电镀废水中六价铬离子分离方法的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水是一种极为宝贵的资源,水质污染除有机物污染外,重金属的污染也愈来愈引起人们的关注。六价铬毒性大、危害性强、能致癌,就电镀工业而言,每年要排放大量的含铬废水。但铬及其化合物又是重要的化工原料,因此寻求一种快速、高效的含铬(Ⅵ)废水治理技术尤为必要。
     含铬(Ⅵ)废水处理方法较多,本论文就液膜分离法、溶剂萃取法、药剂还原法及吸附法展开进一步探索,考察各种因素对Cr(Ⅵ)去除效果的影响,从而确定最佳实验条件,并应用于模拟电镀废水中Cr(Ⅵ)的去除,评价不同处理方法的优块点,具体研究工作如下:
     (1)乳化液膜分离
     在乳化液膜体系的研究中,首先,对TBP—Span80—煤油的乳化液膜体系进行了实验,主要考察外水相pH值、内水相浓度、载体用量、表面活性剂浓度、油内比以及乳水比等因素对Cr(Ⅵ)迁移效果的影响;其次,改进液膜体系,考察TBP/TOA—Span80—煤油复合液膜载体对Cr(Ⅵ)的迁移特性的影响,结果表明,该体系可有效迁移富集Cr(Ⅵ),在V_(煤油):V_(TBP):V_(TOA):V_(Span-80):V_(液体石蜡)=85:5:3:3:4,内水相NaOH为0.5mol/L,外水相pH值为1.0,油内比1:1,乳水比20:100的条件下,迁移率达94.1%。根据界面化学和溶质扩散理论,建立了乳化液膜传质数学模型并进行了实验检验,发现该模型与实验结果能够较好的吻合。
    
    摘要
     (2)溶剂萃取法
     以煤油为萃取溶剂,TBP为萃取剂,十六烷基三甲基澳化钱(C TMAB)为协
    萃剂,考察萃取剂浓度、水相酸度、萃取时间等因素对Cr(VD萃取率的影响。在
    40%TBP、1 .smol/LHZSO;、0.lmol/LKZSO;、8.0xl0一smol/LCTM^B条件下,应
    用于模拟电镀废水,cr(VI)去除率可达83.4%。
     (3)药剂还原法
    井’以俪多。,为还原剂,主要考察了还原pH值、投料比等因素对cr(vI)还原
    的影响。结果表明,对于4omg/LCr(Vl)、25.omg/LCu(11)、15.omg/LZn(11)和
    lo.omg/LNi(11)废水,在pH2.74、投料比为l:6的条件下,cr(Vl)去除率可达100%。
     (4)吸附分离
     采用活性炭为吸附剂,进行静态和动态吸附分离实验。结果表明,在静态实
    验条件卜,对于4o.omg/LCr(Vl)溶液,投加0.459活性炭,吸附sh,Cr(VI)去除
    率达92.0%。Cr(V一)静态吸附服从Freundlich方程:q=55.8 co,”8;在动态实验
    条于1几卜,当流速为lmL/min时,对于loo.omg/LCr(VI)溶液,测得穿透时I’ed为6h,
    应用于含Cr(VI)废水,去除率达98.3%。活性炭可通过20.0%NaoH再生,重复
    使用3次,吸附效果未发生明显变化。同时还对活性炭的表面修饰进行了探讨。
Water is such a valuable natural resource that people pays more and more attention to heavy metal pollution besides the organic compounds in wastewater. Cr(VI) is a kind of carcinogen, famous for its toxicity and harmfulness. In respect to electroplating industry, a large amount of wastewater containing Cr(Vl) and its compounds which are important industrial raw materials is discharged every year, so it is very urgent to find one fast, high-efficient method to dispose it.
    In this paper, the several methods such as Liquid membrane separation, solvent extraction-, reduction and adsorption were studied for the wastewater treatment containing Cr(VI), respectively. The effects of various conditions on the transport rate of Cr(VI) were investigated and the optical conditions were obtained. Then the several methods were applied to the simulated electrodynamics wastewater containing Cr(VI) and other metal ions. Finally, the advantage and disadvantage of each method was appraised. The experimental results in detail is as follows:
    (1) Emulsion liquid membrane separation
    Firstly, the transport rate of Cr(VI) through ELM used TBP as the mobile carrier and Span80 as the surfactant, was studied by the Emulsion liquid membrane system. The effects of various parameters, such as the pH values in external water phase, the concentration of NaOH in inner water phase, carrier concentration, surfactant concentration, the Roi values and Rew, values were investigated; Secondly, the transport process of Cr(VI) through ELM used TBP and TOA as multiple carriers, Span80 as the
    
    
    
    
    surfactant was studied. The results showed this ELM system was effective on Cr(VI) enrichment, and the transport rate could be attained to 94.1%, when Vkerosene : VTB?: VTOA: Vspan80: Vweited paraffin wax is 85:5:3:3:4; NaOH is 0.5mol/L; The pH value is 1.0; the Roi is 1:1 and Rew is 20:100. According to interfacial chemistry theory and solute diffusion theory, the mathematical model of ELM was established and validated.
    (2) Solvent extraction separateion
    The solvent extraction system employed kerosene as solvent, TBP as extractant, CTMAB as scandium, is researched. Factors including the extractant concentration, acidity and extraction time, etc, which influenced the extraction rate of Cr(VI) were studied. Under the conditions of 40% TBP, 1.8mol/L H2SO4,0.1mol/L K2SO4,8.0 10-5mol/L CTMAB and 40min extracting, the extraction rate of Cr(VI) was 83.4%.
    (3) Reduction method
    Effecting factors in the system used Na2SO3 as reducer, including the pH values, dosage was investigated. Experimental results showed that, when the pH value is 2.74, Cr(VI):Na2SO3 is 1:6, the remove rate of Cr(VI) in the wastewater containing 40.0mg/LCr(VI), 25.0mg/LCu(II), 15.0mg/LZn(II) and 10.0mg/LNi(II) reached 100.0%.
    (4) Adsorption separation
    In this section, the experiments were conducted in the static and dynamic forms. The results indicated, the absorption rate of Cr(VI) in the water containing 40.0mg/L Cr(VI) was up to 92.0% after 5h, while the quality of activated carbon is 0.45g in the static experiment. And this adsorption behavior model obeyed Freundlich equation: q =55.8c0,
    3158; in the dynamic experiment, when the velocity of flow is ImL/min, the concentration of Cr(Vj) is 100.0mg/L, the result that penetrated time is 6h has been achieved. Applied the dynamic absorption to simulated wastewater, the absorption rate of Cr(VI) was 98.3%. The activated carbon could be regenerated by 20.0% NaOH washing, and the absorption results have no changes after repeating 3 times. At the same time, this thesis studied the absorption performance of activated carbon which its surface was modified.
引文
[1] 齐连惠.浅谈水工业的可持续发展.工业水处理(J),18(5),1998:4-6.
    [2] 张奎民,李秀鸿,安大力.电镀废水处理技术评价[J].环境保护科学,1999,25(2):3—5.
    [3] 逯兆庆,寻知磊.活性炭处理含铬废水的方法[J].电镀与涂饰,2002,21(5):42—44.
    [4] 武贵桃,王淑娟.离子交换法去除与回收电镀废水中铬酸的实验研究[J].河北省科学院学报,2000,17(1):43—45.
    [5] 杨惠森,严海英,王明宁.铁屑还原法处理镀络废水的试验研究[J].青海环境,1997,25(3):128-129.
    [6] 尚天宠.反滲透技术在苦咸水淡化工程中的应用程中的应用[J].工业水处理,1993,18(2):33—36.
    [7] 颜和祥,魏无际.电镀含铬废水的处理技术及资源利用[J].江苏化工,2001,29(2):36—39.
    [8] 安成祥,崔作兴,郝建军.电镀三废治理手册[M].北京:国防工业出版社,2002:234—236.
    [9] 葛占勤,杨永会,孙思修.伯胺N1923萃取铬(Ⅵ)的研究[J].应用化学,1995,12(3):57—60.
    [10] 肖开提·阿布力孜,鹿毅.TOA-苯体系萃取分离-原子吸收法测定环境水样中铬(Ⅵ)和铬(Ⅲ)[J].干旱环境监测,1999,13(2):78—81.
    [11] 段群章,李爱华.三正辛胺-CHCl_3萃取的研究[J].冶金分析,1999,19(5):30—34.
    [12] 陈景文,曹淑红,钱晓荣.含铬电镀废水中Cr(Ⅵ)的萃取分离研究[J].化工环保,2001,21(6):311—316.
    [13] 谭雄文,杨运泉,段正康.盐酸介质中磷酸三丁酯萃取分离铬(VI)[J].
    
    化工进展,2003,22(12):1323—1326.
    [14] 戴遐明,陈永华,李庆丰等.半导体氧化物超细粉末对Cr(VI)的光催化还原作用研究[J].环境科学,1996,17(6):34—36.
    [15] 颜家保,王朝霞,吴文升.还原沉淀法处理含铬废水的工艺研究[J].武汉科技大学学报,2002,25(1):43—44.
    [16] 戴向东,刘光全,孙长虹.还原沉淀法处理含铬废水的条件优化[J].江汉石油学院学报,1994,16(4):64—68.
    [17] 陈明元.用木屑和工业润滑油净化含铬工业污水[J].贵州化工.]999:52-53.
    [18] 张光明,张锡辉,方建德等.皮革含铬废水加碱处理研究[J].环境污染治理与设备,2003,4(5):90—92.
    [19] 唐乃红.用改性活性炭处理含铬废液和富集会的研究[J].信阳师范学院学报,1997,10(2):41—45.
    [20] 黄彪,吴新华,黄碧忠.粉煤灰活性炭吸附水中六价铬试验[J].化工环保,1999,17(6):346—349.
    [22] 刘莺,黄晓佳,刘学良等.有机膨润土对水中苯、甲苯、乙苯、二甲苯和铬酸根离子的吸附性能[J].应用化学,2002,19(4):317—320.
    [23] 夏畅斌,何湘柱,宋和付等.磺化褐煤对废水中铬(VI)离子的吸附与还原[J].材料保护,2000,33(10):14—16. ,
    [24] 陈靖,王士柱,朱永睿.乳状液膜法处理含锌废水的研究进展[J].水处理技术,1995,21(4):187—192.
    [25] 汤兵,石太宏,万印华.乳状液膜法在湿法冶锌废水深度处理中的研究[J].环境工程,2000,18(2):7—10.
    [26] 汤兵,简弃非.液膜结晶法提取高锌低镉体系中镉的研究[J].膜科学与技术,1999,19(1):24—30.
    [27] 何鼎胜,马铭,王艳等.N_235-二甲苯-醋酸铵液膜体系萃取Cd(Ⅱ)的研究[J].无机化学学报,2000,16(6):893—898.
    
    
    [28] 姚秉华,卞文娟,梁延荣.烷基膦酸载体液膜中Cd(Ⅱ)的传输[J].中国环境科学,2001,21(6):511-514.
    [29] 梁舒萍,陆冠棋.用液膜分离技术处理含铅废水[J].化工环保,1998,18(4):224—228.
    [30] 李玉春,杨勇,姚薇等.十二烷基苯磺酰胺喹啉作载体的液膜法提取水中铅的研究[J].广东微量元素科学,2002,9(2):55—59.
    [31] 汤兵,张秀娟.乳状液膜法净化湿法炼锌料液中铜和镉的研究[J].有色金属,1998,(4):23—26.
    [32] 王向德,王军波.乳状液膜用于湿法冶锌中除铜的研究[J].水处理技术,1998,24(4):2l0—214.
    [33] 黄万抚,王淀佐,胡永平.乳状液膜技术自铜矿堆浸液回收Cu(Ⅱ)的研究[J].金属矿山,2002,6:17—19.
    [34] 葛战勤,杨永会,孙思修等.伯胺N1923萃取铬的研究[J].应用化学,1994,12(3):57—60.
    [35] 李思芽.液膜分离在含铬(VI)废水中的应用[J].膜科学与技术,1995,15(2):21—25.
    [36] 严忠.双烃型表面活性剂的乳状液膜提取铬离子的研究[J].膜科学与技术,1997,17(3):30—35.
    [37] 王靖芳.乳化液膜法迁移及分离铬的研究[J].环境化学,1998,17(1):85-89.
    [38] 许效红,袁云龙,竺和平等.乳状液膜萃取铬的研究[J].山东大学学报,1999,34(2):208—212.
    [39] 王献科,李玉萍.用液膜法分离富集和测定铬[J].材料保护,1997,3(5):24—26.
    [40] 王献科,李玉萍,李莉芬.液膜分离富集法测定酸洗液中的微量铬的探讨[J].钢铁研究,1999,10(8):46—48.
    [41] 李明玉,宋立华,唐启红等.乳状液膜处理含铬废水的研究[J].化学
    
    研究,l997,8(3):22—27.
    [42] 潘碌亭,肖锦.乳状液膜法从电镀废水中提取铬的研究[J].重庆环境科学,2001,23(1):37—39.
    [43] 姚淑华,石中亮,侯纯明.乳化液膜法处理含铬废水的研究[J].辽宁化工,2003,32(1):24—33.
    [44] 邵刚.膜法水处理技术[M].北京:冶金工业出版社,1992:124-126.
    [45] Rappert M, Draxler J, MarrR. Liquid Membrane Permeation and its experience in pilot plant and industrial scale [J].Separation Science and Technology,1988,23(12,13): 1659-1666.
    [46] J D Lamb, R Bruening. Characterization of a Supported Liquid Membrane for Macrocycle Mediated Selective Cation transport [J]. J Membr Sci, 1988, 37:13-26.
    [47] 邵刚.膜法水处理技术及工程实例[M],北京:化学工业出版社,2002:71-74.
    [48] P Danesi. Separation of Metal Species by Supported Liquid Membranes [J].Sep Sci Technol, 1984-85, 19(11&12):857-894.
    [49] Gu Z M, Ho W S, N.N.Li. Design consider rations of emulsion liquid membrane. In:Ho W S, Sirkar K K eds. Membrane Handbook[M], New York,Chapman&Hall, 1992,656-700.
    [50] A L Bunge. A diffusion model for reversible comsumpion in emulsion liquid membrane[J]. Membr. Sci., 1984, 21:55-71.
    [51] 韩伟,邓修,马新胜等.改进的Ⅱ型促进迁移液膜传质渐近前沿模型[J].化工学报,1997,48(6):667—672.
    [52] W C Babcock,R W Baker,etal.Coupled Transport Membranes for Metal Separations[R].N T IS Rep, 1979:59-70.
    [53] F F Zha,A G Fane and CJ D Fell.Instability Mem-branes of Supported Liquid Membranes in Phenol Transport Model [J]. J
    
    Membr Sci,1995, 107:59.
    [54] 严年喜,施亚钧.改进的渐近前沿模型[J].高校化学工程学报,1986,1(1):65.
    [55] Fales J L, Stroeve P. J. A perturbation solution for batch extraction with double emulsions [J] Membr Sci,1984, 21(1):35.
    [56] 韩伟.乳化液膜传质动力学研究[J].化工进展,1998,(6):5—8.
    [57] Rashmi Singh, A.R.Khwaja, S.N.Tandon Uptake and extraction chromatographic separation of mercury by triisobutylphosphine sulfide (TIBPS) sorbed on silica gel and decontamination of mercury containing effluent [J]. Talanta 1998, 48: 527-535.
    [58] A L BUNGE. A diffusion model for reversible consumptions in emulsion liquid membranes[J].J Membr Sci, 1984,21:55—71.
    [59] ZHANG Bao cheng, Gozzelino G Baldi G. State of art of the research on supported liquid membranes[J].膜科学与技术,2000,20(6):46-54.
    [60] 顾忠茂,张鹤飞,Wason D T,et a1.液膜传质动力学研究[J].化工学报,1986,(1):1.
    [61] 徐铜文,范文元.乳化液膜法提取钪的反应扩散模型[J].化工学报,1994,45(1):88.
    [62] 严年喜,施亚钧.乳化液膜反应扩散模型探讨[J].高校化学工程学报,1989,3(1):47.
    [63] 韩伟,邓修,马新胜等.改进的Ⅱ型促进迁移液膜渐进前沿模型[J].化工学报,1997,48(6):667—672.
    [64] 汤兵,王向德,万应华等.乳化液膜扩散-反应双控制过程传递机理数学模型研究[J].水处理技术,1999,25(3):137—143.
    [65] 邵刚.膜法水处理技术及工程实例[M].北京:化学工业出版社,2002:74—84.
    
    
    [66] 王子镐,傅举孚.表面活性剂液膜萃取过程的乳液溶胀(I)[J].化工学报,1 995,46(3):26 1—266.
    [67] 程世贤,龚富忠,吴家文.Span-80的水解与液膜溶胀的关系[J].广西大学学报,200l,26(3):175—178.
    [68] 潘碌亭,肖锦.乳状液膜法从电镀废水中提取铬的研究[J].重庆环境科学,200l,23(1):37—39. .
    [69] 安成祥,崔作兴,郝建军.电镀三废治理手册[M].北京:国防工业出版社,2002:234—237.
    [70] 安成祥,崔作兴,郝建军.电镀三废治理手册[M].北京:国防工业出版社,2002:58—59.
    [71] 安成祥,崔作兴,郝建军.电镀三废治理手册[M].北京:国防工业出版社,2002:223—230.
    [72] 彭先佳.蒙脱石无机层简化合物的制备及其对废水 Cr(Ⅵ)的吸附行为与机理研究.武汉理工大学硕士学位论文,2003:49.
    [73] 黄国林,梁平,白芳.活性炭吸附处理含铬电镀废水的研究[J].林产化工通讯1999,33(5):14-17.
    [74] 马铭,何鼎胜,谢赛花.三正辛胺-二甲苯支撑液膜萃取Cd(Ⅱ)的研究[J].膜科学与技术,1999,19(2):45—48.
    [75] 路淑斌,张秀娟.乳化液膜分离稀土的传质模型的发展现状[J].水处理技术,1997,23(2):69—73.
    [76] 黄万抚,王淀佐,胡永平.乳化液膜提取Cu~(2+)的络合-扩散传质模型[J].南方冶金学院学报,2000,21(1):14—17.
    [77] 刘兴荣,张秀娟.乳化液膜提取稀土的传质模型研究[J].膜科学与技术,1996,16(2):5l—56.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700