64(15):2303-2308.
    [57]Zhu, J.; Peng, H. Q.; Rodriguez, M. F.; Margrave, J. L; Khabashesku, V. N.; Imam A. M.; Lozano, K.; Barrera, E. V. Reinforcing epoxy polymer composites through covalent integration of functionalized nanotubes. [J] Adv. Funct. Mater.2004,14(7):643-648.
    [58]Li, W. Z.; Xie, S. S.; Qian, L. X.; Chang, B. H.; Zou, B. S.; Zhou, W. Y.; Zhao, R. A.; Wang, G. Large-scale synthesis of aligned carbon nanotubes. [J] Science 1996,274(5293):1701-1703.
    [59]Pan, Z. W.; Xie, S. S.; Chang, B. H.; Wang, C. Y.; Lu, L.; Liu, W.; Zhou, W. Y.; Li, W. Z.; Qian, L. X. Very long carbon nanotubes. Nature 1998,394(6694):631-632.
    [60]Ren, Z. F.; Huang, Z. P.; Xu, J. W.; Wang, J. H.; Bush, P.; Siegel, M. P.; Provencio, P. N. Synthesis of large arrays of well-aligned carbon nanotubes on glass. [J] Science 1998,282(5391):1105-1107.
    [61]Mamedov, A. A.; Kotov, N. A.; Prato, M.; Guldi, D. M.; Wicksted, J. P.; Hirsch, A. Molecular design of strong single-wall carbon nanotube/polyelectrolyte multilayer composites. [J] Nat. Mater. 2002,1(3):190-194.
    [62]Chattopadhyay, D.; Galeska, I.; Papadimitrakopoulos, F. Metal-assisted organization of shortened carbon nanotubes in monolayer and multilayer forest assemblies. [J] J. Am. Chem.Soc.2001, 123(38):9451-9452.
    [63]Artyukhin, A. B.; Bakajin, O.; Stroeve, P.; Noy, A. Layer-by-layer electrostatic self-assembly of polyelectrolyte nanoshells on individual carbon nanotube templates. [J] Langmuir 2004, 20(4):1442-1448.
    [64]Huang, S. C.; Artyukhin, A. B.; Wang,Y. M.; Ju, J. W.; Stroeve, P.; Noy, A. Persistence length control of the polyelectrolyte layer-by-layer self-assembly on carbon nanotubes. [J] J. Am. Chem. Soc. 2005,127(41):14176-14177.
    [65]Zhang, M. N.; Su, L.; Mao, L. Q. Surfactant functionalization of carbon nanotubes (CNTs) for layer-by-layer assembling of CNT multi-layer films and fabrication of gold nanoparticle/CNT nanohybrid. [J] Carbon 2005,44(2):276-283.
    [66]Paloniemi, H.; Lukkarinen, M.; Aeaeritalo, T.; Areva, S.; Leiro, J.; Heinonen, M.; Haapakka, K.; Lukkari, J. Layer-by-layer electrostatic self-assembly of single-wall carbon nanotube polyelectrolytes. [J] Langmuir 2006,22(1):74-83.
    [67]Wang, L. Y.; Cui, S. X.; Wang, Z. Q.; Zhang, X.; Jiang, M.; Chi, L. F.; Fuchs, H. Multilayer assemblies of copolymer PSOH and PVP on the basis of hydrogen bonding. [J] Langmuir 2000, 16(26):10490-10494.
    [68]Yang, S. Y.; Rubner, M. F. Micropatterning of polymer thin films with pH-sensitive and cross-linkable hydrogen-bonded polyelectrolyte multilayers. [J] J. Am. Chem.Soc.2002, 124(10):2100-2101.
    [69]Serizawa, T.; Yamashita, H.; Fujiwara, T.; Kimura, Y.; Akashi, M. Stepwise assembly of enantiomeric poly(lactide)s on surfaces. [J] Macromolecules 2001,34(6):1996-2001.
    [70]Olek, M.; Ostrander, J.; Jurga, S.; Moehwald, H. K.; Nicholas, K. K.; Giersig, M. Layer-by-layer assembled composites from multiwall carbon nanotubes with different morphologies. [J] Nano Lett. 2004,4(10):1889-1895.
    [71]Kim, B.; Park, H.; Sigmund, W. M. Self-alignment of shortened multiwall carbon nanotubes on polyelectrolyte layers. [J] Langmuir 2003,19(11):4848-4851.
    [72]He, P. G.; Bayachou, M. Layer-by-layer fabrication and characterization of DNA-wrapped single-walled carbon nanotube particles. [J] Langmuir 2005,21(13):6086-6092.
    [73]Shimoda, H.; Oh, S. J.; Geng, H. Z.; Walker, R. J.; Zhang, X. B.; McNeil, L. E.; Zhou, O. Self-assembly of carbon nanotubes. [J] Adv. Mater.2002,14(12):899-901.
    [74]Lan, Y.; Wang, E. B.; Song, Y. H.; Kang, Z. H.; Jiang, M.; Gao, L.; Lian, S. Y.; Wu D.; Xu, L.; Li, Z. Covalent assembly of shortened multiwall carbon nanotubes on polyelectrolyte films and relevant electrochemistry study. [J] J. Colloid Interface Sci.2005,284(1):216-221.
    [75]Kim, B.; Sigmund, W. M. Density control of self-aligned shortened single-wall carbon nanotubes on polyelectrolyte-coated substrates. [J] Colloids and Surfaces A:Physicochem. Eng. Aspects 2005, 266(1):91-96.
    [76]Zhang, M. N.; Yan, Y. M.; Gong, K. P.; Mao, L. Q.; Guo, Z. X.; Chen, Y. Electrostatic layer-by-layer assembled carbon nanotube multilayer film and its electrocatalytic activity for O2 reduction. [J] Langmuir 2004,20(20):8781-8785.
    [77]Xu, Z. A.; Gao, N.; Dong, S. J. Preparation and layer-by-layer self-assembly of positively charged multiwall carbon nanotubes. [J] Talanta 2006,68(3):753-758.
    [78]Qin, S. H.; Qin, D. Q.; Ford, W. T.; Resasco, D. E.; Herrers, J. E. Functionalization of single-walled carbon nanotubes with polystyrene via grafting to and grafting from methods. [J] Macromolecules 2004,37(3):752-757.
    [79]Li, S. Y.; Chen, H.; Bi, W. G.; Zhou, J. J.; Wang, Y. H.; Li, J. Z.; Cheng, W. X.; Li, M. Y.; Li, L. Tang, T. Synthesis and characterization of polyethylene chains grafted onto the sidewalls of single-walled carbon nanotubes via copolymerization. [J] J. Polym. Sci. A, Polym. Chem.2007, 45(23):5459-5469
    [80]Li, J.; He, W. D.; Yang, L. P.; Sun, X. L.; Hua, Q. Preparation of multi-walled carbon nanotubes grafted with synthetic poly(-lysine) through surface-initiated ring-opening polymerization. [J] Polymer 2007,48(15):4352-4360
    [81]Wu, C. S.; Liao, H. T. Study on the preparation and characterization of biodegradable polylactide/multi-walled carbon nanotubes nanocomposites. [J] Polymer 2007,48(15):4449-4458
    [82]Choi, J. Y.; Han S. W.; Huh, W. S.; Tan, L. S.; Baek, J. B. In situ grafting of carboxylic acid-terminated hyperbranched poly(ether-ketone) to the surface of carbon nanotubes. [J] Polymer 2007,48(14):4034-4040
    [83]Wu, H. X.; Tong, R.; Qiu, X. Q.; Yang, H. F.; Lin, Y. H.; Cai, R. F.; Qian, S. X. Functionalization of multiwalled carbon nanotubes with polystyrene under atom transfer radical polymerization conditions. [J] Carbon 2007,45(1):152-159
    [84]Kim, H. S.; Park, B. H.; Yoon, J. S.; Jin, H. J. Thermal and electrical properties of poly(L-lactide)-graft-multiwalled carbon nanotube composites. [J] Eur. Polym. J.2007, 43(5):1729-1735
    [85]Meng, Q. J.; Zhang, X. X.; Bai, S. H. Poly(1,3-propylene glycol-hexanedioic acid) grafted hydroxyl multiwall carbon nanotubes. [J] J. Appl. Polym. Sci.2007,106(3):2018-2024
    [86]Shanmugharaj, A.M.; Bae, J.H.; Nayak, R.; Ryu, S. H. Preparation of poly(styrene-co-acrylonitrile)-grafted multiwalled carbon nanotubes via surface-initiated atom transfer radical polymerization. [J] J. Polym. Sci. A, Polym. Chem.2006,45(3):460-470
    [87]Zhao, X. D.; Fan, X. H.; Chen, X. F.; Chai, C. P.; Zhou, Q. F. Surface modification of multiwalled carbon nanotubes via nitroxide-mediated radical polymerization. [J] J. Polym. Sci. A, Polym. Chem. 2006,44(15):4656-4667
    [88]Chen, S. M.; Wu, G. Z.; Liu, Y. D.; Long, D. W. Preparation of poly(acrylic acid) grafted multiwalled carbon nanotubes by a two-step irradiation technique. [J] Macromolecules 2006, 39(1):330-334
    [89]Kong, H.; Gao, C.; Yan, D. Y. Functionalization of multiwalled carbon nanotubes by atom transfer radical polymerization and Defunctionalization of the Products. [J] Macromolecules 2004, 37(11):4022-4030
    [90]Dubas, S. T.; Schlenoff, J. B. Swelling and Smoothing of Polyelectrolyte Multilayers by Salt. [J] Langmuir 2001,17(25):7725-7727.
    [91]Shen, J.; Hu, Y.; Qin, C.; Ye, M. Layer-by-layer self-assembly of multiwalled carbon nanotube polyelectrolytes prepared by in situ radical polymerization. [J] Langmuir 2008,24(8):3993-3997
    [92]Lavalle, P.; Gergely, C.; Cuisinier, F. J. G.; Decher, G.; Schaaf, P.; Voegel, J. C.; Picart, C. Comparison of the structure of polyelectrolyte multilayer films exhibiting a linear and an exponential growth regime:an in situ atomic force microscopy study. [J] Macromolecules 2002,35(11):4458-4465.
    [93]Li, H.; Liu, B.; Gao, L.; Qu, M.; Yu, Z. The research progress of polymer/carbon nanotubes composite materials. [J] Chinese journal of synthetic chemistry.2002,10:197-199.
    [94]Breton, Y.; Desarmot, G.; Salvetat, J. P.; Delpeux, S.; Sinturel, C.; Beguin, F.; Bonnamy, S. Mechanical properties of multiwall carbon nanotubes/epoxy composites:influence of network morphology. [J] Carbon 2004,42(5):1027-1030.
    [95]Fidelus, J. D.; Wiesel, E.; Gojny, F. H.; Schulte, K.; Wagner, H. D. Thermo-mechanical properties of randomly oriented carbon/epoxy composites. [J] Compos. Part. A-Appl.2005,336:1555-1561
    [96]Song, Y. S.; Youn, J. R. Influence of dispersion states of carbon nanotubes on physical properties of epoxy composites. [J] Carbon 2005,43:1378-1385.
    [97]Miyagawa, H.; Rich, M. J.; Drzal, L. T. Thermo-physical properties of epoxy composites reinforced by carbon nanotubes and vapor grown carbon fibers. [J] Thermochim. Acta 2006,442:67-73
    [98]Huang, W. J.; Fernando, S.; Allard, L. F.; Sun, Y. P. Solubilization of single-walled carbon nanotubes with diamine-terminated oligomeric poly(ethylene glycol) in different functionalization reactions. [J] Nano Lett.2003,3(4):565-568.
    [99]Urszula, D. W.; Benoit, J. M.; Chiu, P. W.; Graupner, R.; Lebedkin, S.; Roth, S. Chemical functionalization of single walled carbon nanotubes. [J] Curr. Appl. Phys.2002,2:497-501.
    [100]Zhu, J.; Kim, J. D.; Peng, H. Q.; Margrave, J. L.; Khabashesku, V. N.; Barrera, E. V. Improving the dispersion and integration of single-walled carbon nanotubes in epoxy composites through functionalization. [J] Nano Lett.2003,3(8):1107-1113.
    [101]Shen, J.; Huang, W.; Wu, L.; Hu, Y.; Ye, M. Thermo-physical properties of epoxy nanocomposites reinforced with amino-functionalized multi-walled carbon nanotubes. [J] Compos. Part A-Appl.2007,38:1331-1336
    [102]Shen, J.; Huang, W.; Wu, L.; Hu, Y.; Ye, M. Study on amino-functionalized multiwalled carbon nanotubes. [J] Mater. Sci. Eng. A-Struct.2007,464:151-156
    [103]Allaoui, A.; Bai, S.; Cheng, H. M.; Bai, J. B. Mechanical and electrical properties of a MWCNT/epoxy composite. [J] Compos. Sci. Technol.2002,62:1993-1998
    [104]Villoria, R. G.; Miravete, A.; Cuartero, J.; Chiminelli, A.; Tolosana, N. Mechanical properties of SWCNT/epoxy composites using two different curing cycles. [J] Compos. Part B-Eng.2006,37: 273-277
    [105]Lau, K. T.; Shi, S. Q. Failure mechanisms of carbon nanotube/epoxy composites pretreated in different temperature environments. [J] Carbon 2002,40:2961-2973
    [106]Gong, X. Y.; Liu, J.; Baskaran, S.; Voise, R. D.; Young, J. S. Surfactant-assisted processing of carbon nanotube/polymer composites. [J] Chem. Mater.2000,12:1049-1052
    [107]Ganguli, S.; Bhuyan, M.; Allie, L.; Aglan, H. Effect of multi-walled carbon nanotube reinforcement on the fracture behavior of a tetrafunctional epoxy. [J] J. Mater. Sci.2005,40:3593-3595
    [108]Gojny, F. H.; Schulte, K. Functionalisation effect on thermo-mechanical behaviour of multi-wall carbon nanotube/epoxy-composites. [J] Compos. Sci. Technol.2004; 64:2303-2308
    [109]Zhuang, G. S.; Sui, G. X.; Sun, Z. S.; Yang, R. Pseudoreinforcement effect of multiwalled carbon nanotubes in epoxy matrix composites. [J] J. Appl. Polym. Sci.2006,102:3664-3672
    [110]Ci, L. J.; Bai, J. B. The reinforcement role of carbon nanotubes in epoxy composites with different matrix stiffness. [J] Compos. Sci. Technol.2006,66:599-603
    [111]Miyagawa, H.; Drzal, L. T. Thermo-physical and impact properties of epoxy composites reinforced by single-wall carbon nanotubes. [J] Polymer 2004,45:5163-5170
    [112]Choi, Y. K.; Gotoh, Y.; Sugimoto, H. I.; Song, S. M.; Yanagisawa, T.; Endo, M. Processing and characterization of epoxy composites reinforced by cup-stacked carbon nanotubes. [J] Polymer 2005, 46:11489-11498
    [113]Mu, Y.; Liang, H.; Hu, J.; Jiang, L.; Wan, L. Controllable Pt nanoparticle deposition on carbon nanotubes as an anode catalyst for direct methanol fuel cells. [J] J. Phys. Chem. B 2005, 109(47):22212-22216.
    [114]Tian, Z.; Jiang, S.; Liang, Y.; Shen, P. Synthesis and characterization of platinum catalysts on multiwalled carbon nanotubes by intermittent microwave irradiation for fuel cell applications. [J] J. Phys. Chem. B 2006,110(11):5343-5350.
    [115]Cao, J.; Du, C.; Wang, S. C.; Mercier, P.; Zhang, X.; Yang, H.; Akins, D. L. The production of a high loading of almost monodispersed Pt nanoparticles on single-walled carbon nanotubes for methanol oxidation. [J] Electrochem. Commun.2007,9(4):735-740.
    [116]Chen, J.; Wang, M.; Liu, B.; Fan, Z.; Cui, K.; Kuang, Y. Platinum catalysts prepared with functional carbon nanotube defects and its improved catalytic performance for methanol oxidation. [J] J.Phys Chem B 2006,110(24):11775-11779.
    [117]Li, Y.; Lai, G.; Zhou, R. Carbon nanotubes supported Pt-Ni catalysts and their properties for the liquid phase hydrogenation of cinnamaldehyde to hydrocinnamaldehyde. [J] Appl. Surf. Sci.2007, 253(11):4978-4984.
    [118]Shao, Y.; Yin, G.; Wang, J.; Gao, Y.; Shi, P. Multi-walled carbon nanotubes based Pt electrodes prepared with in situ ion exchange method for oxygen reduction. [J] J. Power Sources 2006, 161(1):47-53.
    [119]Zhao, Y.; Fan, L.; Zhong, H.; Li, Y.; Yang, S. Platinum nanoparticle clusters immobilized on multiwalled carbon nanotubes:electrodeposition and enhanced electrocatalytic activity for methanol oxidation. [J] Adv. Funct. Mater.2007,17(9):1537-1541.
    [120]Jeng, K.; Chien, C.; Hsu, N.; Yen, S.; Chiou, S.; Lin, S.; Huang, W. Performance of direct methanol fuel cell using carbon nanotube-supported Pt-Ru anode catalyst with controlled composition. [J] J. Power Sources 2006,160(1):97-104.
    [121]Zhang, L.; Spurlin, T. A.; Gewirth, A. A.; Granick, S. Electrostatic stitching in gel-phase supported phospholipid bilayers. [J] J. Phys. Chem. B 2006,110(1):33-35.
    [122]Wu, G.; Li, L.; Li, J.; Xu, B. Methanol electrooxidation on Pt particles dispersed into PANI/SWNT composite films. [J] J Power Sources 2006,155(2):118-127.
    [123]Cao, L.; Scheiba, F.; Roth, C.; Schweiger, F.; Cremers, C.; Stimming, U. Novel nanocomposite Pt/RuO2.xH2O/carbon nanotube catalysts for direct methanol fuel cells. [J] Angew. Chem. Int. Ed. 2006,45(32):5315-5319.
    [124]Wang, J.; Yin, G.; Shao, Y.; Wang, Z.; Gao, Y. Platinum deposition on multiwalled carbon nanotubes by ion-exchange method as electrocatalysts for oxygen reduction. [J] J. Electrochem. Soc. 2007,154(7):687-693.
    [125]Vijayaraghavan, G.; Stevenson, K. J. Synergistic assembly of dendrimer-templated platinum catalysts on nitrogen-doped carbon nanotube electrodes for oxygen reduction. [J] Langmuir 2007, 23(10):5279-5282.
    [126]Shaijumon, M. M.; Ramaprabhu, S.; Rajalakshmi, N. Platinum/multiwalled carbon nanotubes-platinum/carbon composites as electrocatalysts for oxygen reduction reaction in proton exchange membrane fuel cell. [J] Appl. Phys. Lett.2006,88(25):253105/1-253105/3.
    [127]Zhao, L.; Gao, L. Novel in situ synthesis of MWNTs-hydroxyapatite composites. [J] Carbon 2004,42(2):423-426.
    [128]Frackowiak, E.; Lota, G.; Cacciaguerra, T.; Beguin, F. Carbon nanotubes with Pt-Ru catalyst for methanol fuel cell. [J] Electrochem. Commun.2006,8(1):129-132.
    [129]Cui, H.; Ye, J.; Zhang, W.; Li, C.; Luong, J. H. T.; Sheu, F. Selective and sensitive electrochemical detection of glucose in neutral solution using platinum-lead alloy nanoparticle/carbon nanotube nanocomposites. [J] Anal. Chim. Acta 2007,594(2):175-183.
    [130]Xu, J.; Hua, K.; Sun, G.; Wang, C.; Lv, X.; Wang, Y. Electrooxidation of methanol on carbon nanotubes supported Pt-Fe alloy electrode. [J] Electrochem. Commun.2006,8(6):982-986.
    [131]Yen, C. H.; Shimizu, K.; Lin, Y.; Bailey, F.; Cheng, I. F.; Wai, C. M. Chemical fluid deposition of Pt-based bimetallic nanoparticles on multiwalled carbon nanotubes for direct methanol fuel cell application. [J] Energy& Fuels 2007,21(4):2268-2271.
    [132]Li, L.; Xing, Y. Pt-Ru nanoparticles supported on carbon nanotubes as methanol fuel cell catalysts. [J] J. Phys. Chem. C 2007,111(6):2803-2808.
    [133]Liu, Z.; Ling, X.; Guo, B.; Hong, L.; Lee, J. Pt and PtRu nanoparticles deposited on single-wall carbon nanotubes for methanol electro-oxidation. [J] J. Power Sources 2007,167(2):272-280.
    [134]Chien, C.; Jeng, K. Effective preparation of carbon nanotube-supported Pt-Ru electrocatalysts. [J] Mater. Chem. Phys.2006,99(1):80-87.
    [135]Cui, H.; Ye, J.; Liu, X.; Zhang, W.; Sheu, F. Pt-Pb alloy nanoparticle/carbon nanotube nanocomposite:a strong electrocatalyst for glucose oxidation. [J] Nanotechnology 2006, 17(9):2334-2339.
    [136]Liu, B.; Chen, J. H.; Xiao, C. H.; Cui, K. Z.; Yang, L.; Pang, H. L.; Kuang, Y. F. Preparation of Pt/MgO/CNT hybrid catalysts and their electrocatalytic properties for ethanol electrooxidation. [J] Energy& Fuels 2007,21(3):1365-1369.
    [137]Yu, P.; Pemberton, M.; Plasse, P. PtCo/C cathode catalyst for improved durability in PEMFCs. [J] J. Power Sources 2005,144(1):11-20.
    [138]Zhao, Y.; E, Y.; Fan, L.; Qiu, Y.; Yang, S. A new route for the electrodeposition of platinum-nickel alloy nanoparticles on multi-walled carbon nanotubes. [J] Electrochim. Acta 2007, 52(19):5873-5878.
    [139]Oh, S.; So, B.; Choi, S.; Gopalan, A.; Lee, K. R.; Yoon, K.; Choi, I. S. Dispersing of Ag, Pd, and Pt-Ru alloy nanoparticles on single-walled carbon nanotubes by γ-irradiation. [J] Mater. Lett.2005, 59(10):1121-1124.
    [140]Zhao, X.; Li, W.; Jiang, L.; Zhou, W.; Xin, Q.; Yi, B.; Sun, G. Multi-wall carbon nanotube supported Pt-Sn nanoparticles as an anode catalyst for the direct ethanol fuel cell. [J] Carbon 2004, 42(15):3263-3265.
    [141]Li, W.; Wang, X.; Chen, Z. Waje, M.; Yan, Y. Pt-Ru supported on double-walled carbon nanotubes as high-performance anode catalysts for direct methanol fuel cells. [J] J. Phys. Chem. B 2006,110(31):15353-15358.
    [142]Paul us, U. A.; Wokaun, A.; Scherer, G. G.; Schmidt, T. J.; Stamenkovic, V.; Radmilovic, V.; Markovic, N. M.; Ross, P. N. Oxygen reduction on carbon-supported Pt-Ni and Pt-Co alloy catalysts. [J] J. Phys. Chem. B 2002,106(16):4181-4191.
    [143]Wildgoose, Gregory G.; Banks, Craig E.; Leventis, Henry C.; Compton, Richard G. Chemically modified carbon nanotubes for use in electroanalysis. [J] Microchim. Acta 2006, 152(3):187-214.
    [144]Rong, L.; Yang, C.; Qian, Q.; Xia, X. Study of the nonenzymatic glucose sensor based on highly dispersed Pt nanoparticles supported on carbon nanotubes. [J] Talanta 2007,72(2):819-824.
    [145]Kim, S. J.; Park, Y. J.; Ra, E. J.; Kim, K. K.; An, K. H.; Lee, Y. H.; Choi, J. Y.; Park, C. H.; Doo, S. K.; Park, M. H.; Yang, C. W. Defect-induced loading of Pt nanoparticles on carbon nanotubes. [J] Appl. Phys. Lett.2007,90(2):023114/1-023114/3.
    [146]Li, L.; Wu, G.; Xu, B. Electro-catalytic oxidation of CO on Pt catalyst supported on carbon nanotubes pretreated with oxidative acids. [J] Carbon 2006,44(14):2973-2983.
    [147]Yogeswaran, U.; Thiagarajan, S.; Chen, S. Nanocomposite of functionalized multiwall carbon nanotubes with Nafion, nano platinum, and nano gold biosensing film for simultaneous determination of ascorbic acid, epinephrine, and uric acid. [J] Anal. Biochem.2007,365(1):122-131.
    [148]Wildgoose, G. G.; Banks, C. E.; Compton, R. G. Metal nanoparticles and related materials supported on carbon nanotubes. [J] Small 2006,2(2):182-193.
    [149]Selvaraj, V.; Alagar, M. Pt and Pt-Ru nanoparticles decorated polypyrrole/multiwalled carbon nanotubes and their catalytic activity towards methanol oxidation. [J] Electrochem.Commun.2007, 9(5):1145-1153.
    [150]Hull, R. V.; Li, L.; Xing, Y.; Chusuei, C. C. Pt nanoparticle binding on functionalized multiwalled carbon nanotubes. [J] Chem. Mater.2006,18(7):1780-1788.
    [151]Grzelczak, M.; Correa-Duarte, M. A.; Salgueirino-Maceira, V.; Rodriguez-Gonzalez, B.; Rivas, J.; Liz-Marzan, L. M. Pt-catalyzed formation of Ni nanoshells on carbon nanotubes. [J] Angew. Chem. Int. Ed.2007,46(37):7026-7030.
    [152]Chen, W.; Lee, J. Y.; Liu, Z. Preparation of Pt and PtRu nanoparticles supported on carbon nanotubes by microwave-assisted heating polyol process. [J] Mater. Lett.2004,58(25):3166-3169.
    [1]Novoselov, K. S.; Liang, D.; Schedin, F.; Booth, T. J.; Khotkevich, V. V.; Morozov, S. V.; Geim A. K. Two-dimensional atomic crystals. [J] PNAS 2005,102(30):10451-10453.
    [2]Liu, L.; Ryu, S.; Tomasik, M. R.; Stolyarova, E.; Jung, N.; Hybertsen, M. S.; Steigerwald, M. L. Brus, L. E.; Flynn, G. W. Graphene oxidation:thickness-dependent etching and strong chemical doping. [J] Nano Lett.2008,8(7):1965-1970.
    [3]Calizo, I.; Balandin, A. A.; Bao, W.; Miao, F.; Lau, C.N. Temperature dependence of the Raman spectra of graphene and graphene multilayers. [J] Nano Lett.2007,7(9):2645-2649.
    [4]Geim, A. K.; Novoselov, K. S. The rise of graphene. The rise of graphene. [J] Nat. Mater.2007, 6(3):183-191.
    [5]Meyer, J. C.; Geim, A. K.; Katsnelson, M. I.; Novoselov, K. S.; Booth, T. J.; Roth, S. The structure of suspended graphene sheets. [J] Nature 2007,446(7131):60-63
    [6]Ishigami, M.; Chen, J. H.; Cullen, W. G..; Fuhrer, M. S.; Williams, E. D. Atomic structure of graphene on SiO2. [J] Nano Lett.2007,7(6):1643-1648.
    [7]Graf, D.; Molitor, F.; Ensslin, K.; Stampfer, C.; Jungen, A.; Hierold, C.; Wirtz, L. Raman imaging of graphene. [J] Solid State Commun.2007,143(1):44-46.
    [8]Yan, J.; Zhang, Y.; Goler, S.; Kim, P.; Pinczuk, A. Raman scattering and tunable electron-phonon coupling in single layer graphene. [J] Solid State Commun.2007,143(1):39-43.
    [9]Ni, Z. H.; Wang, H. M.; Kasim, J.; Fan, H. M.; Yu, T.; Wu, Y. H.; Feng, Y. P.; Shen, Z. X. Graphene thickness determination using reflection and contrast spectroscopy. [J] Nano Lett.2007, 7(9):2758-2763.
    [10]Niyogi, S.; Bekyarova, E.; Itkis, M. E.; McWilliams, J. L.; Hamon, M. A.; Haddon, R. C. Solution properties of graphite and graphene. [J] J. Am. Chem. Soc.2006,128(24):7720-7721
    [11]Konatham, D.; Striolo, A. Molecular design of stable graphene nanosheets dispersions. [J] Nano Lett.2008,8(12):4630-4641.
    [12]Ouyang, F.; Huang, B.; Li, Z.; Xiao, J.; Wang, H.; Xu, H. Chemical functionalization of graphene nanoribbons by carboxyl groups on stone-Walesdefects. [J] J. Phys. Chem. C 2008, 112(31):12003-12007
    [13]Lomeda, J. R.; Doyle, C. D.; Kosynkin, D. V.; Hwang, W.; Tour, J. M. Diazonium Functionalization of Surfactant-Wrapped Chemically Converted Graphene Sheets. [J] J. Am. Chem. Soc.2008,130(48):16201-16206.
    [14]Park, S.; An, J.; Piner, R. D.; Jung, I.; Yang, D.; Velamakanni, A.; Nguyen, S. T.; Ruoff, R. S. Aqueous suspension and characterization of chemically modified graphene sheets. [J] Chem. Mater. 2008,20(21):6592-6594.
    [15]Wang, X.; Tabakman, S. M.; Dai, H. Atomic layer deposition of metal oxides on pristine and functionalized graphene. [J] J. Am. Chem. Soc.2008,130(26):8152-8153.
    [16]Wang, X.; Zhi, L.; Mullen, K. Transparent, conductive graphene electrodes for dye-sensitized solar cells. [J] Nano Lett.2008,8(1):323-327
    [17]Robinson, J. T.; Zalalutdinov, M.; Baldwin, J. W.; Snow, E. S.; Wei, Z.; Sheehan, P.; Houston, B. H. Wafer-scale reduced graphene oxide films for nanomechanical devices. [J] Nano Lett.2008, 8(10):3441-3445.
    [18]Robinson, J. T.; Perkins, F. K.; Snow, E. S.; Wei, Z.; Sheehan, P. E. Reduced graphene oxide molecular sensors. [J] Nano Lett.2008,8(10):3137-3140.
    [19]Yoo, E.; Kim, J.; Hosono, E.; Zhou, H.; Kudo, T.; Honma, I. Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries. [J] Nano Lett.2008, 8(8):2277-2282.
    [20]Ang, P. K.; Chen, W.; Wee, A. T. S.; Loh, K. P. Solution-gated epitaxial graphene as pH sensor. [J] J. Am. Chem. Soc.2008,130(44):14392-14393.
    [21]Dayen, J.; Mahmood, A.; Golubev, D. S.; Roch-Jeune, I.; Salles, P.; Dujardin, E. Side-gated transport in focused-ion-beam-fabricated multilayered graphene nanoribbons. [J] Small 2008, 4(6):716-720.
    [22]Si, Y.; Samulski, E.T. Exfoliated graphene separated by platinum nanoparticles. [J] Chem. Mater. 2008,20(21):6792-6797
    [23]Xu, Y. X.; Bai, H.; Lu, G. W.; Li, C.; Shi, G. Q. Flexible graphene films via the filtration of water-soluble noncovalent functionalized graphene sheets. [J] J. Am. Chem. Soc.2008, 130(18):5856-5857.
    [24]Blake, P.; Brimicombe, P.D.; Nair, R. R.; Booth, T.J.; Jiang, D.; Schedin, F.; Ponomarenko, L.A. Morozov, S. V.; Gleeson, H. F.; Hill, E.W.; Geim, A. K.; Novoselov, K.S. Graphene-based liquid crystal device. [J] Nano Lett.2008,8(6):1704-1708
    [25]Muszynski, R.; Seger, B.; Kama, P. V. Decorating Graphene sheets with gold nanoparticles. [J] J. Phys. Chem. C 2008,112(14):5263-5266
    [26]Watcharotone, S.; Dikin, D. A.; Stankovich, S.; Piner, R.; Jung,I.; Dommett, G. H. B.; Evmenenko, G.; Wu, S.; Chen, S.; Liu, C.; Nguyen, S. T.; Ruoff, R. S. Graphene-silica composite thin films as transparent conductors. [J] Nano Lett.2007,7(7):1888-1892.
    [27]Stankovich, S.; Dikin, D. A.; Dommett, G. H. B.; Kohhaas, K. M.; Zimney, E. J.; Stach, E. A.; Piner, R. D.; Nguyen, S. T.; Ruoff, R. S. Graphene-based composite materials. [J] Nature 2006, 442(7100):282-286
    [28]Li, X.; Zhang, G.; Bai, X.; Sun, X.; Wang, X.; Wang, E.; Dai, H. Highly conducting graphene sheets and Langmuir-Blodgett films. [J] Nat. Nanotechnol.2008,3(9):538-542
    [29]Ramanathan, T.; Abdala, A. A.; Stankovich, S.; Dikin, D. A.; Herrera-alonso, M.; Piner, R. D.; Adamson, D. H.; Schniepp, H. C.; Chen, X.; Ruoff, R. S.; Nguyen, S. T.; Aksay, I. A.; Prud'homme, R. K.; Brinson, L. C. Functionalized graphene sheets for polymer nanocomposites. [J] Nat. Nanotechnol.2008,3(6):327-331
    [30]Hong, W.; Xu, Y.; Lu, G.; Li, C.; Shi, G. Transparent graphene/PEDOT-PSS composite films as counter electrodes of dye-sensitized solar cells. [J] Electrochem. Commun.2008,10(10):1555-1558
    [31]Si, Y.; Samulski, E. T. Synthesis of Water Soluble Graphene. Nano Lett.2008,8(6):1679-1682.
    [32]Worsley, K. A.; Ramesh, P.; Mandal, S. K.; Niyogi, S.; Itkis, M. E.; Haddon, R. C. Soluble graphene derived from graphite fluoride. [J] Chem. Phys. Lett.2007,445(1):51-56.
    [33]Gijie, S.; Han, S.; Wang, M.; Wang, K. L.; Kaner, R. B. A chemical route to graphene for device applications. [J] Nano Lett.2007,7(11):3394-3398.
    [34]Wang, G.; Yang, J.; Park, J.; Gou, X.; Wang, B.; Liu, H.; Yao, J. Facile synthesis and characterization of graphene nanosheets. [J] J. Phys. Chem. C 2008,112(22):8192-8195.
    [35]Subrahmanyam, K. S.; Vivekchand, S. R. C.; Govindaraj, A.; Rao, C. N. R. A study of graphenes prepared by different methods:characterization, properties and solubilization. [J] J. Mater. Chem.2008,18(13):1517-1523.
    [36]Somani, P. R.; Somani, S. P.; Umeno, M. Planer nano-graphenes from camphor by CVD. [J] Chem. Phys. Lett.2006,430(1):56-59.
    [37]McAllister, M. J.; Li, J. L.; Adamson, D. H.; Schniepp, H. C.; Abdala, A. A.; Liu, J.; Herrera-Alonso, M.; Milius, D. L.; Car, R.; Prud'homme, R. K.; Aksay,I. A. Single sheet functionalized graphene by oxidation and thermal expansion of graphite. [J] Chem. Mater. 2007,19(18):4396-4404
    [38]Schniepp, H. C.; Li, J.; Mcallister, M. J.; Sai, H.; Herrera-Alonso, M.; Adamson, D. H.; Prud'homme, R. K.; Car, R.; Saville, D. A.; Aksay, I. A. Functionalized single graphene sheets derived from splitting graphite oxide. [J] J. Phys. Chem. B 2006,110(17):8535-8539.
    [39]Dikin, D. A.; Stankovich, S.; Zimney, E. J.; Piner, R. D.; Dommett, G. H. B.; Evmenenko, G.; Nguyen, S. T.; Ruoff, R. S. Preparation and characterization of graphene oxide paper. [J] Nature 2007, 448(7152):457-460
    [40]Stankovich, S.; Dikin, D. A.; Piner, R. D.; Kohlhaas, K. A.; Kleinhammes, A.; Jia, Y.; Wu, Y.; Nguyen, S. T.; Ruoff, R. S. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. [J] Carbon 2007,45(7):1558-1565.
    [41]Stankovich, S.; Piner, R. D.; Nguyen, S. T.; Ruoff, R. S. Synthesis and exfoliation of isocyanate-treated graphene oxide nanoplatelets. [J] Carbon 2006,44(15):3342-3347.
    [42]Paredes, J. I.; Villar-Rodil, S.; Martinez-Alonso, A.; Tascon, J. M. D. Graphene oxide dispersions in organic solvents. [J] Langmuir 2008,24(19):10560-10564
    [43]Wei, Z.; Barlow, D. E.; Sheehan, P. E. The assembly of single-layer graphene oxide and graphene using molecular templates. [J] Nano Lett.2008,8(10):3141-3145.
    [44]Nethravathi, C.; Rajamathi, M. Chemically modified graphene sheets produced by the solvothermal reduction of colloidal dispersions of graphite oxide. [J] Carbon 2008,46(14): 1994-1998.
    [45]Eda, G.; Lin, Y.; Miller, S.; Chen, C.; Su, W.; Chhowalla, M. Transparent and conducting electrodes for organic electronics from reduced graphene oxide. [J] Appl. Phys. Lett.2008, 92(23):233305/1-233305/3.
    [46]Park, S.; Lee, K.; Bozoklu, G.; Cai, W.; Nguyen, S. T.; Ruoff, R. S. Graphene Oxide Papers Modified by Divalent Ions-Enhancing Mechanical Properties via Chemical Cross-Linking. [J] ACS Nano 2008,2(3):572-578.
    [47]Becerril, H. A.; Mao, J.; Liu, Z.; Stoltenberg, R. M.; Bao, Z.; Chen, Y. Evaluation of solution-processed reduced graphene oxide films as transparent conductors. [J] ACS Nano 2008, 2(3):463-470.
    [48]Jung, I.; Dikin, D.; Park, S.; Cai, W.; Mielke, S. L.; Ruoff, R. S. Effect of water vapor on electrical properties of individual reduced graphene oxide sheets. [J] J. Phys. Chem. C 2008, 112(51):20264-20268
    [49]Yang, X.; Zhang, X.; Liu, Z.Y. Ma,; Huang, Y.; Chen, Y. High-efficiency loading and controlled release of doxorubicin hydrochloride on graphene oxide. [J] J. Phys. Chem. C 2008, 112(45):17554-17558.
    [50]Gomez-Navarro, C.; Weitz, R. T.; Bittner, A. M.; Scolari, M.; Mews, A.; Burghard, M.; Kern, K. Electronic transport properties of individual chemically reduced graphene oxide sheets. [J] Nano Lett. 2007,7(11):3499-3503.
    [51]Bourlinos, A. B.; Gournis, D.; Petridis, D.; Szabo, T.; Szeri, A.; Dekany, I. Graphite Oxide: Chemical reduction to graphite and surface modification with primary aliphatic amines and amino acids. [J] Langmuir 2003,19(15):6050-6055.
    [52]Hummers, W. S.; Offeman, R. E. Preparation of graphitic oxide. [J] J. Am. Chem. Soc.1958, 80:1339.
    [53]Hernandez, Y.; Nicolosi, V.; Lotya, M.; Blighe, F. M.; Sun, Z.; De, S.; Mcgovern, I. T.; Holland, B.; Byrne, M.; Gun'ko, Y. K.; Boland, H. J.; Niraj, P.; Duesberg, G.; Krishnamurthy, S.; Goodhue, R.; Hutchison, J.; Scardci, V.; Ferrari, A. C.; Coleman, J. N. High-yield production of graphene by liquid-phase exfoliation of graphite. [J] Nat. Nanotechnol.2008,3(9):563-568.
    [54]Rao, C. N. R.; Biswas, Kanishka.; Subrahmanyam, K. S.; Govindaraj, A. Graphene, the new nanocarbon. [J] J. Mater. Chem.2009,19(17):2457-2469.
    [55]Wang, G.; Shen, X.; Wang, B.; Yao, J.; Park, J. Graphene nanosheets for enhanced lithium storage in lithium ion batteries. [J] Carbon 2009,47(8):2049-2053.
    [56]Viculis, L. M.; Mack, J. J.; Mayer, O. M.; Hahn, H. T.; Kaner, R. B. Intercalation and exfoliation routes to graphite nanoplatelets. [J] J. Mater. Chem.2005,15(9):974-978.
    [57]Stankovich, S.; Piner, R. D.; Chen, X.; Wu, N.; Nguyen, S. T.; Ruoff, R. S. Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly(sodium 4-styrenesulfonate). [J] J. Mater. Chem.2006,16(2):155-158.
    [58]Chen, G.; Weng, W.; Wu, D.; Wu, C.; Lu, J.; Wang, P.; Chen, X. Preparation and characterization of graphite nanosheets from ultrasonic powdering technique. [J] Carbon 2004,42(4):753-759.
    [59]Yu, A.; Ramesh, P.; Itkis, M. E.; Bekyarova, E.; Haddon, R. C.Graphite nanoplatelet-epoxy composite thermal interface materials. [J] J. Phys. Chem. C 2007,111(21):7565-7569.
    [60]Gilje, S.; Han, S.; Wang, M.; Wang, K. L.; Kaner, R. B. A chemical route to graphene for device applications. [J] Nano Lett.2007,7(11):3394-3398.
    [61]Li, D.; Mueller, M. B.; Gilje, S.; Kaner, R. B.; Wallace, G. G. Processable aqueous dispersions of graphene nanosheets. [J] Nature Nanotechnology 2008,3(2):101-105.
    [62]Zetterlund, P. B.; Alam, M. N.; Minami, H.; Okubo, M. Nitroxide-mediated controlled/living free radical copolymerization of styrene and divinylbenzene in aqueous miniemulsion. [J] Macromol. Rapid. Commun.2005,26(12):955-960.
    [63]Park, S.; An, J.; Jung,I.; Piner, R. D.; An, S. J.; Li, X.; Velamakanni, A.; Ruoff, R. S. Colloidal suspensions of highly reduced graphene oxide in a wide variety of organic solvents. [J] Nano Lett.2009,9(4):1593-1597.
    [64]Matsuo, Y.; Fukunaga, T.; Fukutsuka, T.; Sugie, Y. Silylation of graphite oxide. [J] Carbon 2004, 42(10):2117-2119.
    [65]Cai, D.; Song, M. Preparation of fully exfoliated graphite oxide nanoplatelets in organic solvents. [J] J. Mater. Chem.2007,17(35):3678-3680.
    [66]Gomez-Navarro, C.; Burghard, M.; Kern, K. Elastic properties of chemically derived single graphene sheets. [J] Nano Lett.2008,8(7):2045-2049.
    [67]Liu, N.; Luo, F.; Wu, H. X..; Liu, Y. H.; Zhang, C.; Chen, J. One-step ionic-liquid-assisted electrochemical synthesis of ionic-liquid-functionalized graphene sheets directly from graphite. [J] Adv. Func. Mater.2008,18(10):1518-1525.
    [68]Ruoff, R. Graphene:calling all chemists. [J] Nat. nanotechnol.2008,3(1):10-11.
    [69]Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieval, I.V.; Firsov, A. A. Electric field effect in atomically thin carbon films. [J] Science 2004, 306(5696):666-669.
    [70]Shen, J.; Hu, Y.; Li, C.; Qin, C.; Ye, M. Synthesis of amphiphilic graphene nanoplatelets. [J] Small, 2009,5(1):82-85.
    [71]Lavalle, P.; Gergely, C.; Cuisinier, F. J. G.; Decher, G.; Schaaf, P.; Voegel, J. C.; Picart, C. Comparison of the structure of polyelectrolyte multilayer films exhibiting a linear and an exponential growth regime:an in situ atomic force microscopy study. [J] Macromolecules,2002, 35(11):4458-4465.
    [72]Shen J.; Hu, Y.; Qin, C.; Ye, M. Layer-by-layer self-assembly of multiwalled carbon nanotube polyelectrolytes prepared by in situ radical polymerization. [J] Langmuir 2008,24(8):3993-3997.
    [73]Picart, C.; Mutterer, J.; Richert, L.; Luo, Y.; Prestwich, G. D.; Schaaf, P.; Voegel, J.; Lavalle, P. Molecular basis for the explanation of the exponential growth of polyelectrolyte multilayers. [J] PNAS 2002,99(20):12531-12535
    [74]Caruso, F.; Lichtenfeld, H.; Donath, E.; Mohwald, H. Investigation of electrostatic interactions in polyelectrolyte multilayer films:binding of anionic fluorescent probes to layers assembled onto colloids. [J] Macromolecules 1999,32(7):2317-2328.
    [75]Katagiri, K.; Matsuda, A.; Caruso, F. Effect of UV-irradiation on polyelectrolyte multilayered films and hollow capsules prepared by layer-by-layer assembly. [J] Macromolecules,2006, 39(23):8067-8074.
    [76]Mamedov, A.A.; Kotov, N. A.; Prato, M.; Guldi, D.M.; Wicksted, J. P.; Hirsch, A. Molecular design of strong single-wall carbon nanotube/polyelectrolyte multilayer composites. [J] Nat. Mater. 2002,1(3):190-194.
    [77]Chattopadhyay, D.; Galeska, I.; Papadimitrakopoulos, F. Metal-assisted organization of shortened carbon nanotubes in monolayer and multilayer forest assemblies. [J] J. Am. Chem. Soc.2001, 123(38):9451-9452.
    [78]Artyukhin, A. B.; Bakajin, O.; Stroeve, P.; Noy, A. Layer-by-layer electrostatic self-assembly of polyelectrolyte nanoshells on individual carbon nanotube templates. [J] Langmuir 2004, 20(4):1442-1448.
    [79]Rouse, J. H.; Lillehei, P.T. Electrostatic assembly of polymer/single walled carbon nanotube multilayer films. [J] Nano. Lett.2003,3(1):59-62.
    [80]Huang, S. C.; Artyukhin, A. B.; Wang, Y. M.; Ju, J. W.; Stroeve, P.; Noy, A. Persistence length control of the polyelectrolyte layer-by-layer self-assembly on carbon nanotubes. [J] J. Am. Chem. Soc. 2005,127(41):14176-14177.
    [81]Zhu, Z. P.; Su, D. S.; Weinberg, G.; Schloegl, R. Supermolecular self-assembly of graphene sheets: formation of tube-in-tube nanostructures. [J] Nano Lett.2004,4(11):2255-2259
    [82]Mkhoyan, K. A.; Contryman, A. W.; Silcox, J.; Stewart, D.A.; Eda, G.; Mattevi, C.; Miller, S.; Chhowalla, M. Atomic and electronic structure of graphene-oxide. [J] Nano Lett.2009,9(3):1058-1063
    [83]Subrahmanyam, K. S.; Vivekchand, S. R. C.; Govindaraj, A.; Rao, C. N; R. A study of graphenes prepared by different methods:characterization, properties and solubilization. [J] J. Mater. Chem.2008, 18(13):1517-1523
    [84]Eda, G.; Chhowalla, M. Graphene-based composite thin films for electronics. [J] Nano Lett.2009, 9(2):814-818
    [85]Blake, P.; Brimicombe, P. D.; Nair, R. R.; Booth, T. J.; Jiang, D.; Schedin, F.; Ponomarenko, L.A.; Morozov, S. V.; Gleeson, H.F.; Hill, E. W.; Geim, A. K.; Novoselov, K. S. Graphene-based liquid crystal device. [J] Nano Lett.2008,8(6):1704-1708
    [86]McAllister, M. J.; Li, J.; Adamson, D. H.; Schniepp, H. C.; Abdala, A. A.; Liu, J.; Herrera-Alonso, M.; Milius, D. L.; Car, R.; Prud'homme, R. K.; Aksay, I. A. Single sheet functionalized graphene by oxidation and thermal expansion of graphite. [J] Chem. Mater.2007,19(18):4396-4404
    [87]Eda, G.; Emrah, U. H.; Rupesinghe, N.; Amaratunga, G. A.; Chhowalla, M. Field emission from graphene based composite thin films. [J] Appl. Phys. Lett.2008,93(23):233502/1-233502/3
    [88]Jeong, H.; Lee, Y.; Jin, M. H.; Kim, E. S.; Bae, J. J.; Lee, Y. H. Thermal stability of graphite oxide. [J] Chem. Phys. Lett.2009,470(4):255-258.
    [89]Gomez-Navarro, C.; Weitz, R. T.; Bittner, A. M.; Scolari, M.; Mews, A.; Burghard, M.; Kern, K. Electronic transport properties ofindividual chemically reduced graphene oxide sheets. [J] Nano Lett. 2007,7(11):3499-3503.
    [90]Lattuada, M.; Hatton, T. A. Functionalization of monodisperse magnetic nanoparticles. [J] Langmuir 2007,23(4):2158-2168.
    [91]Lu, A.; Salabas, E. L.; Schueth, F. Magnetic nanoparticles:synthesis, protection, functionalization, and application. [J] Angew. Chem. Int. Ed.2007,46(8):1222-1244.
    [92]Lin, X.; Samia, A. C. S. Synthesis, assembly and physical properties of magnetic nanoparticles. [J] J. Magn. Magn. Mater.2006,305(1):100-109.
    [93]Huber, D. L. Synthesis, properties, and applications of Iron nanoparticles. [J] Small 2005, 1(5):482-501.
    [94]Lattuada, M.; Hatton, T. A. Preparation and controlled self-assembly of Janus magnetic nanoparticles. [J] J. Am. Chem. Soc.2007,129(42):12878-12889
    [95]Pasricha, R.; Gupta, S.; Srivastava, A. K. A facile and novel synthesis of Ag-graphene-based nanocomposites. Small 2009,5(20):2253-2259.
    [96]Seger, B.; Kamat, P. V. Electrocatalytically active graphene-platinum nanocomposites. Role of 2-D carbon support in PEM fuel cells. [J] J. Phys. Chem. C,2009,113(19):7990-7995.
    [97]Kou, R.; Shao, Y.; Wang, D.; Engelhard, M. H.; Kwak, J. H.; Wang, J.; Viswanathan, V. V.; Wang, C.; Lin, Y.; Wang, Y.g; Aksay, I. A.; Liu, J. Enhanced activity and stability of Pt catalysts on functionalized graphene sheets for electrocatalytic oxygen reduction. [J] Electrochem. Commun.2009, 11(5):954-957.
    [98]Yoo, E.; Okata, T.; Akita, T. Kohyama, M.; Nakamura, J.; Honma, I. Enhanced electrocatalytic activity of Pt subnanoclusters on graphene nanosheet surface. [J] Nano Lett.2009,9(6):2255-2259.
    [99]Xu, C.; Wang, X. Fabrication of flexible metal-nanoparticle films using graphene oxide sheets as substrates. [J] Small 2009,5(19):2212-2217.
    [100]Lu, G.; Mao, S.; Park, S.; Ruoff, R. S.; Chen, J. Facile, noncovalent decoration of graphene oxide sheets with nanocrystals. [J] Nano Res.2009,2(3):192-200.
    [101]Zhou, X.; Huang, X.; Qi, X.; Wu, S.; Xue, C.; Boey, F. Y. C.; Yan, Q.; Chen, P.; Zhang, H. In situ synthesis of metal nanoparticles on single-layer graphene oxide and reduced graphene oxide surfaces. [J] J. Phys. Chem. C,2009,113(25):10842-10846
    [102]Kong, B.; Geng, J.; Jung, H. Layer-by-layer assembly of graphene and gold nanoparticles by vacuum filtration and spontaneous reduction of gold ions. [J] Chem. Commun.2009,16:2174-2176
    [103]Hassan, H. M. A.; Abdelsayed, V.; Khder, A. R. S.; AbouZeid, K.M.; Terner, J.; El-Shall, M. S.; Al-Resayes, S. I.; El-Azhary, A. A. Microwave synthesis of graphene sheets supporting metal nanocrystals in aqueous and organic media. [J] J. Mater. Chem.2009,19(23):3832-3837.
    [104]Scheuermann, G. M.; Rumi, L.; Steurer, P.; Bannwarth, W.; Mulhaupt, R. Palladium nanoparticles on graphite oxide and its functionalized graphene derivatives as highly active catalysts for the Suzuki-Miyaura coupling reaction. [J] J. Am. Chem. Soc.2009,131(23):8262-8270.
    [105]Li, Y.; Tang, L.; Li, J. Preparation and electrochemical performance for methanol oxidation of pt/graphene nanocomposites. [J] Electrochem. Commun.2009,11(4):846-849.
    [106]Yuge, R.; Zhang, M.; Tomonari, M.; Yoshitake, T.; Iijima, S.; Yudasaka, M. Site identification of carboxyl groups on graphene edges with Pt derivatives. [J] ACS Nano 2008,2(9):1865-1870.
    [107]Yang, X.; Zhang, X.; Ma, Y.; Huang, Y.; Wang, Y.; Chen, Y. Superparamagnetic graphene oxide-Fe3O4 nanoparticles hybrid for controlled targeted drug carriers. [J] J. Mater. Chem.2009, 19(18):2710-2714.
    [108]Goncalves, G.; Marques, P. A. A. P.; Granadeiro, C. M.; Nogueira, H. I. S.; Singh, M. K.; Gracio, J. Surface modification of graphene nanosheets with gold nanoparticles:the role of oxygen moieties at graphene surface on gold nucleation and growth. [J] Chem. Mater.2009,21(20):4796-4802.
    [109]Li, F.; Yang, H.; Shan, C.; Zhang, Q.; Han, D.; Ivaska, A.; Niu, L. The synthesis of perylene-coated graphene sheets decorated with Au nanoparticles and its electrocatalysis toward oxygen reduction. [J] J. Mater. Chem.2009,19(23):4022-4025.
    [110]Hull, R. V.; Li, L.; Xing, Y. C.; Chusuei, C. C. Pt nanoparticle binding on functionalized multiwalled carbon nanotubes. [J] Chem. Mater.2006,18(7):1780-1788.
    [111]Akhavan, O.; Ghaderi, E. Photocatalytic reduction of graphene oxide nanosheets on TiO2 thin film for photoinactivation of bacteria in solar light irradiation. [J] J. Phys. Chem. C 2009, 113(47):20214-20220.
    [112]Lu, C.; Yang, H.; Zhu, C.; Chen, X.; Chen, G. A graphene platform for sensing biomolecules. [J] Angew. Chem. Int. Ed.2009,48(26):4785-4787.
    [113]Patil, A. J.; Vickery, J. L.; Scott, T. B.; Mann, S. Aqueous stabilization and self-assembly of graphene sheets into layered bio-nanocomposites using DNA. [J] Adv. Mater.2009,21(31):3159-3164.
    [114]Li, H.; Chen, J.; Han, S.; Niu, W.; Liu, X.; Xu, G. Electrochemiluminescence from tris(2,2'-bipyridyl)ruthenium(II)-graphene-nafion modified electrode. [J] Talanta 2009,79(2):165-170.
    [115]Wu, H.; Wang, J.; Kang, X.; Wang, C.; Wang, D.; Liu, J.; Aksay, I. A.; Lin, Y. Glucose biosensor based on immobilization of glucose oxidase in platinum nanoparticles/graphene/chitosan nanocomposite film. [J] Talanta 2009,80(1):403-406.
    [116]Sun, X.; Liu, Z.; Welsher, K.; Robinson, J. T.; Goodwin, A.; Zaric, S.; Dai, H. Nano-graphene oxide for cellular imaging and drug delivery. [J] Nano Res.2008,1(3):203-212.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700