非圆形域喷头调节器的内部流场研究及性能测试
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着世界性水资源的日趋紧张,采用包括喷微灌在内的节水灌溉技术已成为世界各国为缓解水资源危机和实现农业现代化的必然选择。一种新型喷灌技术——非圆形域喷洒灌溉技术,利用变量喷洒可控域精确灌溉喷头组合进行喷灌,从根本上解决现有圆形喷洒域喷头从几何学上不利于组合的问题。本文围绕非圆形域喷洒灌溉技术关键技术的实施进行了较为全面深入的研究,并引入了流动数值模拟技术,分析了流道结构与能量损失等的关系,从而为设计出高效率、低能耗的射程调节机构提供理论依据。
     非圆形域均匀灌溉喷头是根据被灌溉地块或区域形状变化的要求进行喷洒的一种精确灌溉喷头。本文总结了国内外非圆形域均匀灌溉喷头研究进展及实现方法,指出了国内研究和应用中存在的主要问题。通过理论分析,研究了非圆形喷洒域均匀灌溉喷头的实现。在总结国内外现有实现方法的基础上,给出了非圆形域实现机构的一般组成。并以正方形和正六边形喷洒域为例,研究了非圆形喷洒域均匀灌溉喷头工作时射程的变化规律以及射程、流量、转速应服从的关系。非圆形域喷头的工作方程表明,喷头的流量与射程平方和转速的乘积成正比。
     在分析与总结国内外流体流动模拟研究的基础上,探讨开展非圆形域喷头调节器内部水流运动数值模拟的意义。本文以调节器内部三维湍流流场为研究对象,采用数学分析和数值模拟方法对湍流管内流场结构进行研究。利用三维雷诺时均Navier-Stokes方程和Realizable k- e两方程湍流模型,以商用软件FLUENT作为研究平台,对进出水流道中的流态进行了数值计算与分析,获得了整个流域内的速度、压力等的分布云图。
     在前人研究的基础上,设计了喷头实现非圆形域灌溉的关键部件—非圆形域喷头调节器,并采用水流运动的局部阻力理论对其结构参数进行了分析,确定试验样品结构。研究建立了变量喷洒可控域精确灌溉喷头性能评价指标体系,对加装了调节器试件喷头的水力性能参数,如工作压力、流量、射程、喷洒水分布特性等进行了测试评价,实验结果表明,除了满足普通摇臂式喷头的灌水质量性能要求,非圆形域喷头也能满足非圆形域喷洒的一些特殊性能要求。
With the intension of world water resources shortage, water-saving irrigation techniques including the sprinkler irrigation have been the inevitable one to reduce the crisis of water shortage and to achieve the modernization of agriculture. Irregular Wetted Area Precision Sprinkler Irrigation, which is a new sprinkler irrigation technology, uses the High Uniformity Sprinklers for Irregular Wetted Area spaced together, which can eliminate the adverse influences from the circle wetted area contour on the spacing of sprinklers. This paper conducts a systematical research on the Irregular Wetted Area Precision Sprinkler Irrigation and analyzes the relation between configuration and energy losing with CFD technology. The results of this research provide theoretical basis for the design of high uniformity sprinkler for irregular wetted area.
     The term "High uniformity sprinklers for irregular area" is used by the authors to describe the precision irrigation sprinklers that can spray according to the continuous change of the irrigated area profile. A survey on high uniformity sprinklers for irregular spraying area was made by analyzing the present mechanism at home and abroad in this paper. The major models and components of these sprinklers were discussed. The problems which existed in the development and practice of this field in China were put forward. The realization of high uniformity sprinklers for irregular wetted area was researched by theoretical analysis in this paper. The general construction and principle of the spray distance and flow rate adjustor for the sprinkler are given by analyzing the present mechanism at home and abroad. And with examples given, both the variation principle, which describes the spray distance, and the equation, which describes the internal connection of the spray distance, flow rate and rotation speed ware derived. The equations indicate that the flow rate is proportional to the product of rotation speed and square spray distance.
     Based on analysis of the current state of the flow pattern modeling abroad and at home, the meaning of the mathematical simulation of the flows in the Irregular Area Spraying Adjustor is given. This paper discusses the three dimensional turbulent flow fields, using methods of mathematical analyze and CFD simulation. The flow characteristics of the adjustor are numerically studied using Realizable k-e turbulent model combined with 3D time-averaged N-S equation through commercial CFD software package FLUENT, and the results give the distribution figures of velocity, pressure, etc. in the whole flow field are obtained.
     After reviewing the current researches, Irregular Area Spraying Adjustor, the key component for the high uniformity sprinklers for irregular area achieving variable rate and contoured controlled is designed. The main constructional parameters are analyzed under Water Movement Partial Resistance Theory. The index system for evaluation of sprinklers' performance is given. The hydraulic parameters of the sprinkler installed with adjustor are tested, such as working pressure, water flux, the range of the sprinkler, characteristic of water distribution, etc. The experimental results indicate that the high uniformity sprinklers for irregular area not only ensure the consistency with the common standard, but also the special standard for Irregular Area Spraying.
引文
1.曹国强,梁冰,包明宇.基于FLUENT的叶轮机械三维紊流流场数值模拟.机械设计与制造.2005,8:22-24
    2.陈魁.试验设计与分析(第2版).北京:清华大学出版社,2005
    3.程耕国,程平,李受人.节流管孔流动参数与雷诺数关系的数值研究.计算机工程与设计.2005,26(3):575-577
    4.程平,李受人,程耕国.液流通过节流孔的惯性长的数值研究.水动力学研究与进展.(A辑).2003,18(3):302-305
    5.丁献州.变射程全自动节水灌溉喷头.中国专利:03246167.4,2004-08-11
    6.董曾南,章梓雄.非粘性流体力学.北京:清华大学出版社,2003
    7.冯浩,汪有科,吴普特,范兴科.非圆形喷洒域喷头.中国专利:01265799.9,2002-12-18
    8.干浙民,杨生华.旋转式喷头射程的试验研究及计算公式.农业机械学报.1998,29(4):145-149
    9.干浙民,杨生华.旋转式喷头射程的试验研究及计算公式.农业机械学报.1998,29(4):118-120
    10.高殿荣,王益群.管道节流孔口流场的有限元数值模拟.流体机械.2000,28(5):29-33
    11.高殿荣,张齐生.平面突扩管瞬态流动的有限元模拟.燕山大学学报.1999,23(4):331-334
    12.高殿荣.液压技术复杂流道流场的数值模拟与可视化研究.[博士学位论文].秦皇岛:燕山大学,2001
    13.韩文霆,冯浩,吴普特,陈香维.非圆形喷洒域的摇臂式喷头.中国专利:03218590.1,2004-01-14
    14.韩文霆,吴普特,冯浩,陈香维.非圆形喷洒域的摇臂式喷头.中国专利:03114528.0,2003-08-27
    15.韩文霆,吴普特,冯浩,杨青.变量喷头实现均匀喷灌的研究.农业工程学报.2005,21(10):13-16
    16.韩文霆,吴普特,冯浩,杨青.非圆形喷洒域变量施水精确灌溉喷头综述.农业机械学报.2004,35(5):220-224
    17.韩鑫,郝培业.方形喷洒域摇臂式喷头喷洒机理分析.农业机械学报.2005,36(3):40-43
    18.韩鑫,郝培业.六方(四方)形摇臂式喷头水力学特征分析(四).节水灌溉.2004,2:15-18
    19.郝培业.六方(四方)型摇臂式喷头(一).节水灌溉.2003,2:25-26
    20.郝培业.新型摇臂式喷头.中国专利:002 15392.0,2001-02-27
    21.胡玉仙.基于FLUENT软件的泵站进出水流道流动模拟研究.[硕士学位论文].武汉:武汉大学,2004
    22.黄克智,薛明德,陆明万.张量分析.北京:清华大学出版社,2003
    23.李久生,饶敏杰.喷灌水量分布均匀性评价指标的试验研究.农业工程学报.1999,15(4):78-82
    24.李志印,熊小辉,吴家鸣.计算流体力学常用数值方法简介.广东造船.2004,3:5-8
    25.刘儒勋,舒其望.计算流体力学的若干新方法.北京:科学出版社,2003
    26.刘学强.基于混合网格和多重网格上的N—S方程求解及应用研究.[博士学位论文].南京:南京航空航天大学,200 1
    27.罗金耀.节水灌溉理论与技术.武汉:武汉大学出版社,2003
    28.茆智.发展节水灌溉应注意的几个原则性技术问题.中国农村水利水电.2003,3:19-23
    29.任春平,吴普特,范兴科.非圆形喷洒域喷头的研究.农业工程学报.2005,21(S1):107-109
    30.任玉新,陈海昕.计算流体力学基础.北京:清华大学出版社,2006
    31.司国雷.纯水液压锥阀内部流场的CFD分析和可视化研究.[硕士学位论文].兰州:兰州理工大学,2005
    32.王飞,冯浩,吴普特,汪有科,范兴科,戚鹏,喻黎明.非圆形喷洒域的喷头辅助装置.中国专利:01247020.1,2002-06-19
    33.王福军.CFD在水力机械湍流分析与性能预测中的应用.中国农业大学学报.2005,10(4):75-80
    34.王福军.计算流体动力学分析:CFD软件原理与应用.北京:清华大学出版社,2004
    35.王军,肖朋.对旋轴流通风机内流数值模拟及性能预测.见:FLUENT公司,2005 Fluent中国用户大会论文集:94-98
    36.王正中,冷畅俭.喷洒面为多种形状的摇臂式喷头.中国专利:00257672.4,2001-09-19
    37.王仲勋,郭永存.基于CFD的局部损失探讨.煤矿机械.2005,2:33-35
    38.魏淑贤,沈跃,黄延军.计算流体力学的发展及应用.河北理工学院学报.2005,27(2):115-118
    39.吴普特,韩文霆,冯浩,陈香维.自动调节射程的摇臂式喷头.中国专利:03218591.x,2003-08-27
    40.许一飞,许炳华.喷灌机械原理·设计·应用.北京:中国农业机械出版社,1989
    41.严海军,郑耀泉.园林灌溉喷头的水力性能测试分析及应用研究.排灌机械.2001,19(2):32-34
    42.杨睿.均匀喷灌的最优策略.数学的实践与认识.2003,33(12):15-22
    43.殷春霞,许炳华.我国喷灌发展五十年回顾.中国农村水利水电.2003,2:9-11
    44.喻黎明.国内外几种主要喷头水力性能测试与评价.[硕士学位论文].杨凌:西北农林科技大学,2002
    45.曾庆黎,曾文艺.喷灌模型.数学的实践与认识.2004,34(4):16-22
    46.张社奇,刘淑明,韩维生,钱克红.改变喷头喷洒轨迹的力学途径.西北农林科技大学学报(自然科学版).2001,24(4):118-121
    47.章梓雄,董曾南.粘性流体力学.北京:清华大学出版社,1998
    48.GB/T 19795.1-2005 农业灌溉设备 旋转式喷头 第1部分:结构和运行要求
    49.GB/T 19795.2-2005农业灌溉设备旋转式喷头第2部分:水量分布均匀性和试验方法
    50. Aldo L, Van N. Controlled contour sprinkler. USA patent: 2654635, 1953-10-06
    51. Al-Jamal M S, Ball S, Sammis T W. Comparison of sprinkler, trickle and furrow irrigation efficiencies for onion production. Agricultural water management. 2001, 46:253-266
    52. Beckert Armin. Coupling fluid (CFD) and structural (FE) models using finite interpolation elements. Aerospace Science Technology. 2000, 4:13-22
    53. Benjamin Rabitsch. Irrigation sprinkler. USA patent: 4277029, 1981-07-07
    54. Cao Z, Wiley D E, Fane A G. CFD simulations of net-type turbulence promoters in a narrow channel. Journal of Membrane Science. 2001, 185:157-176
    55. Carrion P, Tarjuelo J M, Montero J. SIRIAS: a simulation model for sprinkler irrigation. Irrigation science. 2001, 20:73-84
    56. Colegrove Paul A, Shercliff Hugh R. 3-Dimensional CFD modelling of flow round a threaded friction stir welding tool profile. Journal of Materials Processing Technology. 2005, 169:320-327
    57. Edwin J H. Rotating sprinkler. GB patent: 2094181A, 1982-09-15
    58. Felten F, Fautrelle Y, Du Terrail Y, Metais O. Numerical modelling of electro-gnetically-riven turbulent flows using L ES methods [J]. Applied Mathematical Modelling, 2004,28 (1): 15 27
    59. Grigoriadis D G E, Bartzis J G, Goulas A. Efficient treatment of complex geometries for large eddy simulation of turbulent flows. Computers and Fluids. 2004,33(2): 201-222
    60. Hao M D. Li Y T. Grid generation and numerical simulation of 2D river flow. Journal of hydrodynamics. 2001, 13(2): 50-54
    61. J.D.Anderson. Computational fluid dynamics: basics with applications. McGraw-Hill, 1995.(计算流体力学入门.清华大学出版社影印版,2002)
    62. James T, La M. Sprinkling device. USA patent: 2582158, 1952-01-08
    63. Lee J H, Chen C Q. Numerical simulation of line puff via RNG k-e Communication of nonlinear science and numerical simulation, 1996, 1(4): 6-11
    64. Li Jiusheng. Effect of pressure and nozzle shape on the characteristics of sprinkler droplet spectra. Journal of agricultural engineering research. 1997, 66(1): 15-21
    65. Lorenzini Giulio. Simplified modelling of sprinkler droplet dynamics. Biosystems Engineering. 2004, 87(1): 1-11
    66.Mansur M L. Implicit solution of incompressible Navier-Stocks equation on a non-staggered grid. Journal of computational physics. 1990, 86(1): 147-167
    67.Marzio Piller, Enrico Npbile, J Thomas. DNS study of turbulent transport at low Prandtl number in a channel flow. Journal of fluid mechanics. 2002, 458:419-441
    68.Nilsson H, Davidson L. Validations of CFD against detailed velocity and pressure measurements in water turbine runner flow. International Journal for Numerical Methods in Fluids. 2003, 41: 863-879
    69.Ohayon S. Automatic adjust patenttable sprinkler for precision irrigation. USA patent: 6079637, 2000-06-27
    
    70.Robert E T. Automatic water sprinkler for irregular areas. USA patent: 3952954,1976-04-27
    71.Stevenson M J, Chen Xiaodong. Visualization of the flow patterns in a high-pressure homogenizing valve using a CFD package. Journal of food engineering. 1997,33:151-156
    72.Sudharsan N M, Murali K, Kumar Kurichi. Finite element analysis of nonlinear fluid structure interaction in hydrodynamics using mixed lagrangian-eulerian method. International Journal of Computational Engineering Science. 2004,5(2): 425-444
    73.T.J.Chung. Computational fluid dynamics. Cambridge University Press, 2002
    74.Taha Taha, Cui Z F. CFD modelling of slug flow in vertical tubes. Chemical Engineering Science. 2006, 61: 676-687
    75.William P K. Adjustable pattern irrigation sprinkling device. USA patent:2780488,1957-02-05

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700