含酚废水的强化臭氧化处理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
酚是一种普遍使用的化工原料,也是许多工业企业生产的副产物。随着排放标准的不断提高,含酚废水的处理难度愈来愈大。
     本文研究了含酚废水的强化臭氧氧化法过程,结果表明:臭氧与酚的亲电加成反应分两个阶段进行,第一个阶段主要是臭氧同酚的直接作用,酚的降解呈线性关系;第二个阶段是臭氧同酚及其氧化中间产物的作用,呈抛物线关系。pH是该过程的关键控制参数,pH>pKa时将大大提高反应速率,而溶液温度对酚的降解影响不大。不同曝气装置的对比实验表明,自吸式搅拌器相对于微孔曝气管具有气体分散性好、利用率高、能耗低的优点,传质效率较高。自制的锰系催化剂能有效改善臭氧处理含酚废水中色度难于控制的缺点,对COD_(Cr)的去除率能增大约20个百分点,氧化还原沉淀法制备锰系催化剂的适宜煅烧温度为t=200℃。臭氧处理含酚废水的可生化性在不同反应时间内变化较大,一定时间内有所提高。在t=26.5℃时,动力学模型模拟结果如下:
     pH=3.10~9.00时,反应级数平均为n=0.73,化学反应速率常数k=(2.7817~5.0873)×10(-2)(mol/1)~(-0.73)·min(-1):
     pH>9.0时,呈现出一级反应,速率常数k变化相对较大;
     K与pH、COD_(Cr)(mg/1)、[PhOHs](mg/1)满足以下关联式:
     Ln(k):-9.793-0.688 ln(pH)+2.594 ln(COD_(Cr))-2.403 ln(PhoHs)
     F检验表明,该关联式显著性较好。
Phenol is a kind of fundamental chemical raw material, it is also a kind of by-products produced by many chemical industty Because of the critical effluent standard, It is more difficult to treat the wastewater contained phenol than before.
    
     The author researches the oxidation process of the wastewater contained phenol using Advanced Ozonation Processes, the results indicate: The electrophilic reaction between ozone and phenol have two stages, during the first stage, ozone molecular react mainly with phenol, the degradation of phenol is linear, however, in the second stage, it reacts with both phenol and its oxidation products, the degradation of phenol is parabola. During the treatment of wastewater contained phenol, pH is the key parameter, when pH > pKa, the reaction rate will increase rapidly; but the reaction~ temperature has little effect on the degradation of phenol by ozonation. The compared experiment of different gas dispersed equipment prove that self -sucked agitator has such advantages as good gas distribution, high ozone utilizing rate and lower mechanical energy consumed, it make the mass transfer efficiency very high compared with micro-gas bubble equipment. During the ozonation treatment process
    
    of wastewater polluted by phenol, Mn-catalyst make the color more easy to control than that of no catalyst, and it can increase about 20 percent points for the removal rate of CODEr based on the compared experiments. The best calcining temperature of manganese catalyst which made by the method of oxidation-revert is 200扖, using the raw material of Mn(N03)2 and KMnO4. The biodegradation of the effluent varies with the reaction time. At t =26.5CC, the modeling of kinetic model as
    
    V
    
    
    5
    
    
    
    following:
    
     When pL-I=3.1O-----9.OO, the mean reaction order is n=0.73, the chemical reaction rate constant k is between 2.7817 and 5.0873x102 (mol/L1073min?
    
     When pH > 9.0, the reaction order is n=l, but k change geatly. Based on the experimental data, k ~pH CQDc~ (mglL) and the concentration of phenol in the liquid are suitable the following relationship:
    
    ln(k) = -9.793 ?0.688 ln(pH) + 2.594 lfl(COD~r) ?2.403 ln(PhoHs) Compared with the standard F distribution value, the relationship is very good.
引文
[1]张芳西等,含酚废水的处理与利用,北京:化学工业出版社,1983,p1-12
    [2]王连生编,有机污染物化学,北京:科学出版社,1991,p143-165
    [3]乌锡康编,有机化工废水处理技术,北京:化学工业出版社,1999.7,p117-139
    [4]M.A谢甫钦柯,B.B利荣诺夫著,刘存礼译,臭氧化法水处理工艺学,北京:清华大学出版社,1987.4,p28-29
    [5]王莉莉等,我国高浓度含酚废水的治理技术近况,环境污染与防治,V17,n5,1995,p29-30
    [6]汪大翚等编,工业废水中专项污染物处理手册,北京:化学工业出版社,2000,p176-188
    [7]曲文辉,强化臭氧化处理有机废水中的典型反应与应用,环境科学,1997,V18,n3,p77-79
    [8]Yurili I. Matatov-Meytal et al., Catalytic Abatement of Water Pollutants, Ind. Eng. Chem. Res.,1998, 37, p309-326
    [9]Evans, Ozone in Water and Wastewater Treatment, Michigan, 1982
    [10]S.J. Niegowski. Destruction of Phenols by Oxidation with Ozone, Industrial and Engineering Chemistry, 1953, V45, N3, p632-634
    [11]K.Y.Li. C.H.KUO and J.L.Weeks , JR. A Kinetic Study of Ozone-Phenol Reaction in Aqueous Solutions, AICHE Journal, 1979, V25, n4, p583-591
    [12]Makarand G.Joshi and Robert L.Shambaugh, the Kinetics of Ozone-Phenol Reaction in Aqueous Solutions, 1982, Water Res., V16, p933-938
    [13]P.C. Singer & M.D. Gurol, Dunamics of the Ozonation of Phenol- Expermental Observations. Water Res. V17, n9, 1983, p1163-1171
    [14]M.D. Gurol & P.C. Singer, Dunamics of the Ozonation of Phenol- Ⅱ Mathematical Simulation. Water Res. V17, n9, 1983, p1173-1181
    [15]邵志良,臭氧混合反应设备,工业水处理,1987,V7,N6,p39-41
    [16]沈耀良,臭氧水处理中的控制反应,水处理技术,V12,N5,p297-299
    [17]Johannes Stachelln and Jurg Holgne, Decomposition of Ozone in Water in the Presence of Organic Solution Acting as Promotors and Inhibitors of Radical Chain Reactions, Environ. Sci. Technol., 1985, 19, p1206-1213
    [18]朱世云等,臭氧氧化降解水溶液中1-萘酚的动力学研究,环境化学,1999,V18,N3,p227-231
    [19](美)R·G,赖斯等编,朱光等译,臭氧技术及其应用手册,北京:清华大学出版社,1991,p254-285
    [20]张彭义等,臭氧水处理技术进展,环境科学进展,1995(12),V3,N6,p18-24
    
    
    [21]Sokratova, N.B., et. al., Coke & Chemistry(USSK), 1987, N12, p72-75
    [22]张洪沅编,化工原理(第二册),成都:成都科技大学出版社,1991,p161-175
    [23]王建华编,化学反应器设计,成都:成都科技大学出版社,1988,p362-374
    [24]唐受印等编,废水处理工程,北京:化学工业出版社,1998,p240-247
    [25]卢建利等,自吸式四氟乙烯聚合釜气液传质特性的研究,浙江大学学报,1992,V26,n1,p80—87
    [26]Gusbertus Bergshoff et. al., Improved Neutral Buffered Potassium Iodide Method for Ozone in Air, Analy. Chem., 1980, V52, N3, p541-546
    [27]中华人民共和国城镇建设行业标准,O_3发生器O_3浓度、产量、电耗的测量,CJ/T3028.2-94,p9-15
    [28][德]W.Fresenius等著,张曼平等译,水质分析,北京:北京大学出版社,1989,p27-29
    [29]H. Bader & J. Hogine, Determination of Ozone in Water by Indigo Method, Wat. Res., 1981, 15, p449-459
    [30]蔡铁云等,大气环境中O_3测试方法的研究,中国环境检测,1997,13(4),p24-26
    [31]詹朝坤,关于臭氧-靛蓝二磺酸钠分光光度法(GB/T15437-95)问题的探讨,四川环境,1999,V18(3),p70-72
    [32]李亚新,赵晨红,紫外分光光度法同时定量测定多组分混合物—喹啉、吡啶、吲哚、苯酚,环境工程,1999(4),V17,N2,p58-60
    [33]黄君礼,鲍治宇,紫外吸收光谱法及其应用,北京:中国科学技术出版社,1992(10),p199-205
    [34]钱丽琳,快速法测定COD_(cr)的研究,电力环境保护,V14,N1,1998,p60-63
    [35]PS-7-85,化学需氧量(COD)的测定,p170-175
    [36]中华人民共和国国家标准,GB7488-87
    [37]中华人民共和国国家标准,GB7489-87
    [38]向德辉等,固体催化剂,北京:化学工业出版社,1983,p341-421
    [39]尹军,王宝贞,水中硝基芳烃的去除机理初探,水处理技术,V11,N3,1985(6),P19-25
    [40]Fernando J. Beltran et al., Oxidation of Polynuclear Aromatic Hydrocarbons in Water. 1. Ozonation, Ind. Eng. Chem. Res.,1995, V34, p1596-1606
    [41]上海科学技术情报研究所,臭氧制造及其应用文集,1976
    [42]J.L.Sotelo et al., Henry's Law Constant for the Ozone-Water System. Wat. Res., 1989, V23, n10, p1239-1246
    [43]程江等,臭氧吸收中液相臭氧浓度和增强因子理论预测,化工学报,1997,V48,N6,p698-705
    
    
    [44]Gurol & Singer. Kinetics of Ozone Decomposition: a Dynamic Approach. Envir. Sci. Technol. 16, 377-383
    [45]Jose L. Sotelo et al., Ozonation of Aqueous Solution of Resorcinol and Phloroglucinol. 1. Stoichiometry and Absorption Kinetic Regime. Ind. Eng. Chem. Res., 1990, V29, p2358-2367
    [46]郑安平,田静,臭氧氧化地下水中石油类污染物的实验研究,污染防治技术,1998,V11,N1,p1-5
    [47]Dissociation Constants of Organic Acid in Aqueous Solution, 1972, IUPAC, p40
    [48]M.Roustan, R.Y. Wang et. al., Modeling Hydrodynamics And Mass Transfer Parameters In A Continuous Ozone Bubble Column. Ozone: Sci. & Eng., 1996, V18, p99-115
    [49]R.Y. Wang et. al., The reaction kinetic of ozone decomposition in water by ozone/hydrogen peroxide process, Proceeding of 13th Ozone World Congress, the international ozone association, 1997

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700