越坝气流的物理模拟和数值模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
泄洪消能及伴随着的泄洪雾化问题是保证高水头电站安全运行的重要问题。泄洪所形成的雾化降雨对电站厂房、电器设备、交通公路及水利工程附近居民生活等都有很大的影响。而雾流扩散的主要影响因素是越坝气流(包括水舌风)运动特性,雾化影响最严重的区域发生在坝后分离漩涡区。因此,研究越坝气流运动发展形态,准确预测坝后绕流分离漩涡区的范围,对水电站的安全运行有重要意义。
     本文是基于国家自然科学基金资助重点项目《雅砻江水电开发联合研究》(50539060)中的雾流降雨范围部分的研究。本文主要内容为:首先对越坝气流、雾化降雨、后台阶流的相关情况及基础理论做了简单介绍,然后讲述了物理模型试验和数值模拟研究过程及得到的结论:物理模型试验在环境风洞中进行,以1999年水科院对二滩水电站进行原型观测数据为依据制作模型,试验所得表孔和中孔全开模型回流区纵向长度分别在6.53~7.6和5.87~6.8倍坝高度之间,可见泄流方式对越坝气流有一定影响;雾流降雨范围试验与原型观测结果基本相似,初步表明通过采用人工生成水雾形成雾源,在风洞中进行雾流降雨范围和越坝气流的模拟是可行的;数值模拟基于FLUENT流体工程软件进行,采用与物理试验相同的几何模型及工况,使用Realizableк-ε湍流模型对越坝气流进行了数值模拟,数值模拟结果较物理模拟结果略偏大,总的来说两种模拟结果符合较好,表明用该方法研究越坝气流运动是基本可行的。并使用该湍流模型对不同范围Re下的越坝气流进行研究,分析坝后回流区的纵向长度、涡心位置随Re数的变化以及水舌存在对越坝气流回流区的影响。此外,鉴于越坝气流运动发展形式同后阶流运动发展形式的某些相似之处,本文对越坝气流和后阶流进行了对比和分析。
In the modern hydraulic engineering construction, baffle of the rapid flood and the atomization following it is the most important problem in a high-head power station and ensure it safety in operation. The atomized rain formed by rapid flood has a big impact on the power station. The principal factor influence the diffusion of atomized-flow is the over-dam-flow, and the serious zone of the atomized rain is in the vortex zone behind the dam, so, it is significant to study the motion of over-dam-flow and accurately predict the vortex zone.
     This paper bases on nationality naturalness science fund item, research of area of the atomized rain. the fund number is 50539060. The primary coverage of this paper is: firstly, gave a brief descriptive on the over-dam-flow、atomized rain、backward-facing step and relating basic theory in the paper, then introduced the research procedure of the physical test and results: The physical test has done in wind tunnel, the test model was made based on dates of the prototype measurements of er-tan hydropower station, and the prototype measurement has done by the Institute of Hydraulic and Hydroelectrically of China in 1999. The test results indicate that the height hole model’s and the middle hole model’s regurgitation zone length is 6.53~7.6 and 5.87~6.8 fold of the dam height respectively, it seems that the draw mode has a impact on the over-dam-flow. This preliminarily indicates that it is feasible to study the atomized rain and over-dam-flow in wind tunnel; Numerical simulation was done based on FLUENT, use Realizableк-εturbulent model simulated the over-dam-flow in the same geometry model and work conditions as the physical test. The simulation results prove that also the result a few bigger then the physical test, the numerical result is consistent with the test, and the numerical simulation is feasible in model the over-dam-flow. At last, we studied the flow in different Reynolds number under the same numerical method, analyzed the variations of the regurgitation length and the vortex center based on the variation of the Reynolds number. At the same time, as the over-dam-flow is similar to the backward-facing step flow in some case, we also give a comparison on the two flows in this paper.
引文
[1] 刘士和.高速水流[M].北京:科学出版社,2005.7:158~172
    [2] 梁在潮.雾化水流理论[M].中国水利水电工程技术进展,北京:海洋出版社,1999
    [3] 李奇伟.库区雾化运动规律研究[D].武汉:武汉水利电力学院,1985.6:18~27
    [4] 大气科学.自然科学学科发展战略调研报告[R]. 北京:科学出版社,1994.3
    [5] 梁在潮等.坝下游雾化问题的研究[R]. 武汉:武汉水利电力学院,1985
    [6] 武汉水利电力学院雾化课题调查报告[R].1985.11
    [7] 梁在潮.雾化水流理论[A].中国水利水电工程技术进展[C].北京:海洋出版社,1999
    [8] Liu Shihe.Liang Zaichao.Hu Minliang, Simulation of the atomized flow in hydroelectric engineering[J].XXIXIAHR Congress Proceedings, Theme D,2001. II: 734~739
    [9] 刘士和,梁在潮.水利枢纽中雾化流的模拟与防范[J].武汉大学学报(工学版),2001,34(3): 1~4
    [10] Liu Shihe.Study of the atomized flow in hydraulic engineering[J].Hydrodynamics,1999:77~ 83
    [11] 刘之平,高季章等.二滩水电站高双曲拱坝水力学及流激振动原型观测研究总报告[R].北京:中国水利水电科学研究院,2000.5
    [12] 孙双科,刘之平.泄洪雾化降雨的纵向边界估算[J],水力学报,2003.12:53~58
    [13] T.J.Muellen. A study of the mean motion and turbulent downstream of a roughness element. Development in theoretical and applied Mechanics [J].1 963,1(1):27-30
    [14] 叶文虎,张霭琛.环境空气动力学[M].北京大学环境科学中心,1983.9
    [15] 孙天凤,林荣生.工业空气动力学的研究和应用[J].北京大学力学系,1982.5
    [16] 王兵,张会强,王希麟,郭印诚等.后台阶分离流动中大涡结构演变的数值模拟[J].力学季刊,2003.6:166~173
    [17] 齐鄂荣、黄明海、李炜等.二维后向台阶流流动特性的实验研究[J].实验力学,2006.4:194~198
    [18] B.F. Armaly, F. Durst, J.C.F. Pereira, B. Schonung. Experimental and theoretical investigation of backward-facing step flow[J].J. Fluid Mech. 1983,127: 473–496
    [19] T. Kondoh,Y. Nagano,T. Tsuji, Computational study of laminar heat-transfer downstream of backward-facing step[J].Int. J. Heat Mass Transfer 1993,36 (3) :577–591
    [20] J.H. Nie, B.F. Armaly, Reverse .flow regions in three-dimensional backward-facing step flow[J].Int. J. Heat Mass Transfer 2004,47 (22): 4713–4720
    [21] J.H. Nie,B.F. Armaly,Three-dimensional convective flow adjacent to backward-facing stepeffects of step height[J].Int. J. Heat Mass Transfer 2002,45 (12) :2431–2438
    [22] S. Thangam, D.D. Knight.Effect of step height on the separated flow past a backward facing step [J]. Phys.Fluids—A 1989,1 (3): 604–606
    [23] H. Iwai, K. Nakabe,K. Suzuki, Flow and heat transfer characteristics of backward-facing step laminar flow in a rectangular duct[J].Int. J. Heat Mass Transfer 2000,43 (3) :457–471
    [24] E.W. Adams,J.P. Johnston,J.K. Eaton.Experiments on the structure of turbulent reattaching flow [R].Technical Report MD-43, Thermo sciences Division,Department of Mechanical Engineering, Stanford University,1984
    [25] Armaly B F,Durst F.Experimental and theoretical investigation of backward-facing step flow[J].J Fluid Mech 1983,127:473-496
    [26] Eaton J K, Johnston .Turbulent flow reattachment: an experimental study of the flow and structure behind a backward-facing step [R].Standford Univ Rept, 1980
    [27] Makoto O,Toshifumi I.Numerical simulation without turbulence model for backward-facing step flow[J].JSME International Journal Series B,1993,36:577-583
    [28] 齐鄂荣,黄明海,李炜等.应用 PIV 进行二维后向台阶流流动特性的研究(1)二维后向台阶流的旋涡结构的研究[J].水动力学研究与进展,2004.7:525~532
    [29] K.F. Yu, K.S. Lau, C.K. Chan,Large eddy simulation of particle-laden turbulent flow over a backward-facing step [J].Communications in Nonlinear Science and Numerical Simulation 2004 (9):251~262
    [30] K.F. Yu, K.S. Lau,C.K. Chan , Numerical simulation of gas-particle flow in a single-side backward-facing step flow[J].Journal of Computational and Applied Mathematics 2004,163:319~331
    [31] A. Dejoan, M.A. Leschziner. Large eddy simulation of periodically perturbed separated flow over a backward-facing step[J].International Journal of Heat and Fluid Flow 2004 (25) : 581~ 592
    [32] Zhi Shang, CFD of turbulent transport of particles behind a backward-facing step using a new model—к~ε~Sp[J].Applied Mathematical Modeling 2005 (29): 885~901
    [33] X.-D. Yang, H.-Y. Ma, Y.-N. Huang,Prediction of homogeneous shear flow and a backwa rd- facing step flow with some linear and non-linear к~ε turbulence models[J]. Communicatio- ns in Nonlinear Science and Numerical Simulation 2005 (10) :315~328
    [34] Y. Addad, D. Laurence, C. Talotte, M.C. Jacob, Large eddy simulation of a forward–back ward facing step for acoustic source identification [J].International Journal of Heat and Fluid Flow 2003 (24):562~571
    [35] Ugo Piomelli. Large-eddy simulation of transitional channel flow[J].Computer Physics Communications,1991,65:224-230
    [36] Orellano A, Wengle H.Numerical simulation (DNS and LES) of manipulated turbulent boundary layer flow over a surface-mounted fence. [J].Eur J Mech B-Fluids,2000, 19:765-788
    [37] Y. Addad, D. Laurence, C. Talotte,M.C. Jacob, Large eddy simulation ofa forward - backward facing step for acoustic source identification [J]. International Journal of Heat and Fluid Flow 2003,24:562~571
    [38] 戴有为.二维回流湍流的数值模拟[J].华东工程学院学报,1984.2:1~8
    [39] 刘社文,陈义良.用一种非线性 k~ε 模型计算突扩台阶后的流动[J].推进技术,1991.6:10~18
    [40] 王晋军,连淇祥.后向台阶层流边界层分离实验研究[J].北京航空航天大学学报, 1993:52~56
    [41] 连淇祥.后向台阶湍流拟序结构的实验研究[J].力学学报,1993.3:129~136
    [42] 王晋军,连淇祥,兰世隆.后向台阶层流分离湍流结构的实验研究[J].航 空 学 报,1996.3:149~154
    [43] 张晓元,李炜.用混合有限分析法模拟二维后台阶分离流[J].武汉水利电力大学学报,1995.5:470~474
    [44] 李红庆,陈矛章,陆利蓬.可压缩后台阶流的数值模拟[J].航空学报,1997.7:462~465
    [45] 高殿荣,李久彤,赵世春.进出流边界条件对二维后台阶流动影响的研究[J].燕山大学学报,1999.1:35~39
    [46] 黄明恪.后台阶流中自由旋涡的稳定性[J].流体力学实验与测量,1999.9:21~24
    [47] 王兵,张会强,王希麟,郭印诚等.不同亚格子模式在后台阶湍流流动大涡模拟中的应用[J].工程热物理学报,2003.1:157~160
    [48] WANG Bing, ZHANG Huiqiang), WANG Xilin, GUO Yincheng,LIN Wenyi ,Large Eddy Simulation of Particle-Laden Turbulent Flow over a Backward-Facing Step[J] .TSINGHUA SCIENCE AND TECHNOLOGY, Volume 9, Number 1, February 2004:57~63
    [49] 王小华,樊洪明等.后台阶流动的数值模拟[J].计算力学学报,2003.6:361~365
    [50] 尚智,杨瑞昌等.用扩散流模型数值模拟后台阶湍流颗粒输运[J].自然科学进展,2003.4:444~448
    [51] 曾诚.带自由表面的后向台阶流动的流场研究[D].河海:河海大学,2006.3
    [52] H.I. Abu-Mulaweh,A review of research on laminar mixed convection flow over backward- and forward-facing steps[J] .International Journal of Thermal Sciences 2003 (42):897~909
    [53] R.J. Poole, M.P. Escudier. Turbulent flow of non-Newtonian liquids over a backward-facing step Part I. A thixotropic and shear-thinning liquid [J]. Non-Newtonian Fluid Mech. 2003 (109) :177~191
    [54] R.J. Poole, M.P. Escudier. Turbulent flow of non-Newtonian liquids over a backward-facing step Part II. Viscoelastic and shear-thinning liquids [J]. Non-Newtonian Fluid Mech. 2003 (109):193~230
    [55] Chao-Kuang Chen, Tzu-Shuang Yen,Yue-Tzu Yang,Lattice Boltzmann method simulation of backward-facing step on convective heat transfer with field synergy principle[J].International Journal of Heat and Mass Transfer 2006 (49):1195~1204
    [56] Y.T. Chen, J.H. Nie, H.T. Hsieh, L.J. Sun .Three-dimensional convection flow adjacent to inclined backward-facing step[J].International Journal of Heat and Mass Transfer 2006 (49) :4795–4803
    [57] H. Abbassi, S. Ben Nassrallah.MHD flow and heat transfer in a backward-facing step [J]. Inter- national Communications in Heat and Mass Transfer 2007 (34):231–237
    [58] 周光炯著.流体力学(上)[M].北京:高等教育出版社,2000:18~19,21~25
    [59] 吴望一著.流体力学[M].北京:北京大学出版社,2005.5:145~190
    [60] 陈材侃著.计算流体力学[M].重庆:重庆出版社,1992
    [61] 任安禄著.不可压缩粘性流场计算方法[M].北京:国防工业出版社,2003.4
    [62] 陶文铨著.计算传热学的近代进展[M].北京:科学出版社,2000.6
    [63] 梁在潮著.工程湍流[M].武汉:华中理工大学出版社,1999.4:1~6
    [64] 舒玮.湍流中散射粒子的跟随性[D].天津:天津大学,1979
    [65] 袁新, 陈左一著.分析与计算流体力学[Z].北京:清华大学热能工程系,1999.9:83~98
    [66] 是郧刚著.湍流[M].天津:天津大学出版社,1994:84~100
    [67] 李勇等.介绍计算流体力学通用软件——Fluent [J].水动力学研究与进展,2001.6:254~258
    [68] 袁礼.球形 Taylor-Couette 流分叉解的数值模拟及二维 Euler 方程非结构网格计算技术的研究[D].北京:中国科学院力学研究所,1995
    [69] JHWLEE&CQCHEN. Numerical simulation of line puff via RNG k-ε model [J].Communic- ation of Nonlinear Science and Numerical Simulation,1996,1(4):6-11
    [70] SCHULZE. Simulation off lows pasta series 60 ship hull applying a RNG k-ε turbulence model on an unstructured grid [A].7th ISCFD[C].Beijing, China: Sept.1997:5-19
    [71] 韩占忠,王敬,兰小平编.Fluent 流体工程仿真计算实例与应用[M].北京:北京理工大学,2005.3
    [72] 黄钰期.非结构网格差分求解方程和商用软件 Fluent 的应用[D].浙江:浙江大学,2003.1
    [73] 李晟.基于 Fluent 软件的轴流风机设计初步[D].西安:西北工业大学,2004.3
    [74] 曹东波.Fluent 二次开发及其在辅助优化设计中的研究与应用[D].北京:华北电力大学,2002.1
    [75] 刘庆全.基于 Fluent 的合理沉没度仿真系统研究[D].哈尔滨:哈尔滨理工大学,2005.3
    [76] 王智勇.基于 FLUENT 软件的水力空化数值模拟[D].大连:大连理工大学,2006.6
    [77] 韩宁.应用 Fluent 研究阀门内部流场[D].武汉:武汉大学,2005.5
    [78] 许志洋,郭永存,王仲勋.基于 FLUENT 6.0 的圆管内部流场解析[J].煤矿机械, 2006.6:140~141
    [79] 胡玉仙.基于 FLUENT 软件的泵站进出水流道流动模拟研究[D].武汉:武汉大学,2004
    [80] 赵妍.应用 FLUENT 对管路细部流场的数值模拟[D].大连:大连理工大学,2004
    [81] T. H. Shih,W. W. Liou, A. Shabbier, Z. G Yang, J. Zhu, A new k~ε eddy viscosity model for high Reynolds number turbulent flows [J].Compute Fluids,1995, 24(3): 227-238
    [82] Fluent Inc.FLUENT User's Guide[M].Fluent Inc,2003
    [83] Liuio H.A.M.ASCE.Surface jet model for Heated Discharges [J].J.Hydr.Dir,1972(98).1
    [84] P Moin.Progress in large eddy simulation of turbulence flow [J]. AIAA paper,1997: 97-157

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700