压铸镁合金汽车转向管柱支架CAE
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着人们对节能减排的重视,很多汽车零部件厂商开始思考汽车轻量化对材料选择的要求。作为工程应用中最轻的金属材料,镁合金得到越来越多的关注和重视。为此,本文针对汽车转向管柱支架的试制,开展了如下研究。
     先利用三维制图软件建立3维实体模型,计算出压铸时浇注系统的直浇道、横浇道、内浇道截面积,同时设计3组浇注系统,利用Flow-3D软件对这三种浇注系统进行充型模拟,通过表面缺陷和卷气的对比得出扇形浇注系统为最佳的浇注系统。
     再以浇注温度、模具温度和冲头速度为充型工艺优化参数,利用正交试验方法优化9组工艺参数,采用AZ91D合金,通过Flow-3D软件对9组工艺参数模拟最终得出较优的工艺参数为:浇注温度为720℃、模具温度为210℃、冲头速度为2.3m/s时候能得到更少的卷气含量。选用浇注温度为680℃、模具温度为220℃、压射速度为5.7m/s能得到较少的表面缺陷百分数。最终得出浇注温度为680℃、模具温度为220℃、冲头速度为4.5m/s为最佳工艺参数。
     通过理论计算及数值模拟对镁合金汽车转向管柱支架慢压射过程金属液的充填情况进行分析,确定慢压射的最佳工艺参数:加速度为0.6m/s~2,慢压射速度为0.4m/s是慢压射阶段工艺参数组合。
     为了提高模具寿命,设计了A和B的2组循环水道进行数值模拟。方案B的模具温度和型腔内壁的温度是浇注温度的40%左右,而方案A的温度则要高一些。方案B的模具能量波动范围6.5×10~(12)J~9.1×10~(12)J,要比方案A的能量波动9.4×10~(12)J~6.5×10~(12)J范围小。结果得出方案B较方案A比较会最先达到模具热平衡状态。
     本文通过CAE的方法对压铸镁合金汽车转向管柱支架进行模拟和分析,其结果可为镁合金汽车转向管柱支架的研制提供参考,以达到缩短研发周期,节约研发费用、提高产品质量的目的。
For the reason of Energy saving and emission reduction, many auto parts manufacturer begin to think about the requirement of materials choosing during the lightweight of Automobile design processing. As the lightest metallic engineering materials, magnesium alloy get the intensive interesting in resent years. In this paper, aim at manufacturing the automobile steering pipe column bracket by die casting process, we have done the following work:
     At first, the 3D Solid model of the automobile steering pipe column bracket was build by using a drawing software. The cross-section of sprue, runner and ingate were calculated, according to the calculation results three different gating system of the automobile steering pipe column bracket were designed. The filling process were simulated using Flow-3D software. The better filling system was chosen according to the simulation result by using the surface defect and the volume of gas as a criteria.
     And then orthogonal test method was used to optimize 9 groups of process parameters, which were consisted of pouring temperature, mold temperature and injection velocity. After simulated by using Flow-3D software, the relatively satisfactory results of AZ91D are as follows:pouring temperature with 720℃, mold temperature with 210℃and injection velocity with 2.3m/s can obtain a minimum volume of gas, and pouring temperature with 680℃, mold temperature with 220℃and injection velocity with 5.7m/s can obtain a smaller percentage of surface defects. It is therefore clear that pouring temperature with 680℃, mold temperature with 220℃and injection velocity with 4.5m/s are the optimal process parameters.
     After the theoretical calculation and numerical simulation of the die casting process of manufacturing the automobile steering pipe column bracket, the optimal process parameters of the slow injection process are accelerated speed with 0.6m/s~2 and slow injection speed with 0.4m/s.
     In order to improve mold life, 2 groups of cycle waterways were designed. The mold temperature and cavity wall temperature of group B is 40% of pouring temperature. At the same time, the temperatures of group A are higher. The mold energy fluctuation of group B ranges from 6.5×10~(12)J to 9.1×10~(12)J, which is smaller than that of group A from 9.4×10~(12)J to 6.5×10~(12)J. It turns out to be that group B is more reasonable than group A to reach thermal equilibrium.
     In this paper, the simulation results of manufacturing the automobile steering pipe column bracket by die casting process can achieve the goals of shortening the development cycle, saving the development costs and improving the product quality.
引文
[1] McKenty F, Gravel L, Camarero R. Numerical simulation of industrial boilers. Korean Journal of Chemical Engineering, 1999, 16(4): 482~488.
    [2] David M D. Simulator training in anesthesia growing rapidly: CAE model born at Stanford. Journal of Clinical Monitoring and Computing, 1996, 12(2): 195~198.
    [3] Saman K, Dadvand A, Azdast T, et al. Design and manufacturing of a straight bevel gear in hot precision forging process using finite volume method and CAD/CAE technology. The International Journal of Advanced Manufacturing Technology, 2011, 56: 87~95.
    [4] Lin B T, Kuo C C. Application of an integrated CAD/CAE/CAM system for stamping dies for automobiles. The International Journal of Advanced Manufacturing Technology, 2008, 35: 1000~1013.
    [5] Huo W B, Zhang H Z, Chi R F, et al. Development of an intelligent CAE system for AUTO-BODY concept design. International Journal of Automotive, 2009, 10(2): 175~180.
    [6]杨莉.客车车身结构动力学、声学CAE关键技术:(博士学位论文).南京:东南大学,2005.
    [7]祁超.基于网格的高性能计算平台关键技术及其在CAE中应用研究:(博士学位论文).西安:西安理工大学,2008.
    [8]田荣.中国CAE软件发展的新契机.计算机辅助工程.2011,20(1):142~147.
    [9]班栾天.浅谈汽车CAE技术的应用问题.科技天地.2011,59.
    [10]岳戈.ADINA流体与流固耦合功能的高级应用.北京:人民交通出版社,2010.2~10.
    [11] Hosseini S H, Rahimi R, Zivdar M, et al. CFD simulation of gas-solid bubbling fluidized bed containing FCC particles. Korean Journal of Chemical Engineering, 2009, 26(5): 1405~1413.
    [12] Wang C, Pekkan K, Zelicourt D D, et al. Progress in the CFD modeling of flow instabilities in anatomical total cavopulmonary connections. Annals of Biomedical Engineering, 2007, 35(11): 1840~1856.
    [13] Ahmadvand M, Najafi A F, Shahidinejad S, et al. An experimental study and CFD analysis towards heat transfer and fluid flow characteristics of decaying swirl pipe flow generated by axialvanes. Meccanica, 2010, 45(1): 111~129.
    [14]刘正.镁合金铸造成型最新研究进展.中国最新材料进展,2011,30(2):10~15.
    [15] Kulekci M K. Magnesium and its alloys applications in automotive industry. The International Journal of Advanced Manufacturing Technology, 2008, 39(10): 851~865.
    [16] Das S. Magnesium for automotive applications: primary production cost assessment, Journal of the Minerals Metals and Materals Society, 2003, 55(11): 22~26.
    [17]刘正,贾莹莹,毛萍莉等.镁合金汽车转向柱支架的压铸模拟仿真.特种铸造及有色合金, 2010,30(4):321~323.
    [18]郭剑,龙思远,曹韩学等.压铸镁合金汽车座椅支架的数值模拟.科技资讯,2007(2):15.
    [19]黎天峰,隋大山,崔振山.压铸镁合金方向盘浇注系统的数值模拟.铸造,2006,55(6): 596~600.
    [20] Aghion E. The effect of skin characteristics on the environmental behavior of die cast AZ91 magnesium alloy. Journal of Materials Science, 2009, 44(16): 4279~4285.
    [21] Dahle A K, Lee Y C, Nave M D, et al. Development of the as-cast microstructure in magnesium-aluminum alloys. Journal of Light Metals, 2001, 1(1): 61~72.
    [22] Pekguleryuz M O, Baril E. Creep resistant magnesium die casting alloys based on alkaline earth elements. Materials Transactions, 2001, 7(42): 1258~1267.
    [23] Kuo J L, Sumio S, Hsiang S H, et al. Investigating the characteristics of AZ61 magnesium alloy on the hot and semi-solid compression test. The International Journal of Advanced Manufacturing Technology, 2006, 29(8): 670~677.
    [24] Kasprzak W, Sokowski J H, Yamagata H, et al. Energy efficient heat treatment for linerless hypereutectic AL-Si engine blocks made using vacuum HPDC process. Journal of Materials Engineering and Performance, 2011, 20(1): 120~132.
    [25] Seo P K, Kang C G, Lee S M. A study on reheating characteristics for thixo die casting process with electromagnetic stirring and extruded aluminum alloys and their mechanical properties. The International Journal of Advanced Manufacturing Technology, 2009, 43(6): 482~499.
    [26] Carter J T, Krajewski P E, Verma R. The hot blow forming of AZ31 Mg sheet: Formability assessment and application development. Metals and Materials Society, 2008,60(11): 77~81.
    [27] Urbance R J, Frank F, Kirchain R, et al. Market model simulation: The impact of increased automotive interest in Magnesium. Metals and Materials Society, 2002, 54(8): 25~33.
    [28]张诗昌,魏伯康,林汉同.耐高温压铸镁合金的发展及研究现状.中国稀土学报,2003,21(SI):150~152.
    [29]王小强,李全安,张兴渊.国内耐热铸造镁合金的研究进展.轻金属,2007(6):45~49.
    [30]李玉青,吴殿杰.汽车轻量化以及铝镁铸件的应用.中国制造装备与技术,2005(4):48~50.
    [31]任文亮,李全安,石雅静等.抗蠕变耐热镁合金的发展状况.上海有色金属,2009(3):37~43.
    [32] Zamora R, Faura F, Lopez J, et al. Experimental verification of numerical predictions for the optimum plunger speed in the slow phase of a high-pressure die casting machine. The International Journal of Advaneed Manufacturing Teehnology, 2007, 33(3): 266~276.
    [33] Garber L.W. Filling of the cold chamber during slow-shot travel. Die Casting Engineer, 1981, 25(4): 36~38.
    [34] Garber L.W. Theoretical analysis and experimental observation of air entrapment during cold chamber filling. Die Casting Engineer, 1982, 26(3): 14~22.
    [35]杨杰,袁烺,熊守美.压室压射对铸件充型流场影响的研究.铸造,2007,56(6):622~625.
    [36]潘宪曾.正确选择慢压射速度.铸造技术,2005,26(5):397~400.
    [37] Krimpenis A, Benardos P G, Vosniakos G C, et al. Simulation-based selection of optimum pressure die-casting process parameters using neural nets and genetic algorithms. The International Journal of Advanced Manufacturing Technology, 2005, 27(5): 509~517.
    [38] Montagna F, Bellotti G, Risio M D. 3D numerical modeling of landslide-generated tsunamis around a conical island. Natural Hazards, 2011, 58(1): 591~608.
    [39]毛萍莉,王峰,周乐等.镁合金方向盘骨架应用研究及性能测试.特种铸造及有色合,2009,5(5):420~422.
    [40]毛萍莉,霍成鹏,刘正.皮江法炼镁还原罐温度场模拟.北京,第七届全国环境催化与环境材料学术会议论文集,2011:201~205.
    [41]杨杰,袁烺,熊守美.压室压射对铸件充型流场影响的研究.铸造,2007,56(6):622~625.
    [42]文春领.液态金属在冷室压铸机压室中运动的理论与分析.铸造技术,2006,27(6):558~561.
    [43]雷黎,于彦东,王建荣等.镁合金AZ91D压铸的数值模拟.轻合金加工技术,2006,32(2):13~17.
    [44]吴春苗.压铸技术手册.广东:广东科技出版社,2006.50~85.
    [45]朱伟恒,朱繁康,冼酷元等.4Cr5MoSiV1钢制热挤压模开裂失效分析.热处理,2011,26(1):68~71.
    [46]王家弟,卢晨,丁文江.镁合金压铸件及压铸模设计关键技术.特种铸造及有色合金,2002,3(2):24~26.
    [47]潘宪曾.压铸模设计手册.北京:机械工业出版社,2001.60~105.
    [48] Choi J C, Kwon T H, Park J H, et al. A Study on development of a die design system for die casting.The International Journal of Advaneed Manufacturing Teehnology, 2002(20): 1~8.
    [49]刘正,张奎,曾小勤.镁基轻质合金理论基础及应用.北京:机械工业出版社,2002.41~68.
    [50]夏建生,窦沙沙.镁合金压铸工艺参数的模拟与优化.模具设计.2010,36(4):8~10.
    [51]潘宪曾.压铸模具设计手册(第3版).北京:机械工业出版社,2006.67~112.
    [52]王峰.压铸镁合金组织与力学性能及复杂铸件成形研究:(博士学位论文).沈阳:沈阳工业大学,2010.
    [53] Liu Z, Shen Z Y, Zhao H J, et al. Solidiification temperature field and influence of AZ91HP on die-casting technology and mechanical property. Metall, 2009(9): 510~513.
    [54]刘正,陈力禾,张奎.镁合金及其压铸工艺首期全国压铸技术培训班教材.沈阳:中国机械工程学会铸造学会,2001.
    [55]刘正,王越,王中光等.镁合金压力充型与凝固过程的研究.材料研究学报,1999,13(6):641~644.
    [56]韩雄伟,吴卫.镁合金压铸模具温度场及热应力场数值分析.铸造技术,2009(6):783~785.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700