新型修饰材料—氧化石墨烯、石墨烯的制备和电化学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碳材料由于其较高的导电性、对许多氧还原反应体现出了很高电催化活性,使之成为电化学分析领域应用最为广泛的材料。鉴于石墨烯具有极为特殊的物理及化学属性,大比表面积性质、锯齿型边缘、室温下较高的电子迁移速率,科学界越来越多的科研工作者加入到了石墨烯性能研究和合成的行列当中。氧化石墨烯(GO)是石墨烯的氧化产物,同时也是化学还原法制备石墨烯的中间产物。氧化石墨烯与石墨烯的最大不同之处在于其分子片层表面含有较多活性含氧基团,这些含氧基团赋予了氧化石墨烯更多的性质,如可以在水中良好的分散,电子传导速率的提高等等。
     目前科学界对于石墨烯和氧化石墨烯的研究较多,但是还未有人对于石墨烯和氧化石墨烯进行比对研究。本文正基于此现状准备对石墨烯、氧化石墨烯的电化学性质进行比对研究。
     (一)利用改良的后的Hummer法,同时借助于超声辅助作用制备氧化石墨烯,然后利用水合肼还原合成石墨烯。并通过红外、XRD、透射电镜、原子力显微镜进行形态表征。结果令人满意,在表征过程中发现氧化石墨烯的片层表面比石墨烯片层表面还有更为丰富且活跃的含氧基团,氧化石墨烯的平面结构较平整,而石墨烯的平面呈现出了褶皱。
     (二)利用石墨烯、氧化石墨烯与Nafion结合制备出两种的电化学传感器Nafion/graphene/GC和Nafion/GO/GC,通过其对水中的金属离子Pb2+进行电化学检测,结果显示在,Nafion/GO/GC测定的氧化峰电流ip与Pb2+的浓度的线性范围比Nafion/graphene/GC宽,检出限分别为1.0×10-7mol L-1、2×10-8mol L-1。我们借此判断出氧化石墨烯对金属比石墨烯修饰电极有更好的吸附作用。
     (三)我们借助于Nafion/graphene/GC和Nafion/GO/GC对对氨基酚进行电化学检测,并简单研究其电极反应机理。发现两电极的电极反应机理几乎一致,但是氧化石墨烯修饰电极的检测限比石墨烯修饰电极要低半个数量级。我们推断是氧化石墨烯由于其表面的较多丰富而活跃的含氧基团的存在提高了电极表面的电子转移速率。
Carbon materials, due to the high electrical conductivity and the excellent electrocatalysis, have become the most widely used electrode materials in the field of electrochemical analysis. In view of the fact that graphene has very special physical and chemical properties such as:the large specific surface area, a zigzag edge, the high electron mobility rate at room temperature, more and more researchers in scientific community are joining in the research and synthesis of the graphene. Graphene Oxide (GO), as well as the oxidation product grapheme, is an intermediate of the Graphene preparation by chemical reduction. And it is an important member of the graphene derivatives family. The biggest difference between GO and graphene is that there are abundant active oxygen-containing groups on the surface of GO molecular slice. These oxygen-containing groups bring some properties such as: evenly dispersed in the water and the higher electron mobility rate. There are so many scientists in scientific community joining in the research of the graphene and GO in recent years. However, the report about the comparison research between GO and graphene has not emerged yet. In this paper, the electrochemical properties of the graphene with the GO were compared based on the status quo.
     1. The GO was prepared by graphite oxide reduction method (improved Hummers method) with the aid of ultrasonic. Then the oxygen-containing groups were removed by chemical reduction-the hydrazine hydrate reduction method. The morphological characterizations and physical properties of graphene and GO were confirmed by Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), transmission electron microscopy (TEM) and atomic force microscope (AFM). Results showed that there are more abundant active oxygen-containing groups on the slice layer surface of GO than that of the graphene. Meanwhile, the molecular slice of the graphene exhibited drape, while the plane structure of the GO was flat and level. These all proved that graphene and GO were successfully composed.
     2.In this paper, the graphene and GO, accompanied with nafion, were used to construct electrochemical sensor, and the modified electrodes (Nafion/graphene/GCE and Nafion/GO/GCE) were applied for the determination of metal ions Pb2+in water. Differential pulse anodic stripping voltammetry (DPASV) was adopted to investigate the analytical performance of Nafion/graphene/GCE and Nafion/GO/GCE to lead (Pb2+). It turned out that the Nafion/GO/GCE showed a better performance for the determination of Pb2+than Nafion/graphene/GCE. the detection limit of Nafion/graphene/GCE and Nafion/GO/GCE is1.0×10-7and2×10-8mol L-1. These all proved that the GO modified electrode had better adsorption effect to the metals contrasting with the graphene. In addition, the stability of Nafion/GR/GCE was better than that of Nafion/GO/GCE.
     3. The electrochemical detection and possible mechanism of aminophenol was studied on Nafion/graphene/GCE and Nafion/GO/GCE using square wave voltammetry (SWV). Results showed that the redox reaction mechanism of aminophenol was consistent on the two sensors, while the detection limit of aminophenol on Nafion/graphene/GCE was half an order of magnitude larger than that of Nafion/GO/GCE. This possible reason might that the oxygen-containing groups on the surface molecular slice of GO improved the electron transfer rate the electrode surface.
引文
[1]Kroto, H. W.; Heath, J. R.:O'Brien, S. C.; Curl, R. F.; Smalley, R. C60: Buckminsterfullerene. Nature,1985,318:162-163
    [2]Lijima, S. Helical microtubules of graphitic carbon. Nature,1991,354:57-58
    [3]T. Kyotani, N. Sonobe, A. Tomita. Formation of Highly Orientated Graphite from Polyacrylonitrile by Using a Two-Dimensional Space between Montnorillonite Lamellae. Nature,1988,331(6154):331-333.
    [4]Novoselov. kS.; Geim, A. k, Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos. S. V.; Grigorieva,I. V.;Firsov, A. A. Electric field effect in atomically thin carbon films. Science, 2004,306(5696):666
    [5]Shioyama, H.; Alota,T. A new route to carbon nanotubes. Carbon,2003,2~3,41(1):179
    [6]Viculis, L. M.; Mack,J. J.; Kaner, R. B. A chemical route to carbon nanoscrolls, Science, 2003,299(5611):1361
    [7]Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva ⅠⅤ, Firsov A A. Electric field effect in atomically thin carbon films. Science,2004,306: 666-669
    [8]Service R F. Carbon sheets an atom thick give rise to graphen e dreams. Science,2009,324: 875-877
    [9]Novoselov K S, Jiang Z, Zhang Y, Morozov S V, Stormer H L, Z eitler U, Maan J C, Boebinger G S, Kim P, Geim A K.Room-temperature quantum hall effect in graphene. Science,2007,315:1379
    [10]Wang Y, Huang Y, Song Y, Zhang X Y, Ma Y F, Liang J J, Chen Y S. Room temperature ferromagnetism of grapheme. Nano Lett,2009,9:220-224
    [11]佘泉茂,王仁清.石墨烯制备及其在超级电容器中的应用研究,材料导报,2012,26(8):7-13
    [12]杜海军.石墨烯和荧光碳纳米颗粒的制备及其电化学特性的研究.华南理工大学博士毕业论文.2010
    [13]张明,张晋,郭鹏丽,郭金花.单层石墨烯储氢的蒙特卡罗模拟.云南大学学报.2010,32(3):294-298
    [14]J Peet, J Y Kim, N E Coates, W L Ma, D Moses, A J Heeger, et al. Efficiency enhancement inlow-bandgap polymer solar cells by processing with alkane dithiols. Nature Materials. 2007,6,497-500
    [15]M Pumera,A Ambrosi,A Bonanni,ELK Chng,HL Poh.Graphene for electrochemical sensing and biosensing. TrAC Trends in Analytical Chemistry.2010,29,954-965
    [16]Sutter, P. W.; Flege, J.-I.; Sutter, E. A. Epitaxial graphene on ruthenium Nature Materials, 2008,5,406-411
    [17]Berger C, Song ZM, Li TB. Delectron gas properties and aroute toward graphene-based nanoelectronics.J. Phys. Chem. B.,2004,108:19912-19916
    [18]Berger C, Song Z M, deHeer WA. Electronic confinement and coherence in patterned epitaxial graphene.Science,2006,312:1191-1196
    [19]Brodie BC. Surle poids atomique du graphite. AnnChimPhys,1860,59:466
    [20]Staudenmaier L. Verfahren zur Darstellung der Graphitsaure.Ber Dtsch. ChemGes,1898, 31:1481
    [21]Hummers W, Offeman R. Preparation of graphitic oxide. Am. Chem. Soc,1958,80:1339
    [22]Hernandez, Y; Nicolosi, V.; Lotya, M.; Blighe, F. M.; Sun, Z.; De, S.; McGovern, I. T.; Holland, B.; Byrne, M.; Gun'Ko, Y. K.; Boland, J. J.; Niraj, P.; Duesberg, G; Krishnamurthy, S.; Goodhue, R.; Hutchison, J.; Scardaci, V.; Ferrari, A. C.; Coleman, J. N. High-yield production of graphene by liquid-phase exfoliation of grapite. Nature Nanotechnology,2008, 7,563-568
    [23]Janowska, I.; Chizari, K.; Ersen, O.; Zafeiratos, S.; Soubane, D.; Costa, V.; Speisser, V.; Boeglin, C.; Houlle, M.; Begin, D.; Plee, D.; Ledoux, M.-J.; Pham-Huu, C.Microwave Synthesis of Large Few-Layer Graphene Sheets in Aqueous Solution of Ammonia Nano Res. 2010,3,126-137
    [24]Liu N, Luo F, Wu H X. One-step ionic-liquid-assisted electrochemical synthesis of ionic-liquid-functionalized grapheme sheets directly from graphite. Adv Funct Mater,2008, 18:1518-1525
    [25]KimKS, Zhao Y, Jang H, et al. Large scalepattern growthof graphene films for stretchable transparent electrodes. Nature,2009,457(7230):7062710.
    [26]S.K. Srivastava, A.K. Shukla, V.D. Vankar and Vikram Kumar, Growth, structure and field emission chacteristics of patal like carbaon nano-structured thin films. Thin Solid Films, 492,124-130(2005).
    [27]Qian H L; Negrif; Wang CR; Wang Z H J. The Comparative Study of Investment Control between Chinese and Foreign Public Buildings Am.Chem. Soc,2008.130(52):17970
    [28]Schniepp H C, Li J L, Mcallister M J, et al. Functionalized single graphene sheets derived from splitting graphite oxide. Phys Chem B,2006,110:8535-8539
    [29]Antisari M V, Montone A, Jovic N, et al. Low energy pure shear milling:A method for the preparation of graphite nano-sheets. Scr Mater,2006,55:1047-1050
    [30]Huang KJ, Niu D J, Sun J Y, et al. Novel electro-chemical sensor based on functionalized graphene for simultaneous determination of adenine and guanine in DNA. ColloidsSurf B: Biointerfaces,2011,82:543-549
    [31]Xinhuang Kang, Jun Wang,Yuehe Lin,etal. A graphene-based electrochemical sensor for sensitive detection of paracetamol. Talanta.2010,81:754-759.
    [32]Jianfeng Wu, MiaoQing Xu, Guangchao Zhao. Graphene-based modified electrode for the direct electron transfer of Cytochrome c and biosensing.Electrochemistry Communications. 2010,12:175-177.
    [33]Xiuming Wu,Yaojuan Hu,Juan Jin CAI ChenXin,etal Electrochemical approach for the measurement of intracellular hydrogen peroxide and its releasing process from neutrophil. Analitical Chemistry.2010,82:3588-3596.
    [34]Zhimin Liu, Zhenling Wanga, Yanyan Cao. High sensitive simultaneous determination of hydroquinone and catechol based on graphene/BMIMPF6 nanocomposite modified electrode Sensors and Actuators B.Chemical 2011,157:540
    [35]Ya Yamin Li, Zhuo Ye, Jing Zhou, Jie Liu, Ge Song, Kai Zhang, Baoxian Ye* "A new voltammetric sensor based on poly(L-arginine)/graphene-Nafion composite film modified electrode for sensitive determination of Terbutaline sulfate" Journal of Electroanalytical Chemistry,2012,687,51-57
    [36]Daniela C Marcano. Dmitry V Kosynkin, Jacob M Berlin, etaL Improved synthesis of graphene oxide. Acs Nano,2010,4(8):4806
    [37]Shen Jianfeng, Hu Yizhe, Shi Min, et al. Fast and facile preparation of graphene oxide and reduced graphene oxide nanoplatelets. Chem Mater,2009,21(15):3514
    [1]Hummers W, Offeman R. Preparation of graphitic oxide. Am. Chem. Soc,1958,80:1339
    [2]Ambrosi A, Pumera M.Stacked Graphene Nanofibers for Electrochemical Oxidation of DNA Bases. Physical Chemistry Chemical Physics.2010,12:31
    [3]Kuila T,Bose S,Khanra P,Mishra A K,Kim N H,Lee J H.Recent advances in graphene-based biosensors. Biosensors and Bioelectronics.2011,12 (26):4637-4648
    [4]M Pumera, A Ambrosi, A Bonanni, ELK Chng, HL Poh.Graphene for electrochemical sensing and biosensing. TrAC Trends in Analytical Chemistry.2010,29:954-965
    [5]R Ehret,W Baumann,M Brischwein,A Schwinde,K Stegbauer,B Wolf.Monitoring of cellular behavior by impedance measurements on interdigitated electrode structures. Biosensors and Bioelectronics.1997,12:29-41
    [6]L.Tang, H.Feng, J. Cheng, J.H. Li.Uniform and Rich-Wrinkled Electrophoretic Deposited Graphene Film:A Robust Electrochemical Platform for TNT Sensing. Chemical Communications.2010,46:5882
    [7]Kuila T,Bose S,Khanra P,Mishra A K,Kim N H,Lee J H.Recent advances in graphene-based biosensors. Biosensors and Bioelectronics.2011,26:4637-4648
    [8]Zhou, X. Z,Huang, X.,Qi, X. Y.,Wu, S. X.,Xue, C.,Boey, F.Y.C.Yan, Q.,Chen, P.,Zhang, H.In Situ Synthesis of Metal Nanoparticles on Single-Layer Graphene Oxide and Reduced Graphene Oxide Surfaces. J. Phys. Chem. C.2009,113:10842-10846
    [9]Srivastava SK, Shukla AK, Vankar VD, Kumar V. Growth, structure and field emission characteristics of petal like carbon nano- structured thin films. Thin Solid Films,2005,492: 124
    [10]Schniepp, H C, Li J L, McAllister, M J, et al. Functionalized single graphene sheets derived from splitting graphite oxide. J. Phys. Chem. B,2006,110:8535
    [11]McAllister, Michael J Li, etal.Single sheet function-alized graphene by oxidation and thermal expansion ofgraphite. Chemistry of Materials.2007,18:4396-4404
    [12]肖淑华;沈明;朱沛英;张东;水合肼还原氧化石墨烯的研究,材料开发与应用,2011,4:45-50
    [13]V. C. Tung, M. J. Allen, Y. Yang, R. B. Kaner. High-throughput solution processing of largescale grapbene. Nature NanOtechnology,2009,4:2
    [14]Meyer J C, Geim A K, Katsnelson M I, et al. The structure of suspended graphene sheets. Nature,2007,446:6
    [15]Beenakker C W J. Colloquium:andreev Reflection and klein Tunneling In graphene. Rev Mod Phys.2008,80(4):1337.
    [16]Vadukumpully S, Paul J, Valiyaveettil S. Cationic surfactant mediated exfoliation of graphite into graphene flakes. Carbon.2009,47:3288-94
    [17]Roy D, Angeles-Tacay E, Brown RJC, Spencer SJ, Fry T, Daunton TA, et al. Synthesis and Raman spectroscopic characterisation of carbon nanoscrolls. Chem Phys Lett.2008,465: 254-257.
    [1]Boccara AC, Fournier D, Kumar A, et al.Nondestructive evaluation of carbon fiber by mirage-FTIR spectroscopy. Journal of Applied Poly-mer Science.1997,63:1785-1791
    [2]Edie D D. The effect of processing on the structure of carbon fibers. Carbon.1998,36: 345-362
    [3]A. Fonseca, K. Hernadi,P. Piedigrosso,J.-F. Colomer, K. Mukhopadhyay,R. Doome,S. Lazarescu,L.P. Biro,P. Lambin,P.A. Thiry,D. Bernaerts,J.B. Nagy. Synthesis of single- and multi-wall carbon nanotubes over supported catalysts,1998,67:11-22
    [4]张立德,解思深,纳米材料和纳米结构[M].北京:化学工业出版社,2005,433-450
    [5]Holzinger M, Vostrowsky O, Hircsh A, et al. Side wall functionalisation of carbon nanotubes. Angewandte Chemie International Edition,2001,113:4132-4136
    [6]Zhang S,Fu R,Wu D,et al. Preparation and characterization of antibacterial silver-dispersed activated carbon aerogels. Carbon.2004,42:3209-3216
    [7]Streubel R, Wilkens H, Jones P G. Photochemically generated nitrilium phosphane-ylid tungsten complexes and their reactivity towards alkyne and nitrile derivatives. Chemical Communications.1999,21:2127-2128
    [8]L.Tang, H.Feng, J.Cheng, J.H.Li.Uniform and Rich-Wrinkled Electrophoretic Deposited Graphene Film:A Robust Electrochemical Platform for TNT Sensing. Chemical Communications.2010,46:5882
    [9]Kuila T,Bose S,Khanra P,Mishra A K,Kim N H,Lee J H.Recent advances in graphene-based biosensors. Biosensors and Bioelectronics.2011,4637-4648
    [10]Novoselov K S, Jiang Z, Zhang Y, Morozov S V, Stormer H L, Z eitler U, Maan J C, Boebinger G S, Kim P, Geim A K.Room-temperature quantum hall effect in graphene. Science,2007,315:1379 Ambrosi A,Pumera M.Stacked Graphene Nanofibers for Electrochemical Oxidation of DNA Bases. Physical Chemistry Chemical Physics.2010,12: 31
    [11]Kuila T, Bose S, Khanra P, Mishra A K, Kim N H, Lee J H. Recent advances in graphene-based biosensors. Biosensors and Bioelectronics.2011:4637-4648
    [12]M Pumera, A Ambrosi, A Bonanni, ELK Chng, HL Poh. Graphene for electrochemical sensing and biosensing. TrAC Trends in Analytical Chemistry.2010,29:954-965
    [13]R Ehret,W Baumann, M Brischwein, A Schwinde, K Stegbauer, B Wolf.Monitoring of cellular behavior by impedance measurements on interdigitated electrode structures. Biosensors and Bioelectronics.1997,12:29-41
    [14]L.Tang, H.Feng, J.Cheng, J.H.Li.Uniform and Rich-Wrinkled Electrophoretic Deposited Graphene Film:A Robust Electrochemical Platform for TNT Sensing. Chemical Communications.2010,46:5882
    [15]Wei Song, Lei Zhang, Lei Shi,Da-Wei Li,Yang Li,Yi-Tao Long. Simultaneous determination of cadmium(II), lead(II) and copper(II) by using a screen-printed electrode modified with mercury nano-droplets. Microchimica Acta.2010,169:321-326
    [16]Wu Z, Feng W, FENG Y, et al. Preparation and characterization of chitosan-grafted multiwalled carbon nanotubes andtheir electrochemical properties. Carbon.2007,45: 1212-1218
    [1]R.M. Harrison (Ed.), Understanding Our Environment. An Introduction to Environment Chemistry, The Royal Society of Chemistry, Milton Road,1999,6:338.
    [2]H. Yin, Q. Ma, Y. Zhou, S. Ai, L. Zhu, Electrochemical behavior and voltammetric determination of 4-aminophenol based on graphene-chitosan composite film modified glassy carbon electrode, Electrochim. Acta,2010,55:7102-7108
    [3]M. Jamal, S.A. Sarac, E. Magner, Conductive copolymer-modified carbon fibre microelectrodes:electrode characterization and electrochemical detection of p-aminophenol, Sens. Actuators B,2004,97:59-66.
    [4]MorozovS V, Novoselov K S, Katsnelson M I,et al.Giant intrinsic carrier mobilities in graphene and its bilayer. Physical Review.2008,100:016602
    [5]Lee C,Wei X D, Kysar JW, et al. Measurement of the elastic properties andintrinsic strength of monolayer graphene. Science.2008,4:18
    [6]M Pumera, A Ambrosi,A Bonanni,E L K Chng,H L Poh.Graphene for electrochemical sensing and biosensing. TrAC Trends in Analytical Chemistry.2010,29:954-965
    [7]R Ehret, W Baumann, M Brischwein, A Schwinde, K Stegbauer, B Wolf.Monitoring of cellular behavior by impedance measurements on interdigitated electrode structures. Biosensors and Bioelectronics.1997,12:29-41
    [8]L.Tang, H. Feng, J. Cheng, J.H.Li. Uniform and Rich-Wrinkled Electrophoretic Deposited Graphene Film:A Robust Electrochemical Platform for TNT Sensing. Chemical Communications.2010,46:5882
    [9]罗宿星,伍远辉,代小容,冉忠,刘航龙.苏丹红Ⅰ在壳聚糖-氧化石墨烯自组装膜修饰玻碳电极上的电化学行为及其测定,分析测试学报.2012,12:31
    [10]许春萱,吴志伟,曹凤枝,高滢滢.羧基化石墨烯修饰玻碳电极测定水样中的痕量铅和镉冶金分析,2010,8:24

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700