大型泵站钟形进水流道三维数值模拟与试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
进水流道是大型泵站的一个重要组成部分,其水力特性对水泵性能有着直接的影响。良好的进水条件可以使水泵装置达到良好的运行状态,获得较高的效率。水流流态特别是进水流态直接影响水泵的正常运行。大型轴流泵站,流道相对较短,进水流场不均匀会造成水泵进口流速与压力分布不均匀,极易引起水泵效率下降并产生振动、噪声和空蚀破坏。开展泵站进水流道内流场的研究有助于探求水泵进水流态的变化规律并对复杂几何形状的进水流道优化设计和提高泵站效率及安全可靠性有重要意义。
     本文的研究分为两部分,一部分是钟形进水流道的数值模拟计算,另一部分是同方案下水工物理模型试验。研究选取对工程造价影响明显且争论较大的流道高度(喇叭管悬空高度)作为对象;文中分别设计了多种方案下的水工物理模型和数值模型。通过深入研究,尝试揭开相关因素对流道性能的影响规律。
     本文概述了各种典型的进水流道形式,构建了合理的钟形进水流道三维流动数学模型。采用直接求解三维雷诺平均方程和k-ε湍流模型方程组的方法,对钟形进水流道内流场进行三维数值模拟计算。通过数值模拟计算分析研究钟形进水流道进水流态的影响因素,并在此基础上提出合理的悬空高优化水力设计方案。
     在对钟形进水流道进水流场观测的同时,本文引入两个目标函数-流道出口速度分布均匀度、流速加权平均角度,对数值计算结果进行分析。结果表明钟形进水流道悬空高对水泵叶轮进口断面流态影响较为显著。
     实验测量得到的结果真实可靠,它是理论分析和数值方法的基础和验证手段。受种种条件制约,有时很难进行所需的实验。在数值模拟计算的基础上,本文进行了物理模型试验。试验主要从流态观测与测试两个方面进行,试验结果表明数值模拟计算结果合理、正确。本文将实验测量和数值模拟相结合,以便两者数据相互验证,并从中发现水泵进水流态的变化规律。
     本文中进水流道共做了4个水工模型实验方案和6个数值模拟方案。物理模型试验实测了流道的水力损失和部分流态数据。数值模拟中选用了工程实践中最常见的雷诺时均方程和标准k-ε双方程模拟湍流运动、应用有限体积法离散控制方程、SIMPLEC算法求解方程组的方法,最终得到各种方案的模拟计算结果。
     试验和计算结果表明,钟形进水流道的高度(喇叭管悬空高度)有一合理范围。成果对改进进水流道设计理论和方法,提高运行性能具有重要意义。
Intake conduit is an important part of large pumping station, and the hydraulic characteristic of the pumping station inlet has a direct influence on the efficiency of a pump. The efficiency of the pump station can be uprated in the condition of well flow condition. Large axial-flow pumping stations because which have short conduit easily cause bad flow and lead to the efficiency of the pump unit drop and causes vibration, noise, and cavitation erosion. So, the research on the inlet flow pattern of the intake conduit, which contributes to find the flow regulations, have important mearing to optimize the design of the intake conduit with complex geometry and raise the efficiency, safety and reliability of pumping stations.
     In this paper, the research is divided into two major parts. One is that numerical simulation. The other is the hydraulic model test of the bell-like suction box. The research selects bell-like suction box height (or clearance from floor) as object, because it is influence to the project cost highly and has more disputes. Through the research try to discover the law of relevant factors influence the suction box performance.
     This paper summarize the different kinds of suction boxes and set up the 3D flow mathematic model of the bell-like suction box. A method based on 3D numerical simulation of the turbulence flow to solve Reynolds-averaged equations and the standard k-εturbulent mode is applied to analyse the flow field in the bell-like suction box. Through the numerical simulation, the factors which affects bell-like suction box flow pattern is analysed and researched, in the light of which the geometrical parameters(bell-like suction box height) of the suction box are hydraulically optimized and the reasonable criteria of the hydraulic design for the suction box are given in this paper.
     Besides the observation of the flow field in the bell-like suction box, two objective function is applied to analyse the results of numerical simulation. The results show that the main effect of the flow pattern is the bell-like suction box height.
     The result of measurement is true and reliable. It is basis and verification means of theoretical analysis and numerical simulation. But limited by some conditions, it is very difficult to launch the necessary experiment sometimes. On the foundation of the numerical simulation , this paper make an experimental research on hydraulic model of the bell-like suction box. The experiment is based upon the observation of the flow pattern and the testing of the velocity of flow. The experimental results validate the authenticity of numerical simulation. In this paper, experimental measurements and numerical simulation are combined in order to verified their results and find the flow regulations.
     In this paper, 4 hydraulic model test schemes and 6 numerical simulation schemes are done about the bell-like suction box. The hydraulic friction (loss of head) and some fluid state data are collected in the hydraulic experiment. In the numerical modeling, based on the Reynolds-averaged equations using the standard k-εdouble model the three dimensional turbulent flow in intake conduit is simulated. Application finite volume method discrete control equations and the SIMPLEC algorithm solve system of equations. Finally computation simulation results about the plans are obtained.
     The experiment and the computed results indicate that the bell-like suction box height (or clearance from floor) has a reasonable range. Results mean much to improvement of design theories and methods on suction passage and increasement of operation performance.
引文
[1]钱正英.中国水利历史·现状·展望[M].南京:河海大学出版社,1992.
    [2]储训,陈履.大型泵站建设和更新改造对策[M].南京:河海大学出版社,2000.
    [3]田家山.给排水泵站进水流态紊乱的危害与对策[J].河海大学学报,1988(2):11~19.
    [4]刘超主编. 水泵及水泵站[M].北京:科学技术文献出版社,2003
    [5]刘竹溪主编.水泵及水泵站[M].北京:水利电力出版社,1986.
    [6]田家山主编.水泵及水泵站[M].上海:上海交通大学出版社,1989.
    [7]张景成,张立秋.水泵与水泵站[M].哈尔滨:哈尔滨工业大学出版社,2003.
    [8]栾鸿儒.水泵与水泵站[M].第二版.北京:水利电力出版社,1996.
    [9]陈松山.无锡市北兴塘水利枢纽工程站泵进出水流道设计分析[R].扬州:扬州大学,2006.
    [10]日本农业土木专业协会编.泵站工程技术手册[M].北京:中国农业出版社,1997.
    [11]陆林广,刘成云,陈玉明.泵站进水流道的两种基本流态[J].水泵技术,1997,(4):25-28.
    [12]刘超等.泵站开敞式进水池三维紊流数值模拟[J].农业机械学报,2002.11: 53-55.
    [13]张海波等.应用技术测量封闭式水泵吸水池内部流场[J].水泵技术,2001.6: 7-10.
    [14]汤方平等.进水池流态对泵进口流场的影响[J].排灌机械,2004.5: 12-14.
    [15]刘超主编.排灌机械[M].南京:河海大学出版社,2000.
    [16]陆林广,张仁田编著.泵站进水流道优化水力设计[M].北京:中国水利水电出版社,1997.
    [17]陆林广.泵站进水流道设计理论的新进展[J].河海大学学报,2001,29(1):40-45.
    [18]陆林广等.开敞式进水池优化水力计算[J].水利学报,1997.3: 16-25.
    [19]周正富,陈松山,葛强等.大型泵站钟形进水流道三维紊流数值模拟[J].中国农村水利水电,2006,(4).
    [20]皮积瑞,丘传忻,余碧辉.大型立式轴流泵站进出水流道形式的实验研究[J].水泵技术,1982,(3):1-7.
    [21]皮积瑞,丘传忻.大型泵站进出水流道形式的研究之二[J].水泵技术,1983,(1):8-13.
    [22]皮积瑞,丘传忻.大型泵站进出水流道形式的研究之三[J].水泵技术,1983,(3):15-19.
    [23]陈松山,葛强,周正富,等.大型泵站双向进水流道三维紊流数值模拟[J].江苏大学学报(自然科学版),2005,26(2):102-105.
    [24]成立,刘超,周济人,等.大型立式泵站双向进水流道三维紊流数值模拟[J].农业机械学报,2004,35(3):61-64.
    [25]陆林广,汤方平.钟形进水流道的优化水力计算[J].江苏农学院学报,1997,(4):83-87.
    [26]徐辉等. 泵站有压前池流态改善措施的研究[J]. 排灌机械 , 2003,21(4):13-16 .
    [27]李小明等. 水泵吸水池流场 PIV 分析[J]. 农业机械学报, 2002,11:48-50 .
    [28]李大亮. 开敞式进水池内部流动的 3D-PIV 实验研究. [D] 扬州大学.2004 .
    [29]仇宝云,徐云年.数字压差仪与五孔测球配合测定空间流场[J].水泵技术,1992,(1):38-39.
    [30]仇宝云等.探针测定水流场的水动力学问题[J].流体力学实验与测量,2000,14(4):58-64.
    [31]仇宝云,刘超.探针杆挠曲对水流场测量的影响研究[J].水利学报,1999,(11):7-11.
    [32]仇宝云等.探针杆挠曲水流场测量误差修正方法及其收敛性[J].水动力学研究与进展,2003,18(1):47-51.
    [33]仇宝云等.探针系统反应特性与参数选择研究[J].仪器仪表学报,2001,22(6):640-643.
    [34]仇宝云等.探针测定大型水泵流量研究[J].农业机械学报,2004,35(4):66-69.
    [35]仇宝云等.五孔测球在水泵流场测试中的应用[J].排灌机械,1992,10(1):23-27.
    [36]仇宝云.大中型水泵装置理论与关键技术[M].北京:中国水利水电出版社,2005.
    [1]是勋刚主编. 湍流[M].天津:天津大学出版社,1994
    [2] J.O.Hinze. Turbulence[M]. New York: McGraw-Hill,1975.
    [3]窦国仁编. 紊流力学[M].北京:人民教育出版社,1982
    [4]张兆顺著. 湍流[M].北京:国防工业出版社,2002
    [5]林建忠等编著. 流体力学[M].北京:清华大学出版社,2005
    [6]陈玉璞等编著. 流体动力学[M].南京:河海大学出版社,1990
    [7]周雪漪编. 计算流体力学[M].北京:清华大学出版社,1995
    [8]陈汉平主编. 计算流体力学[M].北京:水利水电出版社,1995
    [9]苏铭德,黄素逸编著. 计算流体力学基础[M].北京:清华大学出版社,
    [10]郑邦民,赵昕编著. 计算水动力学[M].武汉:武汉大学出版社,2001
    [11]倪浩清,沈永明编著. 工程湍流流动、传热及传质的数值模拟[M].北京:中国水利水电出版社,1996
    [12]P.Bradshaw, T.Cebeci, J.H.Whitelaw. Engineering Calculation Methods for Turbulent Flow[M]. London: Academic Press,1981.
    [13]王福军主编. 计算流体动力学分析-CFD 软件原理与应用[M].北京:清华大学出版社,2004
    [14]陶文铨主编. 数值传热学[M].西安:西安交通大学出版社,2001
    [15]P.Bradshaw, T.Cebeci, J.H.Whitelaw. Engineering Calculation Methods for Turbulent Flow[M]. London: Academic Press,1981.
    [16]金忠青主编. N-S 方程的数值解和紊流模型[M].南京:河海大学出版社,2000
    [17]陈景仁著. 湍流模型及有限分析法[M].上海:上海交通大学出版社,1989
    [18]郭鸿志.传输过程数值模拟[M].北京:冶金工业出版社,1998.
    [19]周晓泉.复杂边界条件下的三维紊流数值模拟研究[D].成都:四川大学,2003
    [20] V.Michelassi, J.G.Wissink, J.Frohlich, et al. Large-eddy simulation of flow around low-pressure turbine blade with incoming wakes[J]. AIAA Journal,2003,41 (11): 2143-2156.
    [21] M.Tutar, G.Oguz. Large eddy simulation of wind flow around parallel buildings ith varying configurations[J]. Fluid Dynamics Research,2002,31(5-6):289-315.
    [22] Marzio Piller, Enrico Nobile, J.Thomas. DNS study of turbulent transport at low Prandtl numbers in a channel flow[J]. Journal of Fluid Mechanics,2002,(458): 419-441.
    [23]许春晓.槽道湍流的直接数值模拟[D].北京:清华大学,1995
    [24]傅德薰,马延文.平面混合流拟序结构的直接数值模拟[J].中国科学(A 辑),1996,26(7):657-664.
    [25] J.G.Wissink. DNS of separating low Reynolds number flow in a turbine cascade with incoming wakes[J]. Inter.J.Heat Fluid Flow,2003,24(4): 626-635.
    [26]V.Michelassi, J.G.Wissink, W.Rodi. Direct numerical simulation, large eddy simulation and unsteady Reynolds-averaged Navier-Stokes simulations of periodic unsteady flow in a low-pressure turbine cascade: A comparison[J]. Journal of Power and Energy,2003,217(4):403-412.
    [27]吴立新,是勋刚,受周向扰动的涡环的直接数值模拟[J].空气动力学学报,1997,15(1):27-33.
    [28]邓岗,许春晓,弯槽湍流的直接数值模拟[J].水动力学研究与进展(A 辑),2002,17(3):311-317.
    [29]王明皓,符松,章光华,竖直平板间湍流自然对流中的螺旋羽流结构[J].科学通报,2002,47(3):173-177.
    [30]H.K.Versteeg, W. Malalasekera. An Introduction to Computational Fluid Dynamics: The Finite Volume Method[M]. New York: Wiley,1995.
    [31]伍敏伟,张兆顺.圆管湍流结构的数值研究[J].水动力学研究与进展(A 辑),2002,17(3):334-342.
    [32]姚军,樊建人,岑可法.圆柱近尾迹湍流涡结构的直接数值模拟[J].工程热物理学报,2002,23(5):561-564.
    [33] M.B.Abbott, D.R.Basco. Computational Fluid Dynamics - An Introduction for Engineers[M]. Harlow, England: Longman Scientific & Technical,1989.
    [34]苏铭德.弯曲槽道内湍流运动的大涡模拟[J].力学学报,1989,21(5):513-52l.
    [35]苏铭德.吴庆生,平直槽道内湍流运动的大涡模拟[J].空气动力学学报,1990, 8(3):264-271.
    [36]苏铭德.子格(SGS)模型在内流湍流中的大涡模拟[J].水动力学研究与进展(A辑),1994,9(6):680-688.
    [37]Smagorinsky J. General Circulation Experiments with the Primitive Equations: Part 1, the Basic Experiment[J]. Monthly Weather Review,1963,91(3):99-164.
    [38]Deardorff J.W. A Numerical Study of Three-dimensional Turbulent Channel Flow at Large Reynolds Numbers[J]. J.Fluid Mech.,1970,41(2):453-480.
    [39]Moin P. et al. Numerical Investigation of Turbulent Channel Flow[J]. J.Fluid Mech.,1982,118:341-377.
    [40]苑明顺.高雷诺数圆柱绕流的二维大涡模拟[J].水动力学研究与进展(A 辑),1992,7(Sup.):614-422.
    [41]何子干,倪汉根.大涡模拟法的二维形式[J].水动力学研究与进展(A 辑),1994,9(1):30-36.
    [42]Charles C.S.Song. A Weakly Compressible Flow Model & Rapid Convergence Methods[J]. Journal of Fluid Engineering,1988,(110):441-445.
    [43] A.A.Feiz, M.Ould-Rouis, G.Lauriat. Large eddy simulation of turbulent flow in a rotating pipe[J]. Inter.J.Heat Fluid Flow,2003,24(3):412-420.
    [44]郭照立,郑楚光,柳朝晖.基于Lattice Boltzmann方法的圆柱绕流大涡模拟[J].工程热物理学报,2002,23(4):479-481.
    [45]Mary Ivan, Sagaut Pierre. Large eddy simulation of flow around an airfoil near stall[J]. AIAA Journal,2002,40(6):1139-1145.
    [46]D.G.E.Grigoriadis, J.G.Bartzis, A.Goulas. Efficient treatment of complex geometries for large eddy simulations of turbulent flows[J]. Computers and Fluids, 2004, 3(2):201-222. [47L.Shen, D.K.P.Yue. Large-eddy simulation of free-surface turbulence[J]. Journal of Fluid Mechanics,2001,n 440:75-116.
    [48]R.E.Julian, K.Smolarkiewicz. Eddy resolving simulations of turbulent solar convection[J]. International Journal for Numerical Methods in Fluids,2002,39(9): 855-864.
    [49] J.C.Li. Large eddy simulation of complex turbulent flows: Physical aspects and research trends[J]. Acta Mechanica Sinica,2001,17(4):289-301.
    [50]李筱芳.混流式水轮机内部流动的计算[J].水利水电技术,1996,27(12):22-25.
    [51]张昌兵,杨永全.混流式转轮中流场的大涡模拟[J].水科学进展,2002,13(6):675-68l.
    [52]曲景学,杨永全,等.消能孔板空化特性的数值模拟[J].四川大学学报(工程科学版),2001,33(3):30-33.
    [53]杨建明,吴玉林,曹树良.流体机械中高雷诺数流动的大涡模拟[J].工程热物理学报,1998,19(2):184-188.
    [54]P.Rollet-Miet, D.Laurence, J.Ferziger. LES and RANS of turbulent flow in tube bundles[J]. Inter.J.Heat Fluid Flow,1999,20(3):241-254.
    [55]Shyy, V.Thakur, S.S. et al. Computational Techniques for Complex Transport Phenomena[M]. Cambridge: Cambridge University Press, 1997.
    [56]Rodi W. A New Algebraic Relations for Calculating Reynolds Stresses[J]. Z Angew Math Mech.,1976,56:219-221.
    [57]蒋莉,王少平.应用 RNG k-ε 湍流模式数值模拟 90°弯曲槽道内的湍流流动[J].水动力学研究与进展(A 辑),1998,13(1):8-13.
    [58]王少平,史峰,等.用 RNG k-ε 模式数值模拟 180°弯道内的湍流分离流动[J].力学学报 1996,28(3):257-263.
    [59]成立,刘超,周济人,等.基于 RNG 湍流模型的双向泵站出水流道流动计算[J].水科学进展,2004,15(1):109-112.
    [1]林建忠等编著. 流体力学[M].北京:清华大学出版社,2005
    [2]陈玉璞等编著. 流体动力学[M].南京:河海大学出版社,1990
    [3]周雪漪编. 计算流体力学[M].北京:清华大学出版社,1995
    [4]陈汉平主编. 计算流体力学[M].北京:水利水电出版社,1995
    [5]是勋刚主编. 湍流[M].天津:天津大学出版社,1994
    [6]J.O.Hinze. Turbulence[M]. New York: McGraw-Hill,1975.
    [7]窦国仁编. 紊流力学[M].北京:人民教育出版社,1982
    [8]张兆顺著. 湍流[M].北京:国防工业出版社,2002
    [9]苏铭德,黄素逸编著. 计算流体力学基础[M].北京:清华大学出版社,
    [10]郑邦民,赵昕编著. 计算水动力学[M].武汉:武汉大学出版社,2001
    [11]倪浩清,沈永明编著. 工程湍流流动、传热及传质的数值模拟[M].北京:中国水利水电出版社,1996
    [12]P.Bradshaw, T.Cebeci, J.H.Whitelaw. Engineering Calculation Methods for Turbulent Flow[M]. London: Academic Press,1981.
    [13]王福军主编. 计算流体动力学分析-CFD 软件原理与应用[M].北京:清华大学出版社,2004
    [14]陶文铨主编. 数值传热学[M].西安:西安交通大学出版社,2001
    [15]刘顺隆,郑洪涛,孙海鸥.正交贴体坐标网格的生成[J] .哈尔滨工程大学学报,1997,18(3):42-46.
    [16]陈池,袁寿其,郑铭.离心泵叶轮三维贴体网格生成[J] .农业机械学报,2000,31(4):50-53.
    [17]陈景仁著. 湍流模型及有限分析法[M].上海:上海交通大学出版社,1989
    [18]朱自强等编著. 应用计算流体力学[M].北京:北京航空航天大学出版社,1999
    [19]Matahel A. , Tatsuaki N.& George C.,Numerical simulation of invisicid three-dimensinal flows at single-and dual-pump intake,Journal of Hydraulie Research,2000,40(4):461~470
    [20]陈松山,屈磊飞,葛强等.泵站枢纽三维湍流数值模拟研究[J].扬州大学学报.2005,5
    [21]陈松山,周正富,屈磊飞,等.泵站箱涵式出水流道三维湍流数值分析[J].江苏大学学报(自然科学版),2005,26(6):468-471
    [22]韩占忠,王敬,兰小平.Fluent 流体工程仿真计算实例与应用[M].北京:北京理工大学出版社,2004.
    [23]屈磊飞,王林锁,陈松山等.双向配水船坞水泵房进水廊道三维流动数值模拟[J].扬州大学学报.2005,8
    [24]屈磊飞,王林锁,陈松山等.闸站枢纽进水前池三维流动计算与研究[J].排灌机械.2005,8
    [25]屈磊飞,王林锁,陈松山等.闸站合建枢纽泵站进水三维流动计算与研究[J].水利与建筑工程学报.2006,3
    [26]袁新明,陈华,王丽艳.低弗氏数对冲式消力池紊流水流的数值模拟[J].扬州大学学报.2004,7(2):69~73
    [27] Constantinescu,G.S.&Patel,V.C.Role of turbulence model in prediction of pump bay vortices, ASCE Journal of Hydraulic Engineering, 2000,126(5):387~391
    [28]陆林广,张仁田.泵站进水流道优化水力设计[M] .北京:中国水利水电出版社,1997.
    [29]J.P.Van Doormal, G.G.Raithby. Enhancement of the SIMPLE method for predicting incompressible fluid flows[J]. Numerical Heat Transfer,1984,7:147-163.
    [30]S.V.Patankar. Numerical Heat Transfer and Fluid Flow[M]. Washington: Hemisphere, 1980.
    [31]R.I.Issa. Solution of the implicitly discredited fluid flow equations by operator-splitting[J]. J.Comput.Phys.,1986,62:40-65.
    [32]H.K.Versteeg, W. Malalasekera. An Introduction to Computational Fluid Dynamics: The Finite Volume Method[M]. New York: Wiley,1995.
    [33]赵玉新.FLUENT 教程[CP-OL].
    [34]Jerryzhq.FLUENT 简明教程[CP-OL].2005.
    [35]Fluent Inc. FLUENT User's Guide[CP-CD]. Fluent Inc., 2003.
    [36]Fluent Inc. FLUENT Tutorial Guide[CP-CD]. Fluent Inc., 2003.
    [37]Fluent Inc. FLUENT User Defined Function Manual[CP-CD]. Fluent Inc., 2003.
    [38]Fluent Inc. GAMBIT Modeling Guide[CP-CD]. Fluent Inc., 2003.
    [1]刘超主编. 水泵及水泵站[M].北京:科学技术文献出版社,2003
    [2]刘竹溪主编.水泵及水泵站[M].北京:水利电力出版社,1986.
    [3]田家山主编.水泵及水泵站[M].上海:上海交通大学出版社,1989.
    [4]张景成,张立秋.水泵与水泵站[M].哈尔滨:哈尔滨工业大学出版社,2003.
    [5]栾鸿儒.水泵与水泵站[M].第二版.北京:水利电力出版社,1996.
    [6]陆林广,张仁田.泵站进水流道优化水力设计[M] .北京:中国水利水电出版社,1997.
    [7]陆林广,汤方平.钟形进水流道的优化水力计算[J].江苏农学院学报,1997,18(4):83-87.
    [8]陆林广.泵站进水流道设计理论的新进展[J].河海大学学报,2001,29(1):40-45.
    [9]陈松山.无锡市北兴塘水利枢纽工程站泵进出水流道设计分析[R].扬州:扬州大学,2006.
    [10]日本农业土木专业协会编.泵站工程技术手册[M].北京:中国农业出版社,1997.
    [11]汤方平等.进水池流态对泵进口流场的影响[J].排灌机械,2004.5: 12-14.
    [12]严登丰.泵站工程[M].北京:中国水利电力出版社,2005.
    [13]赵玉新.FLUENT 教程[CP-OL].
    [14]Jerryzhq.FLUENT 简明教程[CP-OL].2005.
    [15]Fluent Inc. FLUENT User's Guide[CP-CD]. Fluent Inc., 2003.
    [16]Fluent Inc. FLUENT Tutorial Guide[CP-CD]. Fluent Inc., 2003.
    [17]Fluent Inc. FLUENT User Defined Function Manual[CP-CD]. Fluent Inc., 2003.
    [18]Fluent Inc. GAMBIT Modeling Guide[CP-CD]. Fluent Inc., 2003.
    [19]袁新明,陈华,王丽艳.低弗氏数对冲式消力池紊流水流的数值模拟[J].扬州大学学报.2004,7(2):69~73
    [20]Constantinescu,G.S.&Patel,V.C.Role of turbulence model in prediction of pump bay vortices, ASCE Journal of Hydraulic Engineering, 2000,126(5):387~391
    [21]Jian Ye,McCorqodale J A.Simulation of curved open channel flows by 3D hydrodynamic model . Journal of Hydraulic Engineering, ASCE, 1998, 124(7) : 687~698
    [22]王志东.VOF 方法中自由液面重构的方法研究[J].水动力学研究与进展,2003(1):51-56.
    [23]Hossain MS. Mathematical Modeling of Turbulent Buoyancy Flows. ph. D. Thesis. University of Karlsrube,1980
    [24]Shankar N J.Chan E S.Zhang Q Y. Three-dimension Simulation for an open channel flow with a constrivtion [J].Journal of Hydraulic Research, 2001, 39(2):187~201
    [25]吴持恭.水力学[M].第二版.北京:高等教育出版社,1982
    [26]陆林广,周济人.泵站进水流道三维紊流数值模拟及水力优化设计[J].水利学报,1995.12(12): 67-75.
    [27]陆林广等.开敞式进水池优化水力计算[J].水利学报,1997.3: 16-25.
    [28]张仁田.双向泵站进水流道优化水力设计与试验研究[J].农业机械学报,2003,34(6):73-76.
    [29]陆林广,曹志高,周济人等.轴流泵喇叭管的优化水力设计.排灌机械,1998,(1):7-11.
    [30]陈松山,葛强,杨国平,等箱涵式进水泵站喇叭管悬空高度的试验研究扬州大学学报(自然科学版),2004,7(3):59-62.
    [31]周正富,陈松山,葛强等.大型泵站钟形进水流道三维紊流数值模拟[J].中国农村水利水电,2006,(4)
    [1]陆林广,周济人.泵站进水流道三维紊流数值模拟及水力优化设计[J].水利学报,1995.12(12): 67-75.
    [2]陆林广等.开敞式进水池优化水力计算[J].水利学报,1997.3: 16-25.
    [3]张仁田.双向泵站进水流道优化水力设计与试验研究[J].农业机械学报,2003,34(6):73-76.
    [4]周正富,陈松山,葛强等.大型泵站钟形进水流道三维紊流数值模拟[J].中国农村水利水电,2006,(4)
    [5]左东启.模型试验的理论和方法[M].北京:水利电力出版社,1984.
    [6]Adler D,Levy Y.A laser-doppler investigation of the flow inside a backswept closed centrifugal impeller[J].Trans.ASME,Journal of Mechanical Engineering Science,1979,21(1):1~6
    [7]Howard J H G,Abramian M,Herman P.Experimental investigation of impeller and volute flow fields for a low specific speed pump with single and double volutes[C].Proceedings of the 1987 ASME-JSME Thermal Engineering Joint Conference,Honolulu,HI,USA,1987,v2:51~61
    [8]Howard J H G,Tropea C,Almahroos H M H,etc.LDA-Measurements of the velocity field within and ahead of an axial pump inducer at off-design flow rate[C] . Proceedings of the 987 ASME-JSME Thermal Engineering Joint Conference,Honolulu,HI,USA,1987,v2:63~69
    [9]Hamkims C P,Flack R D.Laser velocimetry measurements in shrouded and unshrouded radial flow impeller[J].Journal of Turbomachinery,Transactions ofASME,1987,109:70~78
    [10]Flack R D,Hamkinst C P,Brady D R.Laser velocimeter turbulence measurements in shrouded and unshrouded radial flow pump impellers[J].Int.J.Heat and Fluid Flow,1987,8(1):16~25
    [11]李大亮. 开敞式进水池内部流动的 3D-PIV 实验研究. [D] 扬州大学.2004 .
    [12]仇宝云,徐云年.数字压差仪与五孔测球配合测定空间流场[J].水泵技术,1992,(1):38-39.
    [13]仇宝云等.探针测定水流场的水动力学问题[J].流体力学实验与测量,2000,14(4):58-64.
    [14]仇宝云等.探针测定大型水泵流量研究[J].农业机械学报,2004,35(4):66-69.
    [15]仇宝云等.五孔测球在水泵流场测试中的应用[J].排灌机械,1992,10(1):23-27.
    [16]仇宝云等.探针系统反应特性与参数选择研究[J].仪器仪表学报,2001,22(6):640-643.
    [17]仇宝云,刘超.探针杆挠曲对水流场测量的影响研究[J].水利学报,1999,(11):7-11.
    [18]仇宝云等.探针杆挠曲水流场测量误差修正方法及其收敛性[J].水动力学研究与进展,2003,18(1):47-51.
    [19]仇宝云.大中型水泵装置理论与关键技术[M].北京:中国水利水电出版社,2005.
    [20]仇宝云等.大型立式轴流泵叶片进口流场及其对水泵影响研究[J].机械工程学报,2005,41(4):28-34
    [21]成立,刘超,汤方平,等.五孔球型探针在泵站现场测流中的应用[J].中国农村水利水电,2002,(10):60-61.
    [22]严登丰.泵站过流设施与截流闭锁装置[M].北京:中国水利水电出版社,2000.
    [23]严登丰.泵站工程[M].北京:中国水利电力出版社,2005.
    [24]陆林广,张仁田.泵站进水流道优化水力设计[M] .北京:中国水利水电出版社,1997.
    [25]陆林广,汤方平.钟形进水流道的优化水力计算[J].江苏农学院学报,1997,18(4):83-87.
    [26]陆林广.泵站进水流道设计理论的新进展[J].河海大学学报,2001,29(1):40-45.
    [27]陈莱洲.坡头电排站大型轴流泵钟形进水流道的设计与运行[J].水利水电技术,1991,(7):49-54
    [28]丘传忻,皮积瑞,余碧辉.大型立式泵钟形进水流道的设计与研究[J].武汉水利电力学院学报,1983,(2):9-17
    [29]蒋丽君.泵装置优化设计研究[D].扬州:扬州大学,2004.
    [30]陆林广,冷豫,吴开平,等.泵站进水流道内部流态模型试验方法研究[J].排灌机械,2005,23(3):17-19.
    [31]陈松山,葛强,周正富,等.大型泵站双向进水流道三维紊流数值模拟[J] .江苏大学学报(自然科学版),2005,26(2):102-105.
    [32]陆林广,曹志高,周济人,等.轴流泵喇叭管的优化水力设计.排灌机械,1998,(1):7-11.
    [33]陈松山,葛强,杨国平等箱涵式进水泵站喇叭管悬空高度的试验研究扬州大学学报(自然科学版),2004,7(3):59-62.
    [34]朱劲木,何忠人,刘德祥,等.双向进出水流道模型试验研究[J].水泵技术,2005,(2):18-21.
    [35]陆林广,刘成云,陈玉明.进水流道对轴流泵装置水力性能的影响[J].水泵技术,1997,(3):25-26
    [36]何耘,张红亚.大中型泵站水泵吸水形式的选择[J].安徽建筑工业学院学报(自然科学版),1999,7(3):55-58

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700