高锰酸钾氧化沉钴的研究及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文研究了硫酸锌溶液中杂质钴的去除。对于硫酸盐溶液中的Co~(2+)的分离的常规方法,视不同的金属生产工艺而异。锌湿法冶金中硫酸锌溶液中的杂质钴是用锌粉加一些活化剂进行置换而除去,这将产出含锌很高的高钴渣,它难于进一步地处理回收相关的有价元素。在镍冶金中镍电解液或硫化镍湿法浸出液中钴的净化则采用氯气法或黑镍法。但这两种方法不能用于硫酸锌溶液中净化钴,因为它们会在硫酸锌溶液中引入氯离子或镍离子,这两种离子对锌的生产来说都是十分有害的杂质元素。所以这三种方法都不能用于硫酸锌溶液中除钴,尤其是不能用于锌湿法冶金工业中硫酸锌上清液钴净化所产的高钴渣(锌钴渣)的硫酸浸出液中再次分离钴。所以需要提出一种新的从硫酸锌溶液中除钴的方法。
     经过实验研究,提出了高锰酸钾氧化法用于硫酸锌溶液中除钴。虽然Co~(2+)比较难被氧化,但在高PH、高温和使用诸如氯气、黑镍、高锰酸钾等强氧化剂的条件下还是可以氧化的。当Co~(2+)被氧化成高价态时,由于Co~(3+)十分不稳定极易水解沉淀而从溶液中除去。在较高的PH条件下,用高锰酸钾可以实现钴的氧化沉积。与其它的氧化剂氧化沉钴不同的是高锰酸钾的还原产物是难溶于水的固相。然而,类似于其它的氧化剂的氧化反应,高锰酸钾氧化沉钴的过程中也会产生氢离子使体系的PH下降,从而减缓、中止甚至可使反应逆向进行。所以在氧化沉钴过程中必须加入中和剂与生成的氢离子反应以使体系的PH基本不变。从实验研究中得出的氧化沉钴的条件为:PH>4.0,温度75℃,反应时间30—60min。
     研究中首先进行了在纯硫酸钴体系下高锰酸钾的氧化沉钴实验,然后再从锌钴渣的硫酸浸出液中氧化除钴。在纯体系下,考查了反应温度、反应时间、体系PH、高锰酸钾加入量和诸如Mn~(2+),Ni~(2+),Zn~(2+)和Cd~(2+)这四种杂质对高锰酸钾氧化沉钴效果的影响。研究发现,温度越高,时间越长,PH越高和高锰酸钾加入量越大,则氧化沉钴的效果就越好。这其中,PH是一个很关键性的影响因素,如果溶液的PH维持得足够高的话,温度和时间对沉钴效果的影响就很小了。在所考查的杂质中,Mn~(2+)将会和高锰酸钾进行比较完全的反应,Ni~(2+)只会部分地被氧化,而Zn~(2+)和Cd~(2+)则不与高锰酸钾反应。但是,如果杂质离子在溶液中的浓度很高的话,它们所形成的大的离子强度将会影响溶液中各溶解物种的活度,从而使得与纯硫酸钴体系下相比要达到同样的除钴效果就需要更高的残余高锰酸钾浓度。经钴氧化产物的X射线衍射分析和电位实验结果分析,高锰酸钾和钴的反应的产物主要
    
    高锰酸钾氧化沉钻的研究及应用
    2003年5月
    为co00H和Mn02,反应中c矿+和KMno;的摩尔比约为3。在纯硫酸钻体系研究
    的基础上,将高锰酸钾氧化法应用于高钻渣的硫酸浸出液中除钻,获得了相应的
    较好的沉钻操作条件如下:残余高锰酸钾浓度19/I,用以控制溶液PH的氧化锌的
    过量浓度为79/1,反应温度为75℃,反应时间3。6omin。
     综上所述,使用高锰酸钾氧化法从硫酸锌溶液中除钻具有如下一些优点:(1)
    可产出钻品位高于12%的钻精矿,利于钻的回收;(2)除钻的效果好,溶液残钻浓
    度可低于lmg月;(3)除钻操作时间短,如上所述为30一6omin;(4)与其它在工业上
    用过的除钻方法相比,其成本较低;(5)不会引入其它的有害杂质;(6)易于和现有
    的锌湿法流程相结合;(7)综合实现了经济效益和环境效益。因此,高锰酸钾氧化
    沉钻法是一个适用于处理高钻渣回收锌钻等有价元素的良好工艺。
In this paper, a new method of removing cobalt from zinc sulphate solution is researched. In hydrometallurgy process, conventional removing cobalt method are zinc powder cementation in zinc production, and chlorine and nickelic compound oxidation precipitation in nickel production. But in first process, high grade zinc residue is produced, which is treated difficultly and in other two methods, chlorion or nickel ion will be inducted, so they can be only used in nickel hydrometallurgical processes. Therefore, above three methods are not suitable for acquiring commercial cobalt raw material in removing cobalt from zinc sulphate solution. So, a new process must be investigated.
    In the research, potassium permanganate is used to remove cobalt. The way of its removing cobalt is oxidation. Though cobaltous ion is oxidized uneasily, it can be fulfilled under the special conditions: higher solution PH, higher temperature and stronger oxidants such as chlorine, nickelic compound, permanganate, etc. When cobaltous ion is oxidized into cobaltic ion, it can be separated from solution as an insoluble deposit, for cobaltic ion hydrolyzes easily at PH>4.0. Hence, as a very strong oxidant, potassium permanganate can precipitate cobalt. Differing from other oxidants,
    
    
    
    the product of reacted permanganate is insoluble in oxidation process. The reaction between permanganate and cobaltous ion will produce hydrogen ion, consequently the PH of the reaction system will decrease when reaction is doing. Under low PH, the reaction doesn't take place, contrary, cobaltic compound will be reduced into cobaltous ion, and neutralizing agent must be added into the system to neutralize hydrogen ion.
    In order to determinate the preferable conditions of above reaction, the research is carried out, firstly, with cobaltous sulphate solution, then on the base of it, with the leaching solution of Zn-Co residue from cobalt purification from zinc hydrometallurgical smelter. With cobaltous sulphate solution, the influences of temperature, time, PH, potassium quantity and impurities including Mn2+, Ni2'1", Zn2+ and Cd2+ are researched. It is found that higher temperature, longer time, higher PH and more potassium are beneficial to cobalt precipitation. Thereinto, PH is a key factor, and when PH is high enough, temperature and time have a little affection on reaction. Of impurities, Mn24 can react with permanganate completely; Ni2+, partly; Zn2+ and Cd24, never. When ionic strength is high, the activities of all ions in the solution are influenced. In general, the activities decrease. Therefore, the residual concentration of potassium in the solution with high impurities ionic strength is higher than one in the solution with the same cobaltous ion concentration and without other impurities at the same rate of the cobalt removal. Then, the stoichiometric ratio of the reaction between cobaltous ion and permanganate is determined by potentiometry and X-ray diffraction of the product of the reaction. The results show that the reduced compound of permanganate is mainly Mn02, and the oxidized one of Co2+ is CoOOH, and the molar ratio between cobaltous ion and permanganate is about 3.0. On the base of those, cobalt removal from the leaching solution is investigated. The parameters for cobalt removal of the leaching solution are determined as follows: superfluous concentration of permanganate is lg/1; superfluous concentration of ZnO is 7g/l (used to consume hydrogen ion to retain PH of solution); temperature is 75 C; reaction time is between 30min and 60min.
    Thus, high cobalt raw material with commercial value can be obtained from this method, in which cobalt concentration is higher than 12%. Besides it, the method has such merits: the rate of cobalt removal is more than 99% and the residual cobalt concentration in the removed cobalt solution is less than lmg/1, short operation time,
    iv
    
    low cost comparing with other methods such as chlorine, nickelic compound, zinc powder cementation, xanthate and naphthol, no another impurities, easily incorpora
引文
[1] 无(?)化学丛书编委会,无机化学丛书(第九卷),北京:科学出版社,1996
    [2] 梁(?),金属钴,江西冶金,1997,17(5):52-54
    [3] 金(?)公司科学技术协会,金川有色公司“加速技术创新、推进产品结构调整”战略研讨会文集,金川:金川有色金属公司科学技术协会,2000年
    [4] 王(?)伟,陈枫,黄振华等,钴渣选择性酸溶抑制铜铁的研究与实践,矿冶,1998,7(1)38—42
    [5] S.J Clark, J.D. Donaldson, Z.I. Khan, Heavy metals in the environment. Part Ⅵ: Recov?ry of cobalt values from spent cobalt/manganese bromide oxidation catalysts, Hudro?netallurgy, 1996, 40:381-392
    [6] 蔡(?)洪,骆赞椿,张秋华,废锰催化剂中锰、铁、镍、钴的硫酸直接浸出,湿法冶金,1992,(3):16—20
    [7] 雷霆,锰钴渣提取氧化钴工艺研究,云南冶金,1994,(4):50—54
    [8] 何(?)华、蔡乔方主编,中国镍钴冶金,北京:冶金工业出版社,2000
    [9] 何(?)金,从稀溶液中回收钴的研究,有色金属(冶炼),1995,(4):7—8
    [10] 烟伟,金作美,周惠南,废弃锰矿焙砂浸出液的铁、钴、锰分离研究,湿法冶金,1998,(2):6—10
    [11] 徐鑫坤、魏昶编著,锌冶金学,昆明:云南科技出版社,1996
    [12] 东北工学院有色重金属冶炼教研室等编著,锌冶金,北京:冶金工业出版社,1978
    [13] 重有色金属冶炼设计手册编委会,重有色金属冶炼设计手册(铜镍卷),北京:冶金工业出版社,1995
    [14] 重有色金属冶炼设计手册编委会,重有色金属冶炼设计手册(铅锌铋卷),北京,冶金工业出版社,1995
    [15] R.K. MEHTA, K.N. HAN, The selective removal of Co(Ⅱ) from Ni(Ⅱ) by coprec?pitation with manganese in ammoniacal solutions, International Journal of Mineral Processing, 1984, 13:297—312
    [16] JCHN D. HEM, CHARLES E. ROBERSON, CAROL J. LIND, et al., Therm?dynamic stability of CoOOH and its coprecipitation with manganese, Geoch?m. Cosmochim Acta, 1985, 49(3): 801-810
    
    
    [17] George Owusu, Oxidation-precipitation of Co from Zn-Cd-Co-Ni sulphate solution using Caro's acid, Hydrometallurgy, 1998, 48:91-99
    [18] D. B. Mobbs Ph. D., M. R. S. C., C. Chem., et al, Use of Caro's acid in the separation of cobalt and nickel, Trans. -Inst. Min. Metall,Sect C., 1981, 90:C103-C110
    [19] T. Nishimura, Y. Umetsu., Separation of cobalt and nickel by ozone oxidation, Hydrometallurgy, 1992, 30:483-497
    [20] 陈世琯,硫酸锌溶液净化除钴的理论分析和工艺进展,上海有色金属,1996,17(4):161-169
    [21] 陈家镛,杨守志,柯家骏等,湿法冶金的研究与发展,北京:冶金工业出版社,1998
    [22] B. Menoyo, M. P. Elizalde, Extraction of cobalt(ⅱ) by cyanex 301, Solvent Extraction and Ion Exchange, 1997, 15(4): 563-576
    [23] B. Menoyo, M.P. Elizalde., Extraction of cobalt(Ⅲ) by Cyanex 302, Solvent Extr.Ion Exch., 1997, 15(1): 97-113
    [24] 田君,尹敬群,欧阳克氙,Cyanex272在溶剂萃取分离钴镍中的研究与应用,稀有金属,1999,23(6):450—453
    [25] Rickelton W A, Flett D S, West D.W., ibid, 1984,2 (6): 815
    [26] Fu Xun, Golding J A., ibid, 1988, 6(5): 889
    [27] N. B. Devi, K. C. Nathsarma and N. Chakravortty, Sodium salts of D2EHPA, PC-88A and Cyanex-272 and their mixtures as extractants for nichkl(Ⅱ), Scand. J. Metall., 1994, 23 (5~6): 194-200
    [28] N. B. Eevi, K. C. Nathsarma, V. Khakravortty, Sodium salts of D2EHPA, PC-88A and their mixtures as extractants for cobalt(Ⅱ), Hydrometallurgy, 1994, 34(3): 331-342
    [29] J. S, Preston, Recent develepments in the seperation of nickel and cobalt from sulphate solution by solvent extraction, J. S. Afr. Inst. Min. Metall., 1983, 83(6):126-132
    [30] 徐志昌,张萍,李昆明,5709对镍钴及其它杂质的溶剂萃取,有色金属,1995,47 (1):37—43
    [31] 周学玺,许新,马驰骋等,季铵盐对钴(Ⅱ)和锰(Ⅱ)的萃取分离,中国有色金属学报,2000,10(4):542—545
    [32] YING-GHU HOH,WEN-SHOU CHUANG,BAO-DIAN LEE et al., The separation
    
    of manganese from cobalt by D2EHPA, Hydrometallurgy, 1984, 12:375-386
    [33] Yu Desin, Process for recovery of pure cobalt oxide from nickel electrolyte, Trans. Inst. Min. Metall, C:Miner Process Extr. Metall, 1987, 96(3): C46-C49
    [34] 包福毅,朱大和,方军等,氯化浸出镍溶液中钴的分离和回收,有色金属,1995,47 (1):57—61
    [35] 牛聪伟,王开伟,舒万艮,用非平衡溶剂萃取法分离钴镍的研究,有色金属(冶炼),2000,(4):6—8
    [36] ROBERT R. GRINSTEAD, Selective absorption of copper, nickel, cobalt and other transition metal ions from sulfuric acid solutions with the chelating ion exchange resin xfs 4195, Hydrometallurgy, 1984, 12. 387-400
    [37] A. G. Kholmogorov, O. N. Kononova, V. V. Patrushev, et al., Ion exchange purification of manganese sulphate solutions from cobalt, Hydrometallurgy, 1997,45: 261-269
    [38] Danesi P R, R. eichley Y.L., J. Member. Sci., 1986, 27(3): 339
    [39] Aega J, Walkowiak W., Hutn.-Wiad. Hutn., 1995, 62(11): 484
    [40] NURAL KUYUCAK, BOHUMIL VOLESKY, Recovery of cobalt by a new biosorbent, CIM Bulletin, 1988, 81(910): 95-99
    [41] Farouk T. Awadalla, Batrio Pesic, Biosorption of cobalt with the AMT~(TM) metal removing agent, Hydrometallurgy, 1992, 28: 65-80
    [42] Kailash C. Nathsarma, Perveia V. R. Bhaskara Sarma, Recovery of cobalt(Ⅲ)from ammoniacal ammonium sulphate solutions by lignite absorption, Erzmetall, 1989,42(11): 500-503
    [43] R.F. HAMON, A. CHOW, Extraction of cobalt from thiocyanate solutions with polyurethane foam, Talanta, 1984, 34(11): 963-973
    [44] 张秋芳,姜春英,锌铅合金锌粉净化除钴的研究,有色矿冶,2000,16(5):35—39
    [45] 阎江峰,硫酸锌深度净化除钴的现状与展望,云南冶金,1997,26(5):34—41
    [46] 程进辰,锌粉-黄药挣液中降低锌粉消耗的途径,有色金属(冶炼部分),1992,(6):11-13
    [47] 汤幼祺,电锌生产中锑盐除钴工艺的改进,有色冶炼,1995,24(1):23-26
    [48] 四川省会东铅锌矿,重有色冶炼,1978,(1):61-63
    
    
    [49] 刘永辉著,电化学测试技术,北京:北京航空学院出版社,1987
    [50] 何国才,西北铅锌冶炼厂两段逆锑连续净化的制约因素及其对策,有色冶炼,1995,24(2):21-23
    [51] 何砥坚,硫酸锌溶液净化流程的选择,有色冶炼,1991,20(4):9-13
    [52] 宁模功,张允恭,处理湿法炼锌净化钴镍渣的试验研究,有色金属(冶炼部分),2001,(1):10—13,19
    [53] 宁模功,王玉棉,王开群,钴镍渣处理的中试和扩试,甘肃有色金属,1999,(1—2):1—7
    [54] D. Stanojevié, B. Nikolié, M. Todorovié, Evaluation of cobalt from cobaltic waste products from the production of electrolytic zinc and cadmium, Hydrometallurgy, 2000, 54: 151-160
    [55] 唐谟堂,赵廷凯,氨法处理湿法炼锌净化钴渣新工艺研究,见:第八届全国铅锌冶金生产技术及产品应用学术年会论文集,北京:中国有色金属学会重冶学术委员会和中国有色金属工业重金属冶炼信息网联合出版,2001
    [56] 杨显万,何蔼平,袁宝州编著,高温水溶液热力学数据计算手册,北京:冶金工业出版社,1983
    [57] 杨显万,邱定蕃,湿法冶金.北京:冶金工业出版社,2001
    [58] 黄子卿,电解质溶液导论(修订版),北京:科学出版社,1983
    [59] 邓景发,范康年编著,物理化学,北京:高等教育出版社,1993
    [60] Silvester and Pitzer, J. Solution Chem., 1978, (7): 327
    [61] 杨显万,何蔼平,袁宝州等,高温水溶液的热力学计算,有色金属,1979,(6):27-37
    [62] DIGBY D. MACDONALD, The thermodynamics and theoretical corrosion behavior of manganese in aqueous systems at elevated temperatures, Corrosion Science, 1976, 16:461-482
    [63] Pourbaix M., Atlas of electrochemical equilibria in aqueous solutions, Oxfoxd: Pergamon, 1966
    [64] 李培折等编,分析化学,北京:冶金工业出版社,1979
    [65] Sweeton, F. H., Mesmer, R. E., Baes, C. F., J. Solution Chem., 1974, (3): 191
    [66] Thomas Roes, The Stability of Potassium Permanganate Solutions, J. Chem. Educ., 1987,64(2): 1058
    [67] L.L.安特罗波夫(苏)著,吴仲达,朱耀斌,吴万伟译,理论电化学,北京:
    
    高等教育出版社,1982
    [68] Loganthan, P., Burau, R.G., Sorption heavy metal ions by a hydrous manganese oxide, Geoehim. Cosmochim. Acta, 1973, 37:1277-1293
    [69] Murray, D. J., Healy, T. W., Fuerstenau, D. W., The adsorption of aqueous metal on colloidal hydrous manganese oxide, Adv. Chem. Ser., 1968, 79:74-81
    [70] Wadsley, A. D., A hydrous manganese oxide with exchange properties, J. Am. Chem. Soc., 1950, 72:1782-1784
    [71] 张向宇等编,实用化学手册,北京:国防工业出版社,1986
    [72] 徐采栋,林蓉,汪大成编著,锌冶金物理化学,上海:上海科学技术出版社,1979
    [73] 陈朝华,丘康奎,陈广编著,立德粉、硫酸锌生产与应用技术问答,北京:化学工业出版社,2000

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700