纤维素纳米晶体及其复合物的制备与应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纤维素纳米晶体(Cellulose nanocrystals,CNs)是一种新型的生物质基纳米材料,因具有高纯度、高结晶度、高杨氏模量、高强度等特性,加之具有生物材料的轻质、可降解、生物相容及可再生等特性,适于作为高性能复合材料的填充物。纤维素纳米晶体通过对其表面进行化学功能化改性,以及与无机功能化纳米材料复合,被赋予了更多的性能,也使其在众多领域中显现出巨大的应用前景。
     论文研究了纤维素纳米晶体的制备及其功能化改性,并以制得的纤维素纳米晶体为模板,分别制备了纳米Ag、Ag-Pd合金和Fe_2O_3与纤维素纳米晶体的复合物,对复合物作为高分子材料的多功能填料、DNA电化学生物传感器标记物及水处理吸附材料进行了详细研究。主要创新点如下:采用碱溶胀法对纤维素进行预处理,通过TEMPO/NaClO/NaBr氧化制备了纤维素纳米晶体;以纤维素纳米晶体为模板,制备纤维素纳米晶体与Ag-Pd合金和Fe_2O_3的复合物,并将复合物分别应用于DNA电化学生物传感器标记物及水处理吸附材料。
     采用硫酸催化水解法,以微晶纤维素(microcrystalline cellulose,MCC)为原料,制备尺寸范围在长100~200 nm,宽10~20 nm的纤维素纳米晶体粒子,纤维素纳米晶体的晶型与原料MCC一致。并用TEMPO/NaClO/NaBr氧化体系对制备的纤维素纳米晶体进行表面羧基化改性,羧基化改性纤维素纳米晶体的晶型同样未发生变化。另外,在非酸体系中,以TEMPO/NaClO/NaBr氧化体系对碱预先溶胀的MCC进行氧化处理,制备了同样形貌及尺寸范围的纤维素纳米晶体粒子。
     以羧基化改性纤维素纳米晶体(carboxylated cellulose nanocrystals,CCNs)为载体,通过液相化学法制备了CCNs与Ag纳米粒子(Ag nanoparticles,AgNPs)的复合物(CCNs/AgNPs),并分别与水性聚氨酯(WPU)和聚乙烯醇(PVA)复合制备功能化高分子复合物。分析结果显示WPU/CCNs复合物的玻璃化转变温度和热稳定性随着CCNs添加量的增加而升高,CCNs的添加使得WPU复合膜的拉伸强度出现先升高后降低的趋势,复合物的断裂伸长率降低。与WPU/CCNs复合物不同的是,CCNs的添加使PVA复合物的玻璃化转变温度降低,热稳定性能增强,拉伸强度明显提高。此外,AgNPs的添加使WPU复合物和PVA复合物对大肠杆菌和金黄葡萄球菌表现出良好的抗菌性能。
     利用纤维素纳米晶体表面的羧基,在乙基-~(3-)(~(3-)二甲基氨基丙基)碳二亚胺(EDC)和N-羟基琥珀酰亚胺(NHS)作用下与探针DNA(probe DNA)分子上的-NH2反应生成酰胺键(-CONH-),使探针DNA与CCNs/AgNPs复合物连接,制备成具有电化学活性的CCNs/AgNPs-probe DNA探针。CCNs/AgNPs-probe DNA探针与目标PAT基因和非互补DNA的电化学检测结果表明,以CCNs/AgNPs作为DNA标记物的电化学生物传感器对PAT基因片段的检测具有很好的选择性,Ag的电化学信号与PAT基因片段浓度在1.0×10~(-10) mol/L到1.0×10~(-7) mol/L范围内呈良好的线性关系,检测限为2.3×10~(-11) mol/L。结果表明,纤维素纳米晶体可用于DNA生物分子固定;CCNs/AgNPs作为DNA电化学生物传感器中探针DNA的标记物,制备的电化学生物传感器可用于PAT基因片段的检测。
     使用羧基化改性纤维素纳米晶体水分散液作为反应体系,以硼氢化钠为还原剂,采用共还原沉淀法制备了Ag-Pd合金纳米粒子。合金粒子的平均粒径小于AgNPs和钯纳米粒子(Pd nanoparticles,PdNPs)的平均粒径,且随着Ag含量的增加,合金粒子的平均粒径减小。CCNs/Ag-Pd复合物作为标记物与探针DNA结合,经探针DNA与目标DNA发生杂交反应后,可同时产生Ag和Pd的电化学信号,表明CCNs/Ag-Pd复合物可作为标记物用于DNA电化学生物传感器。
     采用水热法,以纤维素纳米晶体为稳定剂制备了不同形貌的氧化铁纳米粒子。通过TEM、XRD、FT-IR对纤维素纳米晶体与氧化铁纳米粒子(CNs/Fe_2O_3)复合物的形态进行了表征。将制备的CNs/Fe_2O_3复合材料作为吸附材料用于水处理,同时还考察了试剂Fe_2O_3、MCC和纤维素纳米晶体的在水体系中的吸附性能。选取金属阳离子Cd~(2+)、Pb~(2+)和Ni~(2+),阴离子Cr_2O_7~(2-)、AsO_4~(3-)和PO_4~(3-)作为吸附性能研究对象。结果表明,四种吸附材料对几种离子均有一定的吸附性能。相比于单一的吸附材料,由于纤维素纳米晶体和Fe_2O_3各自吸附性能的协同效应,CNs/Fe_2O_3复合物对于几种离子Pb~(2+)、Cd~(2+)、Ni~(2+)、Cr_2O_7~(2-)、AsO_4~(3-)和PO_4~(3-)均具有很好的吸附性能。
Cellelose nanocrystals (CNs) is a kind of new biomass nanomaterilas, which is suit for the application in polymer composites as nanofiller due to its high purity, high crystallite, high Young Modulus and mechanical strength. In addition, CNs also has properties belonging to biomaterials, such as low density, biodegradable, biocompatible and renewable. The chemical modification of CNs and the prepation of hybrid material with CNs and inorganic functional nanomaterials would give more special properties and make CNs show broad applications in many fields.
     The preparation and chemical modification of cellulose nanocrystals (CNs) were investigated in this paper. Furthermore, the CNs were used as templates to synthesize silver nanoparticles (AgNPs), Ag-Pd alloy and Fe_2O_3, respectively. The applications of CNs/AgNPs, CNs/Ag-Pd and CNs/Fe_2O_3 composites used as multifunctional fillers for polymers, labels for DNA electrochemical sensor and adsorbing materials for water treatment were investigated. The innovations of this paper are synthesis of CNs by TEMPO/NaClO/NaBr oxidation of alkali treated cellulose; synthesis of CNs/Ag-Pd and CNs/Fe_2O_3 composites materials; applications of the composites as labels of novle electrochemical DNA biosensor and water treatment materials.
     CNs with size about 100-200 nm in length and 10-20 nm in width was prepared from MCC as raw material by H2SO4 hydrolysis. XRD results show that CNs and MCC are the same crystal phase. Carboxylated cellulose nanocrystals (CCNs) was synthesized from CNs by surface chemical modifications using the TEMPO/NaClO/NaBr (TEMPO, 2,2,6,6-tetramethylpiperidine-1-oxyl radical) oxidation system. The crystal phase of CCNs was the same as the MCC. Furthemore, CNs was prepared from NaOH treated MCC using TEMPO/NaClO/NaBr oxidation system without acid. Morphology of this kind of CNs was the same as the CNs synthesized by H2SO4 hydrolysis.
     Nanocomposites composed of CCNs and silver nanoparticles (AgNPs) were prepared by liquid phase chemical methods and used as bi-functional nanofillers to blend with waterborne polyurethane (WPU) and polyving akohol (PVA). The characterizations indicated that glass transition temperatures (Tg) and thermal stability of WPU-based composites increased with increasing CCNs content. Tensile strength of WPU-based films increased significantly with filling, but tensile strength decreased with further addition of CCNs. The elongation at break decreased obviously with increasing CCNs content. In contrast with WPU composites, glass transition temperatures (Tg) of PVA composites decreased and thermal stability increased with increasing CCNs content. Tensile strength of PVA-based films increased significantly with filling CCNs. More importantly, WPU/CCNs/AgNPs and PVA/CCNs/AgNPs composite films showed strong antibacterial activities against E. coli and S. aureus.
     Grafting of the probe DNA onto the CCNs was carried out via carboxyl groups covalently coupled with the -NH2 moiety of the probe sequence by amide linkage (-CONH-) in the presence of EDC and NHS to prepare CCNs/AgNPs-probe DNA probe. The electrochemistry response of target PAT DNA, noncomplementary sequence and blank measurement illustrated that DNA biosensor with CCNs/AgNPs as the probe DNA label had good selectivity for the PAT gene fragment detection. Signal of silver had a linear relationship with the logarithmic value of the PAT gene fragment concentration ranging from 1.0×10~(-10) mol/L to 1.0×10~(-7) mol/L and the detection limit was 2.3×10~(-11) mol/L. These results indicated that CCNs could be used for immobilization of DNA biomolecular and the CCNs/AgNPs nanocomposites could be used as labels of target DNA for electrical detection of PAT gene fragment.
     Synthesis of Ag-Pd alloy nanopaticles was carried out with CCNs suspension as reaction system by co-reducing metallic cations using NaBH4. Alloy particles with a size less than monometallic AgNPs and PdNPs were readily prepared and dispersed well. The average size of alloy nanoparticles decreased as the increasing molar ratio of Ag/Pd. After hybridization between target DNA and probe DNA, two signals belong to the Ag and Pd could be detected when the CCNs/Ag-Pd nanocomposites as probe DNA labels. The CCNs/Ag-Pd nanocomposites can be used as labels in DNA electrochemical sensor.
     Iron oxide nanoparticles with different morphologies were synthesized by hydrothermal reaction in the presence of CNs as stabilizing agent. The composites composed of iron oxide and cellulose were characterised by TEM, XRD and FT-IR. The adsorptive capacities of MCC, CNs, Fe_2O_3 and CNs/Fe_2O_3 composite to Cd~(2+), Pb~(2+), Ni~(2+), Cr_2O_7~(2-), AsO_4~(3-) and PO_4~(3-) were investigated. Comparing with the monocomponet materials, CNs/Fe_2O_3 composite show better adsorptive capacities to the anions and cations.
引文
[1] D Klemm, B Heublein, H P Fink, et al. Cellulose: Fascinating Biopolymer and Sustainable Raw Material[J]. Angewandte Chemie International Edition, 2005, 44(22): 3358~3393
    [2] D Klemm, H P Schmauder, T Heinze. Biopolymers[M], Vol. 6, Eds.: E Vandamme, S De Beats, A Steinbuchel), Wiley-VCH, Weinheim, 2002, 290~292
    [3] D L Kaplan. Biopolymers from Renewable Resources[M], Eds.: D L Kaplan, Springer, Berlin, 1998, 1~29
    [4] Y Habibi, L A Lucia, O J Rojas. Cellulose Nanocrystals: Chemistry, Self-Assembly, and Applications[J]. Chemical Reviews, 2010, 110 (6): 3479~3500
    [5]高洁,汤烈贵.纤维素科学[M].北京:科学出版社, 1999
    [6] A Sturcova, I His, D C Apperley, et al. Structural Details of Crystalline Cellulose from Higher Plants[J]. Biomacromolecules, 2004, 5(4): 1333~1339
    [7] D Fengel and G Wegener. Wood[M], Walter de Gruyter, Berlin, 1989
    [8] P Tucker and W George. Microfibers within Fibers: A Review [J]. Polymer Engineering & Science, 1972, 12(5): 364~377
    [9] J Sikorski, Fiber Structure[M], Eds.: J W S Hearle and P H Peters, Butterworth & Co. Ltd. London, 1963, 269~310
    [10] I Nieduszynski and R D Preston. Crystallite Size in Natural Cellulose[J]. Nature, 1971, 225: 273~274
    [11] A Frey-Wyssling and K Muhlethaler. Submicroscopic Structure of Cellulose Gels[J]. Journal of Polymer Science, 1946, 1(3): 172~174
    [12] K Muhlethaler. The Structure of Bacterial Cellulose[J]. Biochimica et Biophysica Acta, 1949, 3: 527~535
    [13] J R Colvin, S T Bayley, M Beer. The Growth of Cellulose Microfibrils from. Acerobacrer Xylinurn[J]. Biochimica et Biophysica Acta, 1957, (23): 652~65
    [14] R D Preston, E Nicolai, R Reed, et al. An Electron Microscope Study of Cellulose in the Wall of Valonia Ventricosa[J]. Nature, 1948, 162 (4121): 665~667
    [15] E Nicolar and R D Preston. Cell-Wall Studies in the Chlorophyceae. III. Differences in Structure andDevelopment in the Cladophoraceae[J]. Proceedings of the Royal Society B: Biological Sciences, 1959, 151(943): 244~255
    [16] R D Preston and J Cronshaw. Constitution of the Fibrillar and Non-fibrillar Components of the Walls of Valonia Ventri-cosa[J]. Nature, 1958, 181: 248~250
    [17] F J Kolpak and J Blackwell. Deformation of Cotton and Bacterial Cellulose Microfibrils[J].Textile Research Journal, 1975, 45(7): 568~572
    [18] F Shafizadeh and G D McGinnis. Morphology and Biogenesis of Cellulose and Plant Cell-walls[J]. Advances in Carbohydrate Chemistry and Biochemistry, 1971, 26: 297~349
    [19] K Muhlethaler. Die Feinstruktur der Zellulose-mikro-fibrillen [J]. Beih. Z. Schweis. Forstver, 1960, 30: 55~65
    [20] A N J Heyn. The Elementary Fibril and Supermolecular Structure of Cellulose in Soft Wood Fiber[J]. Journal of Ultrastructure Research, 1969, 26: 52~68
    [21] K H Gardner and J Blackwell. The Substructure of Cellulose and Chitin Microfibrils[J]. Journal of Polymer Science, 1971, 36: 327~340
    [22] I Ohad and D Danon. On the Dimensions of Cellulose Microfibers[J]. Journal of Cell Biology, 1964, 22(1): 302~305
    [23] A N J Heyn. Observations on the Size and Shape of the Cellulose Microcrystallite in Cotton Fiber by Electron Staining[J]. Journal of Applied Physics, 1965, 36(6): 2088
    [24] R S J Manley and S Inoue. The Fine Structure of Regenerated Cellulose[J]. Journal of Polymer Science Part B: Polymer Letters, 1965, 3(9): 619~695
    [25] A M Hindeleh and D J Johnson. Crystallinity and Crystallite Size Measurement in Cellulose Fibres: 1. Ramie and Fortisan[J]. Polymer, 1972, 13(9): 423~430
    [26] A M Hindeleh and D J Johnson. Crystallinity and Crystallite Size Measurement in Cellulose Fibres: 2. Viscose Rayon[J]. Polymer, 1974, 15(11): 697~705
    [27] F J Kolpak and J Blackwell. The Morphology of Regenerated Cellulose[J]. Textile Research Journal, 1978 , 48(8): 458~467
    [28] J W S Hearle and P H Peters (Eds.). Fiber Structure[M]. Butterworth & Co. Ltd., London, 1963: 209~234
    [29] H P Fink, D Hoffmann and B Philipp. Some Aspects of Lateral Chain Order in Cellulosics from X-rayScattering[J]. Cellulose, 1995, 2(1): 51~70
    [30] J L Bose, E J Roberts and S P Rowland. The Availability of Hydroxyl Groups in Native and Mercerized Cotton Celluloses[J]. Journal of Applied Polymer Science, 1971, 15(12): 2999~3007
    [31] J O Warwicker, R Jeffries, R L Cobran, et al. A Review of the Literature on the Effect of Caustic. Soda and Other Swelling Agents on Fine Structure of Cotton[M]. Shirley Institute Pamphlet 93, England: St Ann’s Press, 1966
    [32] S P Rowland. In Modified Cellulosics[M]. Eds.: R M Rowland and R A Younh, Academic Press Inc., New York, 1978: 147~167
    [33] S S Gusev, D D Grinshpan, F N Kaputskii. Infrared Spectra of Products of Oxidation of Cellulose by Nitrogen Tetroxide[J]. Journal of Applied Spectroscopy, 1976, 24(4): 511~513
    [34] B G R?nby. Aqueous Colloidal Solutions of Cellulose Micelles[J]. Acta Chemica Scandinavica, 1949, 3(5): 649~650
    [35] B G R?nby. The Colloidal Properties of Cellulose Micelles[J]. Discussions of Faraday Society. 1951, 11: 158~164
    [36] B G R?nby and E Ribi. Uber den. Feinbau der Zellulose[J]. Experimentia, 1950, 6(1): 12~14
    [37] R F Nickerson and J A Habrle. Cellulose Intercrystalline Structure[J]. Industrial and Engineering Chemistry. 1947, 39: 1507~1512
    [38] S M Mukherjee, J Sikorski, H J Woods. Electron Microscopy of Degraded Cellulose Fibers[J]. Journal of the Textile Institute, 1952, 43: 196~201
    [39] S M Mukherjee and H J Woods. X-ray and Electron Microscope Studies of the Degradation of Cellulose by Sulphuric Acid[J]. Biochimica et Biophysica Acta, 1953, 10(4): 499~511
    [40] O A Battista. Hydrolysis and Crystallization of Cellulose[J]. Industrial and Engineering Chemistry[J]. 1950, 42: 502~507
    [41] O A Battista, S Coppick, J A Howsmon, et al. Level-off Degree of Polymerization: Relation to Polyphase Structure of Cellulose Fibers[J]. Industrial and Engineering Chemistry, 1956, 48: 333~335
    [42] R H Marchessault, F F Morehead, Walter N M. Liquid Crystal Systems from Fibrillar Polysaccharides[J]. Nature, 1959, 184: 632~633
    [43] V Favier, G R Canova, J Y Cavaille, et al. Nanocomposite Materials from Latex and Cellulose Whiskers[J]. Polymers for Advanced Technologies, 1995, 6(5): 351~355
    [44] V Favier, H Chanzy and J Y Cavaille. Polymer Nanocomposites Reinforced by Cellulose Whiskers[J]. Macromolecules, 1995, 28(18): 6365~6367
    [45] M N Angles, A Dufresne. Plasticized/Tunicin Whiskers Nanocomposites Materials. 2. Mechanical Behaviour[J]. Macromolecules, 2001, 34(9): 2921~2931
    [46] M M Ruiz, J Y Cavaille, A Dufresne, et al. Processing and Characterization of New Thermoset Nanocomposites Based on Cellulose Whiskers[J]. Composite Interfaces, 2000, 7(2): 117~131
    [47] S Elazzouzi-Hafraoui, Y Nishiyama, J L Putaux, et al. The Shape and Size Distribution of Crystalline Nanoparticles Prepared by Acid Hydrolysis of Native Cellulose[J]. Biomacromolecules, 2008, 9(1): 57~65
    [48] M Roman and W T Winter. Effect of Sulfate Groups from Sulfuric Acid Hydrolysis on the Thermal Degradation Behavior of Bacterial Cellulose[J]. Biomacromolecules, 2004, 5(5): 1671~1677
    [49] Y Habibi, A L Goffin, N Schiltz, et al. Bionanocomposites Based on Poly(ε-caprolactone)-grafted Cellulose Nanocrystals by Ring-opening Polymerization[J]. Journal of Materials Chemistry, 2008, 18(41): 5002~5010
    [50] N L Garcia de Rodriguez, W Thielemans, A Dufresne. Sisal Cellulose Whiskers Reinforced Polyvinyl Acetate Nanocomposites[J]. Cellulose, 2006, 13(3): 261~270
    [51] O A Battista, S Coppick, J A Howsmon, et al. Level-off Degree of Polymerization[J]. Industrial and Engineering Chemistry, 1956, 48(2): 333~335
    [52] A Sharples. The Hydrolysis of Cellulose and Its Relation to Structure[J]. Transactions of the Faraday Society, 1958, 54: 913~917
    [53] T Yachi, J Hayashi, M Takai, et al. Super-molecular Structure of Cellulose[J]. Journal of Applied Polymer Science: Applied Polymer Symposium, 1983, 37: 325~343
    [54] H H?kansson and P Ahlgren. Acid Hydrolysis of Some Industrial Pulps: Effect of Hydrolysis Conditions and Raw Material[J]. Cellulose, 2005, 12(2): 177~183
    [55] C Martin. Folding Chain Model and Annealing of Cellulose[J]. Journal of Polymer Science Part C: Polymer Symposia, 1971, 36(1): 343~362
    [56] M Y C Martin. Crystallite Structure of Cellulose[J]. Journal of Polymer Science-Polymer Chemistry Edition, 1974, 12(7): 1349~1374
    [57] J Schurz and K John. Long Periods in Native and Regenerated Celluloses[J]. Cellulose Chemistry andTechnology, 1975, 9: 493~501
    [58] Y Nishiyama, U J Kim, D Y Kim, et al. Periodic Disorder Along Ramie Cellulose Microfibrils[J]. Biomacromolecules, 2003, 4(4): 1013~1017
    [59] A Kai. The Fine Structure of Valonia Microfibril. Gel Permeation Chromatographic Studies of Valonia Cellulose[J]. Seni Gakkaishi 1976, 32(8): 326~334
    [60] S Elazzouzi-Hafraoui, Y Nishiyama, J L Putaux, et al. The Shape and Size Distribution of Crystalline Nanoparticles Prepared by Acid Hydrolysis of Native Cellulose[J]. Biomacromolecules, 2008, 9(1): 57~65
    [61] W Bai, J Holbery, K Li. A Technique for Production of Nanocrystalline Cellulose with A Narrow Size Distribution[J]. Cellulose, 2009, 16(3): 455~465
    [62] M M De Souza Lima and R Borsali. Static and Dynamic Light Scattering from Polyelectrolyte Microcrystal Cellulose[J]. Langmuir, 2002, 18(4): 992~996
    [63] X M Dong, J F Revol, D G Gray. Effect of Microcrystallite Preparation Conditions on the Formation of Colloid Crystals of Cellulose[J]. Cellulose, 1998, 5(1): 19~32
    [64] J Araki, M Wada, S Kuga, et al. Birefringent Glassy Phase of A Cellulose Microcrystal Suspension[J]. Langmuir, 2000, 16(6): 2413~2415
    [65] Y Habibi, A L Goffin, N Schiltz, et al. Bionanocomposites Based on Poly(ε-caprolactone)-grafted Cellulose Nanocrystals by Ring-opening Polymerization[J]. Journal of Materials Chemistry, 2008, 18(41): 5002~5010
    [66] Y Habibi and A Dufresne. Highly Filled Bionanocomposites from Functionalized Polysaccharides Nanocrystals[J]. Biomacromolecules, 2008, 9(7): 1974~1980
    [67] Y Habibi, L Foulon, V Aguie-Beghin, et al. Langmuir-Blodgett Films of Cellulose Nanocrystals: Preparation and Characterization[J]. Journal of Colloid and Interface Science, 2007, 316(2): 388~397
    [68] X Cao, Y Chen, P R Chang, et al. Green Composites. Reinforced with Hemp Nanocrystals in Plasticized Starch[J]. Journal of Applied Polymer Science, 2008, 109(6): 3804~3810
    [69] X Cao, Y Chen, P R Chang, et al. Starch-based Nanocomposites Reinforced with Flax Cellulose Nanocrystals[J]. Express Polymer Letters, 2008, 2(7): 502~510
    [70] X Cao, H Dong, C M Li. New Nanocomposite Materials Reinforced with Flax Cellulose Nanocrystals in Waterborne Polyurethane[J]. Biomacromolecules, 2007, 8(3): 899~904
    [71] G Siqueira, J Bras, A Dufresne. Cellulose Whiskers versus Microfibrils: Influence of the Nature of the Nanoparticle and its Surface Functionalization on the Thermal and Mechanical Properties of Nanocomposites[J]. Biomacromolecules, 2009, 10(2): 425~432
    [73] W Helbert, J Y Cavaille, A Dufresne. Thermoplastic Nanocomposites Filled with Wheat Straw Cellulose Whiskers[J]. Polymer Composites, 1996, 17(4): 604~611
    [74] A Bendahou, Y Habibi, H Kaddami, et al. Physico-chemical Characterization of Palm from Phoenix Dactyliferal, Preparation of Cellulose Whiskers and Natural Rubber-based Nanocomposites[J]. Journal of Biobased Materials and Bioenergy, 2009, 3(1): 81~90
    [75] J Araki, M Wada, S Kuga, et al. Influence of Surface Charge on Viscosity Behavior of Cellulose Microcrystal Suspension[J]. Journal of Wood Science, 1999, 45(3): 258~261
    [76] S Beck-Candanedo, M Roman, D G Gray. Effect of Reaction Conditions on the Properties and Behavior of Wood Cellulose Nanocrystal Suspensions[J]. Biomacromolecules, 2005, 6(2): 1048~1054
    [77] D Bondeson, A Mathew, K Oksman. Optimization of the Isolation of Nanocrystals from Microcrystalline Cellulose by Acid Hydrolysis[J]. Cellulose, 2006, 13(2): 171~180
    [78] L Pranger and R Tannenbaum. Biobased Nanocomposites Prepared by In Situ Polymerization of Furfuryl Alcohol with Cellulose Whiskers or Montmorillonite Clay[J]. Macromolecules, 2008, 41(22): 8682~8687
    [79] J R Capadona, K Shanmuganathan, S Trittschuh, et al. Polymer Nanocomposites with Nanowhiskers Isolated from Microcrystalline Cellulose[J]. Biomacromolecules, 2009, 10(4): 712~716
    [80] D Bondeson, I Kvien, K Oksman. In Cellulose Nanocomposites: Processing, Characterization, and Properties; Eds.: K Oksman, M Sain, ACS Symposium Series 938; American Chemical Society: Washington, DC, 2006.
    [81] M A S Azizi Samir, F Alloin, M Paillet, et al. Tangling Effect in Fibrillated Cellulose Reinforced Nanocomposites[J]. Macromolecules, 2004, 37(11): 4313~4316
    [82] M Grunnert and W T Winter. Nanocomposites of Cellulose Acetate Butyrate Reinforced with Cellulose Nanocrystals[J]. Journal of Polymers and the Environment, 2002, 10(1): 27~33
    [83] J Araki and S Kuga. Effect of Trace Electrolyte on Liquid Crystal Type of Cellulose Microcrystals[J]. Langmuir, 2001, 17(15): 4493~4496
    [84] A Hirai, O Inui, F Horii, et al. Phase Separation Behavior in Aqueous Suspensions of BacterialCellulose Nanocrystals Prepared by Sulfulic Acid Treatment[J]. Langmuir, 2009, 25(1): 497~502
    [85] M N Angles and A Dufresne. Plasticized/Tunicin Whiskers Nanocomposites. 1. Structural Analysis[J]. Macromolecules, 2000, 33(22): 8344~8353
    [86] T Koshizawa. Degradation of Wood Cellulose and Cotton Linters in Phosphoric Acid[J]. Kami Pa Gikyoshi, 1960, 14: 455
    [87] T Okano, S Kuga, M Wada, et al. Nisshin Oil Mills Ltd., Japan. JP 98/151052, 1999
    [88] H Ono, T Matsui, I Miyamato. Asahi Kasei Kogyo Kabushiki Kaisha, Japan. WO 98/JP5462, 1999
    [89] H Shuichi, M Kazuya, N Fumiaki. Influence of Carboxyl Group on the Acid Hydrolysis of Cellulose[J]. Journal of Wood Science, 1998, 47(2): 141~144
    [90] I Filpponen. Ph. D. Thesis, North Carolina State University, Raleigh, NC, 2009
    [91] J Araki, M Wada, S Kuga, et al. Birefringent Glassy Phase of a Cellulose Microcrystal Suspension[J]. Colloids and Surfaces A, 1998, 142(1): 75~82
    [92] J F Revol, H Bradford, J Giasson, et al. Helicoidal Selfordering of Cellulose Microfibrils in Aqueous Suspension[J]. International Journal of Biological Macromolecules, 1992, 14(3): 170~172
    [93] N Wang, E Ding and R Cheng. Preparation and Liquid Crystalline Properties of Spherical Cellulose Nanocrystals[J]. Langmuir, 2008, 24(1): 5~8
    [94] N Wang, E Ding, R Cheng. Thermal Degradation Behavior of Spherical Cellulose Nanocrystals with Sulfate Groups[J]. Polymer, 2007, 48(12): 3486~3493
    [95] Miller A F and Donald A M. Imaging of Anisotropic Cellulose Suspensions Using Environmental Scanning Electron Microscopy[J]. Biomacromolecules, 2003, 4(3): 510~517
    [96] P Terech, L Chazeau, J Y Cavaille. A Small-Angle Scattering Study of Cellulose Whiskers in Aqueous Suspensions[J]. Macromolecules, 1999, 32(6): 1872~1875
    [97] M M De Souza Lima, J T Wong, M Paillet, et al. Translational and Rotational Dynamics of Rodlike Cellulose Whiskers[J]. Langmuir, 2003, 19(1): 24~29
    [98] S J Hanley, J Giasson, J F Revol, et al. Atomic Force Microscopy of Cellulose Comparison with Transmission Electron Microscopy[J]. Polymer, 1992, 33(21): 4639~4642
    [99] S J Hanley, J F Revol, L Godbout, et al. Atomic Force Microscopy and Transmission Electron Microscopy of Cellulose from Micrasterias Denticulata; Evidence for a Chiral Helical Microfibril Twist[J]. Cellulose, 1997, 4(3): 209~220
    [100] I Kvien, B S Tanem, K Oksman. Characterization of Cellulose Whiskers and their Nanocomposites by Atomic Force and Electron Microscopy[J]. Biomacromolecules, 2005, 6(6): 3160~3165
    [101] R R Lahiji, R Reifenberger, A Raman, et al. Characterization of Cellulose Nanocrystal Surfaces by SPM[J]. NSTI Nanotechnology Conference and Trade Show Nanotechnology, 2008, 1-3: 704~707
    [102] S Barriga. 2,2,6,6-Tetramethylpiperidine-1-oxyl (TEMPO)[J]. Synlett, 2001 (4): 563
    [103] F Montanari, S Quici, H Henry-Riyad, et al.“2,2,6,6- Tetramethylpiperidin -1-oxyl”Encyclopedia of Reagents for Organic Synthesis[M]; John Wiley & Sons, 2005
    [104]杨贯羽,郭彦春,武光辉,等.氮氧自由基TEMPO:选择氧化醇的高效有机小分子催化剂[J].化学进展, 2007, 19 (11): 1727~1735
    [105]覃炳达,施灏,宋海农,等. TEMPO及其衍生物在造纸中的应用[J].造纸科学与技术. 2008, 27 (2): 49~52
    [106] A E J de Nooy, A C Besemer, H van Bekkum. Highly Selective TEMPO Mediated Oxidation of Primary Alcohol Groups in Polysaccharides[J]. Recueil des Travaux Chimiques des Pays-Bas, 1994, 113(3): 165~166
    [107] A E J de Nooy, A C Besemer, H van Bekkum. Highly Selective Nitroxyl Radical-mediated Oxidation of Primary Alcohol Groups in Water-soluble Glucans[J]. Carbohydrate Research, 1995, 269(1): 89~98
    [108] P S Chang and J F Robyt. Oxidation of Primary Alcohol Groups of Naturally Occurring Polysaccharides with 2,2,6,6-tetramethyl-l-piperidine Oxoammonium Ion[J].Carbohydrate Chemistry, 1996, 15(7): 819~830
    [109] A Isogai and Y Kato. Preparation of Polyuronic Acid from Cellulose by TEMPO-mediated Oxidation[J]. Cellulose, 1998, 5(3):153~164
    [110] C Tahiri and M R Vignon. TEMPO-oxidation of Cellulose: Synthesis and Characterization of Polyglucuronans[J]. Cellulose, 2000, 7 (2): 177~188
    [111] J Araki, M Wada, S Kuga. Steric Stabilization of a Cellulose Microcrystal Suspension by Poly(ethylene glycol) Grafting[J]. Langmuir, 2001, 17(1): 21~27
    [112] S Montanari, M Roumani, L Heux, et al. Topochemistry of Carboxylated Cellulose Nanocrystals Resulting from TEMPO-Mediated Oxidation[J]. Macromolecules, 2005, 38(5): 1665~1671
    [113] Y Habibi, H Chanzy, M R Vignon. TEMPO-mediated Surface Oxidation of Cellulose Whiskers[J].Cellulose 2006, 13(6): 679-687
    [114] J H He, T Kunitake, A Nakao. Facile In Situ Synthesis of Noble Metal Nanoparticles in Porous Cellulose Fibers[J]. Chemistry of Materials, 2003, 15(23): 4401~4406
    [115] S Cai, J Kimura, M Wada, et al. Nanoporous Cellulose as Metal Nanoparticles Support[J]. Biomacromolecules, 2009, 10(1): 87~94
    [116] Z Li, A Friedricha, A Taubert. Gold Microcrystal Synthesis Via Reduction of HAuCl4 by Cellulose in the Ionic Liquid 1-butyl-3-methyl Imidazolium Chloride[J]. Journal of Materials Chemistry, 2008, 18: 1008~1014
    [117] N S Venkataramanan, K Matsui, H Kawanami, et al. Green Synthesis of Titania Nanowire Composites on Natural Cellulose Fibers[J]. Green Chemistry, 2007, 9: 18~19
    [118] I Shinsuke, T Manami, M Minoru, et al. Synthesis of Silver Nanoparticles Templated by TEMPO-Mediated Oxidized Bacterial Cellulose Nanofibers[J]. Biomacromolecules, 2009, 10(9): 2714~2717
    [119] E Dujardin, M Blaseby, S Mann. Synthesis of Mesoporous Silica by Sol-gel Mineralisation of Cellulose Nanorod Nematic Suspensions[J]. Journal of Materials Chemistry, 2003, 13 (4): 696~699
    [120] Y Shin and G J Exarhos. Template Synthesis of Porous Titania Using Cellulose Nanocrystals[J]. Materials Letter, 2007, 61(11/12): 2594~2597
    [121] Y Shin, J M Blackwood, I T Bea, et al. Synthesis and Stabilization of Selenium Nanoparticles on Cellulose Nanocrystal[J]. Materials Letter, 2007, 61(11/12): 4297~4300
    [122] Y Zhou, E Y Ding, W D Li. Synthesis of TiO2 Nanocubes Induced by Cellulose Nanocrystal (CNC) at Low Temperature[J]. Materials Letters, 2007, 61(11/12): 5050~5052
    [123] M Grunnert, W T Winter. Progress in the Development of Cellulose Reinforced Nanocomposites[J]. Polymeric Materials: Science and Engineering, 2000, 82: 232
    [124] S Noorani, J Simonsen, S Atre. In Cellulose Nanocomposites: Processing, Characterization and Properties; Eds.: K Oksman, M Sain; ACS Symposium Series 938; American Chemical Society: Washington D C , 2006
    [125] A Morin and A Dufresne. Nanocomposites of Chitin Whiskers from Riftia Tubes and Poly (caprolactone)[J]. Macromolecules, 2002, 35(6): 2190~2199
    [126] M Paillet and A Dufresne. Chitin Whisker Reinforced Thermoplastic Nanocomposites[J]. Macromolecules, 2001, 34(19): 6527~6530
    [127] M A S Azizi Samir, F Alloin, J Y Sanchez, et al. Cellulose Nanocrystals Reinforced Poly(oxyethylene)[J]. Polymer, 2004, 45(12): 4149~4157
    [128] M A S Azizi Samir, L Chazeau, F Alloin, et al. POE-based Nanocomposite Polymer Electrolytes Reinforced with Cellulose Whiskers[J]. Electrochimica Acta, 2005, 50(19): 3897~3903
    [129] M A S Azizi Samir, A M Mateos, F Alloin, et al. Plasticized Nanocomposite Polymer Electrolytes based on Poly(oxyethylene) and Cellulose Whiskers[J]. Electrochimica Acta, 2004, 49(26): 4667~4677
    [130] M A S Azizi Samir, F Alloin, J Y Sanchez, et al. Nanocomposite Polymer Electrolytes based on Poly(oxyethylene) and Cellulose Whiskers[J]. Polimeros: Ciencia e Tecnologia, 2005, 15(2): 109~113
    [131] Y Choi and J Simonsen. Cellulose Nanocrystal-Filled Carboxymethyl Cellulose Nanocomposites[J]. Journal of Nanoscience and Nanotechnology, 2006, 6: 633~639
    [132] S A Paralikar, J Simonsen, J Lombardi. Poly(vinyl alcohol)/Cellulose Nanocrystal Barrier Membranes[J]. Journal of Membrane Science, 2008, 320(1-2): 248~254
    [133] M Roohani, Y Habibi, N M Belgacem, et al. Cellulose Whiskers Reinforced Polyvinyl Alcohol Copolymers Nanocomposites[J]. European Polymer Journal, 2008, 44(8): 2489~2498
    [134] A Junior de Menezes, G Siqueira, A A S Curvelo, et al. Extrusion and Characterization of Functionalized Cellulose Whisker Reinforced Polyethylene Nanocomposites[J]. Polymer 2009, 50(19): 4552~4563
    [135] C Bonini. Ph. D. Thesis of Joseph Fourier University, Grenoble, France, 2000
    [136] L Chazeau, J Y Cavaille, G Canova, et al. Viscoelastic Properties of Plasticized PVC Reinforced with Cellulose Whiskers[J]. Journal of Applied Polymer Science, 1999, 71(11): 1797~1808
    [137] L Chazeau, J Y Cavaille, P Terech. Mechanical Behaviour above Tg of a Plasticised PVC Reinforced with Cellulose Whiskers; a SANS Structural Study[J]. Polymer 1999, 40(19): 5333~5344
    [138] L Chazeau, J Y Cavaille, J Perez. Plasticized PVC Reinforced With Cellulose Whiskers. II. Plastic Behavior[J]. Journal of Polymer Science Part B: Polymer Physics, 2000, 38(3): 383~392
    [139] L Chazeau, M Paillet, J Y Cavaille. Plasticized PVC Reinforced With Cellulose Whiskers. I. Linear Viscoelastic Behavior Analyzed through the Quasi-point Defect Theory[J]. Journal of Polymer Science Part B: Polymer Physics, 1999, 37(16): 2151~2164
    [140] N E Marcovich, M L Auad, N E Bellesi, et al. Cellulose Micro/Nanocrystals Reinforced Polyurethane[J]. Journal of Materials Research, 2006, 21(4): 870~881
    [141] X Cao, Y Habibi, L A Lucia. One-pot Polymerization, Surface Grafting, and Processing of Waterborne Polyurethane-cellulose Nanocrystal Nanocomposites[J]. Journal of Materials Chemistry, 2009, 19: 7137~7145
    [142] X Cao, Y Chen, P R Chang, et al. Green Composites Reinforced with Hemp Nanocrystals in Plasticized Starch[J]. Journal of Applied Polymer Science, 2008, 109(6): 3804~3810
    [143] X Cao, Y Chen, P R Chang, et al. Starch-based Nanocomposites Reinforced with Flax Cellulose Nanocrystals[J]. Express Polymer Letters, 2008, 2(7): 502~510
    [144] I Kvien, J Sugiyama, M Votrubec, et al. Characterization of Starch Based Nanocomposites, 2007, 42(19): 8163~8171
    [145] Y Lu, L Weng, X Cao. Biocomposites of Plasticized Starch Reinforced with Cellulose Crystallites from Cottonseed Linter[J]. Macromolecular Bioscience, 2005, 5(11): 1101~1107
    [146] Y Lu, L Weng, X Cao. Morphological, Thermal and Mechanical Properties of Ramie crystallites-reinforced Plasticized Starch Biocomposites[J]. Carbohydrate Polymers, 2006, 63(2): 198~204
    [147] Y Wang, X Cao, L Zhang. Effects of Cellulose Whiskers on Properties of Soy Protein Thermoplastics[J]. Macromolecular Bioscience, 2006, 6(7): 524~531
    [148] Q Li, J Zhou, L Zhang. Structure and Properties of the Nanocomposite Films of Chitosan Reinforced with Cellulose Whiskers[J]. Journal of Polymer Science Part B: Polymer Physics, 2009, 47(11): 1069~1077
    [149] H Qi, J Cai, L Zhang, et al. Properties of Films Composed of Cellulose Nanowhiskers and a Cellulose Matrix Regenerated from Alkali/Urea Solution[J]. Biomacromolecules, 2009, 10(6): 1597~1602
    [150] D Bondeson and K Oksman. Dispersion and Characteristics of Surfactant Modified Cellulose Whiskers Nanocomposites[J]. Composite Interfaces, 2007, 14(7-9): 617~630
    [151] D Bondeson and K Oksman. Polylactic Acid/Cellulose Whisker Nanocomposites Modified by Polyvinyl Alcohol[J]. Composites Part A: Applied Science and Manufacturing, 2007, 38(12): 2486~2492
    [152] K Oksman, A P Mathew, D Bondeson, et al. Manufacturing Process of Cellulose Whiskers/Polylactic Acid Nanocomposites[J]. Composites Science and Technology, 2006, 66(15): 2776~2784
    [153] L Petersson, I Kvien, K Oksman. Structure and Thermal Properties of Poly(lactic acid)/CelluloseWhiskers Nanocomposite Materials[J]. Composites Science and Technology, 2007, 67(11-12): 2535~2544
    [154] P Hajji, J Y Cavaille, V Favier, et al. Tensile Behavior of Nanocomposites from Latex and Cellulose Whiskers [J]. Polymer Composites, 1996, 17(4): 612~619
    [155] M M Ruiz, J Y Cavaille, A Dufresne, et al. New Waterborne Epoxy Coatings Based on Cellulose Nanofillers[J]. Macromolecular Symposia, 2001, 169(1): 211~222
    [156] A Bhatnagar and M J Sain. Processing of Cellulose Nanofiber-reinforced Composites [J]. Reinforced Plastics Composites, 2005, 24(12): 1259~1268
    [157] K Oksman, A P Mathew, D Bondeson, et al. Manufacturing Process of Cellulose Whiskers/Polylactic Acid Nanocomposites[J]. Composites Science and Technology, 2006, 66(15): 2776~2784
    [158] Q Wu, M Henrihsson, X Liu, et al. A High Strength Nanocomposite Based on Microcrystalline Cellulose and Polyurethane[J]. Biomacromolecules, 2007, 8(12): 3687~3692
    [159] A N Nakagaito and H Yano. The Effect of Morphological Changes from Pulp Fiber towards Nano-scale Fibrillated Cellulose on the Mechanical Properties of High-strength Plant Fiber Based Composites[J]. Applied Physics A: Materials Science & Processing, 2004, 78(4): 547~552
    [160] A N Nakagaito, S Iwamoto, H Yano. Bacterial Cellulose: the Ultimate Nano-scalar Cellulose Morphology for the Production of High-strength Composites[J]. Applied Physics A: Materials Science & Processing, 2005, 80(1): 93~97.
    [161] A N Nakagaito and H Yano. Novel High-strength Biocomposites Based on Microfibrillated Cellulose Having Nano-order-unit Web-like Network Structure [J]. Applied Physics A: Materials Science & Processing, 2005, 80(1): 155-159
    [162] B Wang and M Sain. Isolation of Nanofibers from Soybean Source and Their Reinforcing Capability on Synthetic Polymers[J]. Composites Science and Technology, 2007, 67 (11/12): 2521~2527
    [163] S Noorani, J Simonsen, S Atre. Nano-enabled Microtechnology: Polysulfone Nanocomposites Incorporating Cellulose Nanocrystals[J]. Cellulose, 2007, 14(6): 577~584
    [164] Y Q Pu, J G Zhang, T Elder, et al. Investigation into Nanocellulosics Versus Acacia Reinforced Acrylic Films[J]. Composites Part B: Engineering, 2007, 38(3):360~366
    [165] A Dufresne, J Y Cavaille, W Helbert. Thermoplastic Nanocomposites Filled with Wheat Straw Cellulose Whiskers. Part II: Effect of Processing and Modeling[J]. Polymer Composites, 1997, 18(2):198~210
    [166] H Althues, J Henle, S Kaskel. Functional Inorganic Nanofillers for Transparent Polymers[J]. Chemical Society Reviews, 2007, 36, 1454~1465
    [167] E Reynard, T Jouen, C Gauthier, et al. Nanofillers in Polymeric Matrix: a Study on Silica Reinforced PA6[J]. Polymer, 2001, 42(21): 8759~8768
    [168] V L Colvin, M C Schlamp, A P Alivisatos. Light-emitting Diodes Made from Cadmium Selenide Nanocrystals and a Semiconducting Polymer[J]. Nature, 1994, 370: 354~357
    [169] H Althues, P Simon, F Philipp, et al. Integration of Zinc Oxide Nanoparticles into Transparent Poly(butanediolmono-acrylate) via Photopolymerisation[J]. Journal of Nanoscience and Nanotechnology, 2006, 6: 409~413
    [170] X Y Ma and W D Zhang. Effects of Flower-like ZnO Nanowhiskers on the Mechanical, Thermal and Antibacterial Properties of Waterborne Polyurethane[J]. Polymer Degradation and Stability, 2009, 94: 1103~1109
    [171] S Peeterbroeck, M Alexandre, J B Nagy, et al. Polymer-layered Silicate-carbon Nanotube Nanocomposites: Unique Nanofiller Synergistic Effect[J]. Composites Science and technology, 2004, 64: 2317~2323
    [178] N Savage, M S Diallo, Nanomaterials and Water Purification: Opportunities and Challenges[J]. Journal of Nanoparticle Research, 2005, 7(4-5): 331~342
    [180]苏庆平,培方,张汉萍.离子交换纤维素及其在贵金属分析中的应用[J].黄金, 1994, 15 (4): 55~58
    [181]王禹.纤维素基重金属离子吸附剂的制备及性能研究.中国林业科学研究院林产化学工业研究所硕士论文,2008.
    [182] A M A Nada, N A Wakil , M L Hassan, et al. Differential Adsorption of Heavy Metal Ions by Cotton Stalk Cation-exchangers Containing Multiple Functional Groups[J]. Journal of Applied Polymer Science, 2006, 101(6): 4124~4132
    [183] M A Abd-A and L H Mohammad. Ion Exchange Properties of Carboxylated Bagasse[J]. Journal of Applied Polymer Science, 2006, 102 (2):1399~1404
    [184] M Morita, M Higuchi, I Sakata. Binding of Heavy Metal Ions by Chemically Modified Wood[J]. Journal of Applied Polymer Science, 1987, 34(3): 1013~1023
    [185] N Shigeo, A Masato, S Yasuo, et al. Preparation of Aminoalkyl Celluloses and Their Adsorption and Desorption of Heavy Metal Ions[J]. Journal of Applied Polymer Science, 1992, 45(2): 265~271
    [186] N Shigeo and A Masato. Preparation of Hydrazinodexy Cellulose and Carboxyalkyl Hydrazine-deoxy Celluloses and Their Adsorption Behavior Toward Heavy Metal Ions[J]. Journal of Polymer Science Part A: Polymer Chemistry, 1997, 35(16): 3359~3363
    [187] J A Miky, E L Abd, F A Mohdy. Preparation and Characterization of Cellulose Ion-exchangers Bearing Dimethyl Diethylamino Hydroxyl Chloropropane Groups[J]. Journal of the Textile Association, 1999, 60 (1): 35~40
    [188] M R Unnithan, V P Viond T S Anirudhan. Synthesis, Characterization and Application as a Chromium(VI) Adsorbent of Amine-modified Poly-acrylamide-grafted Coconut Coir Pith[J]. Industrial & Engineering Chemistry Research, 2004, 43 (9): 2247~2255
    [189] W L Chou, D G Yu, M C Yang. The Preparation and Characterization of Silver-loading Cellulose Acetate Hollow Fiber Membrane for Water Treatment[J]. Polymers for Advanced Technologies, 2005, 16(8): 600~607
    [190] T A Dankovich and D G Gray. Bactericidal Paper Impregnated with Silver Nanoparticles for Point-of-Use Water Treatment[J]. Environmental Science & Technology, 2011, 45(5): 1992~1998
    [191]唐萌.氧化铁纳米材料生物效应与安全应用[M].科学出版社,北京, 2010
    [192] L Zhong, J Hu, H Liang, et al. Self-Assembled 3D Flowerlike Iron Oxide Nanostructures and Their Application in Water Treatment[J]. Advanced Materials, 2006, 18: 2426~2431
    [193] R Wu, J Qua, Y Chen. Magnetic Powder MnO-Fe_2O_3 Composite—a Novel Material for the Removal of Azo-dye from Water[J]. Water Research, 2005, 39(4): 630~638
    [194] P Li, D E Miser, S Rabiei, et al. The Removal of Carbon Monoxide by Iron Oxide Nanoparticles[J]. Applied Catalysis B: Environmental, 2003, 43(2): 151~163
    [195] L C A Oliveiraa, D I Petkowiczb, A Smaniottob ,et al. PergherMagnetic Zeolites: A New Adsorbent for Removal of Metallic Contaminants from Water[J]. Water Research, 2004, 38(17): 3699~3704
    [196] C H Lai and C Y Chen. Removal of Metal Ions and Humic Acid from Water by Iron-coated Filter Media[J]. Chemosphere, 2001, 44(5): 1177~1184
    [197] V K Guptaa, V K Sainia, N Jainb. Adsorption of As(III) from Aqueous Solutions by iron Oxide-coated Sand[J]. Journal of Colloid and Interface Science, 2005, 288(1): 55~60
    [198] O S Thirunavukkarasu, T Viraraghavan, K S Subramanian. Arsenic Removal from Drinking Water using Iron Oxide-Coated Sand[J]. Earth and Environmental Science, 2003, 142(1-4): 95~111
    [199] Y Jeong, Maohong Fana, S Singh, et al. Evaluation of Iron Oxide and Aluminum Oxide as Potential Arsenic(V) Adsorbents[J]. Chemical Engineering and Processing: Process Intensification, 2007, 46(10): 1030~1039
    [200] A J Martinez, S Manolache, V Gonzalez, et al. Immobilized Biomolecules on Plasma Functionalized Cellophane. I. Covalently Attachedα-chymotrypsin[J]. Journal of Biomaterials Science, Polymer Edition, 2000, 11(4), 415~438.
    [201] C Kauffmann, O Shoseyov, E Shpigel, et al. Novel Methodology for Enzymatic Removal of Atrazine from Water by CBD-Fusion Protein Immobilized on Cellulose[J]. Environmental Science & Technology, 2000, 34(7): 1292~1296
    [202] F Loescher, T Ruckstuhl, S Seeger. Ultrathin Cellulose-Based Layers for Detection of Single Antigen Molecules[J]. Advanced Materials, 1998, 10(13): 1005~1009
    [203] M Erdtmann, R Keller, H Baumann. Photochemical Immobilization of Heparin, Dermatan Sulphate, Dextran Sulphate and Endothelial Cell Surface Heparan Sulphate onto Cellulose Membranes for the Preparation of Athrombogenic and Antithrombogenic Polymers[J]. Biomaterials, 1994, 15(13): 1043~1048
    [204] A P Mangalam, J Simonsen, A S Benight. Cellulose/DNA Hybrid Nanomaterials[J]. Biomacromolecules, 2009, 10(3): 497~504
    [205] F Ling, E Bramachary, M Xu, et al. Polymer-bound Cellulose Phenylcarbamate Derivatives as Chiral Stationary Phases for Enantioselective HPLC[J]. Journal of Separation Science, 2003, 26(15-16): 1337~1346
    [206] P Franco, A Senso, L Oliveros, et al. Covalently Bonded Polysaccharide Derivatives as Chiral Stationary Phases in High-performance Liquid Chromatography[J]. Journal of Chromatography A, 2001, 906(1-2): 155~170
    [207] G Felix. Regioselectively Modified Polysaccharide Derivatives as Chiral Stationary Phases in High-performance Liquid Chromatography[J]. Journal of Chromatography A, 2001, 906(1-2): 171~184
    [208] G Goetmar, D Zhou, B J Stanley, et al. Heterogeneous Adsorption of 1-Indanol on Cellulose Tribenzoate and Adsorption Energy Distribution of the Two Enantiomers[J]. Analytical Chemistry, 2004,76(1): 197~202
    [209] Y Toga, K Tachibana, A Ichida. Preparative Chiral Chromatography of Trans-Stilbene Oxide Using Cellulose Tris(Phenylcarbamate), Chiralcel? OC, as Stationary Phase[J]. Journal of Liquid Chromatography & Related Technologies, 2003, 26(19): 3235~3248
    [210] S Su, R Nutiu, C D M Filipe, et al. Adsorption and Covalent Coupling of ATP-Binding DNA Aptamers onto Cellulose[J]. Langmuir, 2007, 23(3): 1300~1302
    [211] A Bruce, A Johnson, J Lewis, et al. Molecular Biology of the Cell[M]. Fourth Edition. New York and London: Garland Science. 2002. ISBN 0-8153-3218-1
    [212] J Butler. Forensic DNA Typing[M]. Elsevier, 2001, 14-15, ISBN 978-0-12-147951-0
    [213] J Watson and F Crick. Molecular Structure of Nucleic Acids; a Structure for Deoxyribose Nucleic acid[J]. Nature, 1953, 171(4356): 737~748
    [214] J Berg, J Tymoczko, L Stryer. Biochemistry[M]. W H Freeman and Company 2002, ISBN 0-7167-4955-6
    [215] H Clausen-Schaumann, M Rief, C Tolksdorf, et al. Mechanical Stability of Single DNA Molecules[J]. Biophysical Journal, 2000, 78(4): 1997~2007
    [216] A P Mangalam, J Simonsen, A S Benight. Cellulose/DNA Hybrid Nanomaterials[J]. Biomacromolecules, 2009, 10(6): 497-504.
    [217] R Singh, D Pantarotto, D McCarthy, et al. Binding and Condensation of Plasmid DNA onto Functionalized Carbon Nanotubes: Toward the Construction of Nanotube-Based Gene Delivery Vectors[J]. Journal of the American Chemical Society, 2005, 127(12): 4388~4396
    [218] B Dubertret, P Skourides, D J Norris, et al. In Vivo Imaging of Quantum Dots Encapsulated in Phospholipid Micelles[J]. Science, 2002, 298(5599): 1759~1762
    [219] C W C Warran and S Nie. Quantum Dot Bioconjugates for Ultrasensitive Nonisotopic Detection[J]. Science, 1998, 281(5385): 2016~2018
    [220] J Wang, G Liu, M R Jan, et al. Electrochemical Detection of DNA Hybridization Based on Carbon-nanotubes Loaded with CdS Tags[J]. Electrochemistry Communications, 2003, 5(12): 1000~1004
    [221] A Kumar, P K Vemula, P M Ajayan, et al. Silver Nanoparticles Embedded Anti- microbial Paints Based on Vegetable Oil[J]. Nature Materials, 2008, 7, 236~241
    [222] J Zhang, D Roll, C D Geddes, et al. Aggregation of Silver Nanoparticle-Dextran with Concanavalin A and Competitive Complexation with Glucose[J]. The Journal of Physical Chemistry B, 2004, 108: 12210~12214
    [223] S H Hsu, C W Chou, S M Tseng, Ehanced Thermal and Mechanical Propertiesin Polyurethane/Au Nanocomposite[J]. Macromolecular Materials and Engineering, 2004, 289: 1096~1101
    [224] I Sondi and B Salopek-Sondi. Silver Nanoparticles as Antimicrobial Agent: a Case Study on E. coli as a Model for Gram-negative Bacteria[J]. Journal of Colloid and Interface Science, 2004, 275(1): 177~182
    [225] K Sudhir. Preparation, Characterization, and Surface Modification of Silver Particles[J]. Langmuir, 1998, 14(5): 1021~1025
    [226] J R Morones, J L Elechiguerra, A Camacho, et al. The Bactericidal Effect of Silver Nanoparticles[J]. Nanotechnology, 2005, 16: 2346~2353
    [227] M Singh, S Singh, S Prasada, et al. Nanotechnology in Medicine and Antibacterial Effect of Silver Nanoparticles[J]. Digest Journal of Nanomaterials and Biostructures, 2008, 3(3): 115~122
    [228] M Roohani, Y Habibi, N M Belgacem, et al. Cellulose Whiskers Reinforced Polyvinyl Alcohol Copolymers Nanocomposites[J]. European Polymer Journal, 2008, 44(8): 2489~2498
    [229] J Wang, G D Liu, M R Jan, et al. Electrochemical Detection of DNA Hybridization Based on Carbon-nanotubes Loaded with CdS Tags[J]. Electrochemistry Communications, 2003, 5(12): 1000~1004
    [230] D H Chen and C J Chen. Formation and Characterization of Au-Ag Bimetallic Nanoparticles in Water-in-oil Microemulsions[J]. Journal of Materials Chemistry, 2002, 12: 1557~1562
    [231] M L Wu, D H Chen, T C Huang. Preparation of Au/Pt Bimetallic Nanoparticles in Water-in-oil Microemulsions[J]. Chemistry of Materials, 2001, 13: 599~606
    [232] M L Wu, D H Chen, T C Huang. Synthesis of Au/Pd Bimetallic Nanoparticles in Reverse Micelles. Langmuir, 2001, 17(13): 3877~3883
    [233] M L Wu, D H Chen, T C Huang. Preparation of Pd/Pt Bimetallic Nanoparticles in Water/Aot/Isooctane Microemulsions[J]. Journal of Colloid and Interface Science, 2001, 243: 102~108
    [234] N Toshima and T Yonezawa. Bimetallic Nanoparticles-novel Materials for Chemical and Physical Applications[J]. New Journal of Chemistry, 1998, 22: 1179~1201
    [235] D V Goia and E Matijevic. Preparation of Monodispersed Metal Particles[J]. New Journal of Chemistry, 1998, 22(11): 1203~1215
    [236] R Ferrando, J Jellinek, and R L Johnston. Nanoalloys: from Theory to Applications of Alloy Clusters and Nanoparticles[J]. Chemical Reviews, 2008, 108: 845~910
    [237] Y Shin, I Baea, B W Areya, G J Exarhosa. Simple Preparation and Stabilization of Nickel Nanocrystals on Cellulose Nanocrystal[J]. Materials Letters, 2007, 61(14-15): 3215~3217
    [238]李伟,王锐,刘守新.纳米纤维素的制备[J],化学进展, 2010, 22(10): 2060~2070

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700