PD-1对动脉粥样硬化斑块易损性的影响及机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景
     冠心病的病理基础是动脉粥样硬化,已经证实动脉粥样硬化是一种慢性反应性炎症疾病过程。动脉粥样硬化斑块在形成和进展中,其性质和特点有很大差异。除斑块体积对血管腔血流有直接影响外,斑块本身的成分和性质对患者临床表现及预后影响更大。含有较大坏死性脂核、纤维帽薄、炎症细胞浸润多的斑块被称为易损性斑块(vulnerable plaque),这类斑块炎症反应程度重,最容易破裂并导致血栓形成,使血流急剧减少或者完全阻断,是临床发生急性冠状动脉综合征的主要发病机制。逆转易损斑块、促进其消退及/或干预易损斑块使其向稳定型斑块转化,是防治急性冠脉综合征的重要措施,也是临床上目前需要急待解决的关键问题。加强对易损性斑块中炎症过程启动和强化机制的研究,对促进易损性斑块稳定并更好地防治急性冠脉综合征等高危人群,具有显著的经济和社会效益。在动脉粥样硬化形成过程中,免疫系统和免疫细胞起到了重要作用。作为动脉粥样硬化主要危险因素的高脂血症和高血糖等因素可以引起免疫应答的启动,已经证实与动脉粥样硬化病变关系密切的抗原有氧化修饰的低密度脂蛋白(Ox-LDL)、热休克蛋白(Hsp)和β2-糖蛋白Ⅰ(β2-glycoproteinⅠ)。作为主要炎症细胞之一的T淋巴细胞,表现对动脉粥样硬化相关抗原的应答反应,促进动脉粥样硬化的发生和进展。在动脉粥样硬化的形成和演变中不同的T淋巴细胞亚群起不同的作用,其中对动脉粥样硬化发生起优势作用的T细胞类型是CD4阳性T辅助细胞(Th)。临床上急性冠脉综合征的冠脉病理病变以易损性斑块为主,对斑块性质研究发现易损性斑块炎症程度重,无论是斑块局部还是全身血循环Th1和Th2比例均存在不平衡,这导致粥样斑块的炎症加重,使斑块向不稳定趋势进展。程序性细胞死亡因子1(Programmed cell death 1,PD-1)是近年来发现的新的介导负调控信号的共刺激分子受体,在激活的T细胞、B细胞和一些髓样细胞上表达。PD-1属于CD28家族,其配体PD-Ls属于共刺激分子B7家族,主要有PD-L1(B7-H1)和PD-L2(B7-DC)。PD-L1和PD-L2在巨噬细胞和DCs上均有表达,长期慢性病毒感染可以使T细胞PD-1表达持续上调,同时处于功能衰竭状态;而用抗体阻断PD-1则可以使衰竭的T细胞增殖和分泌细胞因子水平的功能均恢复正常。已经有研究发现CD4阳性T淋巴细胞在粥样硬化斑块中表达,其中PD-1表达情况如何尚了解甚少,对PD-1进行阻断性干预,对形成粥样硬化斑块模型体内T淋巴细胞功能以及对斑块易损性的影响,也不清楚。本实验用免疫组化方法检测粥样斑块形成中PD-1的表达水平,然后用抗PD-1抗体干预,评价CD4阳性细胞功能的变化和对粥样斑块性质的影响。
     研究方法
     本研究分三部分,第一部分:选取不同类型的冠心病人55例(不稳定型心绞痛31例、稳定型心绞痛24例),用ELISA方法检测血清ox-LDL及外周血PBMC释放细胞因子IFN-γ和IL-4水平,同时用流式细胞法检测外周血CD4~+和CD4~+PD-1~+双阳性细胞比例,并与正常的对照者进行比较,探讨PD-1在CD4阳性T淋巴细胞上的表达与冠心病炎症程度的关系;第二部分:取C57BL/6J ApoE基因敲除鼠及相同遗传背景野生型小鼠,喂食高脂饲料,21周后处死小鼠,石蜡包埋血管后作连续切片,行HE染色及PD-1免疫组化染色,检测斑块面积和PD-1表达情况;用辛伐他汀干预以后,观察斑块面积和PD-1表达水平的变化;第三部分:制成动脉粥样硬化动物模型,然后用抗PD-1抗体干预实验动物,观察其粥样斑块性质的改变,并同时测定在体分离的CD4阳性细胞增殖和分泌细胞因子的能力,探讨PD-1/PD-Ls信号途径对斑块易损性的影响及可能机制。
     结果
     1.外周血中分离PBMC培养后,其上清中的IFN-γ水平以UA组中最高,超过SA组和对照组,差异有显著性(P<0.05),SA组IFN-γ水平也较对照组高;三组的IL-4值比较则差异不是很明显;UA组血清中ox-LDL值超过SA组(P<0.05),对照组中ox-LDL值最低;
     2.SA组和UA组外周血PBMC中CD4~+细胞比例均较对照组增高(P<0.05),SA组和UA组外周血PBMC中CD4~+PD-1~+双阳性细胞比例均较对照组增高(P<0.05),其中UA组较SA组增高更明显差异有显著性(P<0.05),提示随炎症程度增高,CD4阳性细胞上PD-1的表达增强;
     3.AS模型组可见动脉粥样硬化斑块明显形成,斑块面积较对照组明显增大,其粥样斑块表达PD-1水平也增高;经辛伐他汀治疗组,斑块面积明显减小,PD-1表达也减弱;
     4.抗PD-1抗体干预组和AS组均可见血管腔有明显动脉粥样硬化斑块形成,经计算二组斑块面积无显著性差别。但抗体干预组斑块中有含脂质和坏死细胞的核心,表面纤维帽薄,斑块中含胶原的量偏少,平均光密度值小,与AS组比较有显著性差异(P<0.05);
     5.抗体干预组的斑块中,免疫荧光检测有较多的CD4阳性细胞浸润,抗体干预组CD4阳性细胞平均光密度值较高,与AS组比较有显著性差异(P<0.05);
     6.抗体干预组脾脏分离的CD4阳性细胞~3H-TdR掺入量明显较AS组增高,差别具有统计学意义(P<0.05),提示细胞增殖能力增强;抗体干预组CD4阳性细胞分泌IFN-γ和TNF-α水平明显较AS组高,与AS组比较有显著性差异(P<0.05)。
     结论
     1.在UA患者体内,外周血PBMC分泌细胞因子的能力明显增强,CD4阳性细胞激活的比例也较SA高,提示其炎症程度重,ox-LDL作为刺激免疫应答的抗原之一,可能是炎症激活的原因。
     2.冠心病患者中,随炎症程度增高,CD4~+细胞和CD4~+PD-1~+双阳性细胞比例均增高,作为负性调控因子的PD-1表达增强,其作用可能是反馈性抑制CD4~+细胞的过度激活。
     3.在ApoE基因敲除小鼠,随动脉粥样硬化斑块形成程度加重,PD-1在斑块的表达增加,经辛伐他汀干预后斑块体积减小,PD-1的表达减少,进一步提示其限制和下调炎症的作用。
     4.给予抗PD-1抗体后,斑块内胶原减少和CD4阳性细胞浸润增加,表现易损性增加改变,进一步证实PD-1/PD-Ls信号途径在斑块演变中具有下调炎症的作用。
     5.经抗PD-1抗体干预后,同时分离的CD4阳性T淋巴细胞表现增殖能力增强和分泌细胞因子量增加,提示PD-1的负性调节作用是通过抑制炎症细胞功能实现的。
Background and Objectives
     The pathogenesis of coronary heart disease(CAD) is atherosclerosis(AS).There are strong evidences that atherosclerosis is a chronic inflammation disease.The nature and feature of atherosclerosis are different markedly during its development and progression. Besides blood vessel narrowing,the composition and characteristic of plaque can exert great effects on clinical manifestation and prognosis of CAD patients.The vulnerable plaque, characterized by a big necrotic lipid nuclus,thin fibrous cap and abundant inflammatory cells infiltration,once rupture and thrombosis,it can further reduce blood flow or lead to coronary artery blockade.Vulerable plaque is a major factor contributing to acute coronary syndrome(ACS),reversal and stabilization of vulerble plaque is a important therapeutic target in ACS clinical strategies.Facilitating the study associated with starting and reinforcement of inflammation process in plaque has great economic and social profits. During the process of atherosclerosis development,immune system and immunocytes play key roles.As major risk factors,hyperlipemia and hyperglycemia can induce immune response in vessel wall.Some researches have provided evidences that oxidated low-density lipoprotein(ox-LDL),heat shock protein(Hsp) andβ2-glycoprotein I have been regarded as antigens related to atherosclerosis.During the development and progression of atherosclerosis,the effects of different subgroups of T lymphocyte are variant,CD4~+ helper T cell has a dominant effect on development of atherosclerosis.The artery lesions of ACS are composed of rich vulnerable plaques.As Th1 over differentiation, imbalance of Th1 and Th2 in local lesions and circulation results in inflammation aggravation,lead to plaque destabilization.As a recent discovered negative costimulatory molecule,programmed cell death 1(PD-1) is a receptor expressed on activated T cell,B cell and myeloid cell.It belongs to CD28 family,its ligands(PD-Ls) such as PD-L1 and PD-L2 belong to B7 superfamily,expressed on macrophage and dendritic cell.In chronic viral infection PD-1 has been upregulated on T cell,but whether or not PD-1 expressed on CD4~+ T cell in atherosclerosis has little been known.Our hypothesis is:If PD-1 expression on T cell in atherosclerosis be blocked,the T cell function and plaque vulnerability might alter. In this study the expression of PD-1 in atherosclerosis was immunohistochemically investigated,then CD4~+ T cell function was mesured and plaque composition was tested using monoclonal antibodies against PD-1.
     Methods
     The first part:56 CAD patients were included in the study,ustable angina(UA) 30 and stable angina(SA) 26 cases.Serum ox-LDL level,cutured supernatant interferon-γ(IFN-γ) and interleukin-4(IL-4) of peripheral blood monouclear cell(PBMC) were detected by enzyme linked immunosorbent assay(ELISA).Flow cytometry was used to detect the expression of CD4~+ and CD4~+PD-1~+ on PBMC in peripheral blood,and compared with control group,to investigate the relationship between the expression of PD-1 on CD4+ T cell and the inflammation degree in CAD patient.
     The second part:Twenty C57BL/6J ApoE gene knock out(ApoE~(-/-)) mice and 8 wild type C57BL/6J mice were fed with high fat diet.Twenty-one weeks later,all the mice were executed for the collection of aortas which were dissected from aortic root to abdominal aorta.Then the aortic sections were imbedded with paraffin for HE staining and PD-1 immunohistochemistry,the plaque area and expression of PD-1 were mesured.Interfered with Simvastatin,the variation of plaque area and expression of PD-1 were observed.
     The third part:The animal models of AS were established,and one of the AS groups was interfered with anti-PD-1 antibody,then the atherosclerotic morphology was studied, proliferation capability and excreted cytokine of CD4~+ T cell were mesured.The vulnerability of atherosclerotic plaque and PD-1/PD-Ls signal pathway were investigated in order to reveal the latent mechanism.
     Results
     1.The PBMC cultured supernatant IFN-γand IL-4 levels in peripheral blood were increased obviously in CAD patients compared with control group(P<0.05),IFN-γand IL-4 levels in UA group were further higher than those in SA group(P<0.05),serum ox-LDL had a similar result.The levels of IL-4 had no significant difference in three groups.
     2.The percentage of CD4~+ T cell of PBMC was higher in CAD patients than that in control cases(P<0.05).The extents of CD4~+PD-1~+ double positive expression on PBMC were both higher in UA and SA groups than that in control group(P<0.05),it increased markedly in UA(compared with SA P<0.05).
     3.There were significant atherosclerotic plaques in AS model,plaque area of AS group was more remarkable than that of contol group.There was more expression of PD-1 on plaque in AS group than that in control group(P<0.05),the plaque area and expression of PD-1 reduced in simvastatin group.
     4.The plaque area was not different significantly in anti-PD-1 intervention group and AS group,but the atherosclerotic plaque was characterized with more lipid,a great necrotic core,thin fibrous cap and fewer collagen.The average optical density(AOD) of collagen in anti-PD-1 intervention group was fewer compared with AS group(P<0.05).
     5.There were more CD4~+ T cells infiltrated in atherosclerotic plaque in anti-PD-1 intervention group when examined by immunofluorescence method.The AOD value of CD4~+ T cell infiltration in anti-PD-1 intervention group was higher compared with AS group((P<0.05).
     6.Cultured for 72 hours,CD4~+ T cells separated from spleen had more ~3H-TdR incorporation,higher IFN-γand IL-4 levels in anti-PD-1 antibody intervention group compared with AS group(P<0.05,respectively).These results indicated the CD4~+T cell had increased capability to proliferation and secreting cytokines.
     Conclusions
     1.In UA patients,as a antigen associated with atherosclerosis,ox-LDL may activate CD4+ T cells to secret more cytokines,lead to increased inflammation.
     2.The expression of PD-1 on CD4~+ T cell increase when inflammatory response is enhanced,indicate the inhibitory effect of PD-1 on CD4~+ T cell activation.
     3.The expression of PD-1 increase on atherosclerotic plaque during development of atheroma in ApoE-/- mice.Simvastatin can decrease plaque area and expression of PD-1 reduced,indicated the role of PD-1 may be limiting and downregulating inflammation.
     4.Anti-PD-1 antibody intervention can increase CD4+ T cell infiltration and decrease collagen composition in plaque,lead to progression of vulnerable plaque.
     5.Anti-PD-1 antibody intervention can enhance the proliferation capacity and increase the secreted cytokines of CD4~+ T cell,indicated the effect of PD-1/PD-Ls signal pathway on down-regulation inflammation.
引文
1. Libby P. Inflammation in atherosclerosis. Nature 2002, 420:868-874.
    2. Dickson BC, Gotlieb AI. Towards understanding acute destabilization of
    3. vulnerable atherosclerotic plaques. Cardiovascular Pathology 2003, 12:237-248
    4. Schieffer B, Drexler H. Role of 3-hydroxy-3-methylglutaryl coenzyme a reductase inhibitors, angiotensin-converting enzyme inhibitors, cyclooxygenase-2 inhibitors, and aspirin in anti-inflammatory and immunomodulatory treatment of cardiovascular diseases. Am J Cardiol. 2003 ;91(12A):12H-18H
    5. Shaw PX.. Rethinking oxidized low-density lipoprotein, its role in atherogenesis and the immune responses associated with it. Arch Immunol Ther Exp2004;52(4):225-239
    6. Mandal K, Jahangiri M, Xu Q. Autoimmunity to heat shock proteins in atherosclerosis. Autoimmun Rev. 2004;3(2):31-37
    7. Harats D, George J. Beta2-glycoprotein I and atherosclerosis. Curr Opin Lipidol 2001;12(5):543-546
    8. Zhou X, Robertson AK, Hjerpe C, et al. Adoptive transfer of CD4+ T cells reactive to modified low-density lipoprotein aggravates atherosclerosis. Arterioscler Thromb Vasc Biol, 2006, 26(4):864-870
    9. Laurat E, Poirier B, Tupin E, et al. Invivo downregulation of T helper cell 1 immune responses reduces atherogenesis in apolipoprotein E-knockout mice. Circulation, 2001,104(2): 197-202.
    10. Methe H, Brunner S, Wiegand D, et al. Enhanced T-helper-1 lymphocyte activation patterns in acute coronary syndromes. J Am Coll Cardioll 2005;45: 1939-1945
    11. Steppich BA, Moog P, Matissek C, et al. Cytokine profiles and T cell function in acute coronary syndromes. Atherosclerosis, 2007, 190(2):443-451
    12. Szodoray P, Timar O, Veres K, et al. Thl/Th2 imbalance, measured by circulating and intracytoplasmic inflammatory cytokines—immunological alterations in acute coronary syndrome and stable coronary artery disease. Scand J Immunol, 2006;64(3):336-344
    13. Steppich BA, Moog P, Matissek C, et al. Cytokine profiles and T cell function in acute coronary syndromes[J]. Atherosclerosis, 2007, 190(2):443-51
    14. Okazaki T, Honjo T. The PD-1-PD-L pathway in immunological tolerance. Trends Immunol.2006;27(4):195-201
    15.Yamazaki T,Akiba H,Iwai H,et al.Expression of programmed death 1 ligands by murine T cells and APC.J Immunol,2002,169(10):5538-5545
    16.Salama AD,Chitnis T,Imitola J,et al.Critical role of the programmed death-1(PD-1)pathway in regulation of experimental autoimmune encephalomyelitis.J Exp Med,2003,198(1):71-78
    17.Okazaki T,Honjo T.Rejuvenating exhausted T cells during chronic viral infection.Cell,2006,124(3):459-461
    18.Nishimura H,Okazaki T,Tanaka Y,et al.Autoimmune dilated cardiomyopathy in PD-1 receptor-deficient mice.Science,2001,291(5502):319-322
    19.Okazaki T,Honjo T.Pathogenic roles of cardiac autoantibodies in dilated cardiomyopathy.Trends Mol Med,2005,11(7):322-326
    20.许俊堂,胡大一.对急性冠脉综合征分型的看法.中华心血管病杂志.2001,29(9):576-578
    21.Hansson GK,Libby P.The immune response in atherosclerosis:a double-edged sword.Nat Rev Immunol,2006,6(7):508-519
    22.Zhou X,Robertson AK,Rudling M,et al.Lesion development and response to immunization reveal a complex role for CD4 in atherosclerosis.Circ Res,2005,96(4):427-434
    23.Buono C,Lichtman AH.Co-stimulation and plaque-antigen-specific T-cell responses in atherosclerosis.Trends Cardiovasc Med,2004,14(4):166-172
    24.Moeller F,Nielsen LB.Aortic recruitment of blood lymphocytes is most pronounced in early stage of lesion formation in apolipoprotein E-deficient mice.Atherosclerosis,2003,168(1):49-56
    25.Ranjbaran H,Sokol SI,Gallo A,et al.An inflammatory pathway of IFN-gamma production in coronary atherosclerosis.J Immunol,2007,178(1):592-604.
    26.Liuzzo G,Goronzy JJ,Yang H,et al.Monoclonal T cell proliferation and plaque instability in acute coronary syndromes.Circulation,2000;102:2883-2888.
    27.Benagiano M,Azzurri A,Ciervo A,et al.T helper type 1 lymphocytes drive inflammation in human atherosclerotic lesions.Proc Natl Acad Sci,2003;100:6658-6663
    28.Naghavi M,Libby P,Falk E,et al.From vulnerable plaque to vulnerable patient:a call for new definitions and risk assessment strategies:Part Ⅱ.Circulation 2003;108(15):1772-1778.
    29.Steppich BA,Moog P,Matissek C,et al.Cytokine profiles and T cell function in acute coronary syndromes.Atherosclerosis,2007,190(2):443-451.
    30.Wang S,Chen L.T lymphocyte co-signaling pathways of the B7-CD28 family.Cell Mol Immunol,2004;1(1):37-42.
    31.Yadav D,Sarvetnick N.Costimulation and pancreatic autoimmunity:the PD-1/PD-L conundrum.Rev Diabet Stud,2006;3(1):6-10.
    32.D'Souza M,Fontenot AP,Mack DG,et al.Programmed death 1 expression on HIV-specific CD4~+ T cells is driven by viral replication and associated with T cell dysfunction.J Immunol,2007;179(3):1979-1987.
    33.Wang L,Han R,Hancock WW.Programmed cell death 1(PD-1) and its ligand PD-L1are required for allograft tolerance.Eur J Immunol,2007;37(10):2983-2990.
    34.Liuzzo G,Biasucci LM,Trotta G,et al.Unusual CD4(+)CD28(null) T Lymphocytes and Recurrence of Acute Coronary Events.J Am Coll Cardiol,2007;50(15):1450-1458.
    35.34.35.Hu YZ,Dong YG,Zhai YF,et al.Effects of simvastatin on homocysteine-induced endothelial dysfunction and inflammatory response.Zhonghua Yi Xue Za Zhi,2006;86(32):2297-300.
    36.Pozo M,de Nicolas R,Egido J,et al.Simvastatin inhibits the migration and adhesion of monocytic cells and disorganizes the cytoskeleton of activated endothelial cells.Eur J Pharmacol,2006,24;548(1-3):53-63.
    37.Landsberger M,Wolff B,Jantzen F,et al.Cerivastatin reduces cytokine-induced surface expression of ICAM-1 via increased shedding in human endothelial cells.Atherosclerosis,2007;190(1):43-52.
    38.张新超,徐成斌,王胜洵。普伐他汀对Ap0E缺陷小鼠主动脉粥样硬化及主动脉壁细胞间黏附分子-1表达的影响。中华老年医学杂志,2001,20(6)418-420
    39.Zhang SH,Reddick RL,Piedrahita JA,et al.Spontaneous hypercholesterolemia and arterial lesions in mice lacking apolipoprotein E.Science,1992,258(5081):468-471
    40.杨永宗主编,动脉粥样硬化性心血管病基础与临床,北京:科学出版社,2004,150-151.
    41.Mendez-Cruz AR,Paez A,Jimenez-Flores R,et al.Increased expression of inflammation-related co-stimulatory molecules by HUVECs from newborns with a strong family history of myocardial infarction stimulated with TNF-alpha and oxLDL. Immunol Lett, 2007,111(2): 116-123.
    42. Leon ML, Zuckerman SH. Gamma interferon: a central mediator in atherosclerosis. Inflamm Res, 2005,54(10):395-411.
    43. Galkina E, Harry BL, Ludwig A, et al. CXCR6 promotes atherosclerosis by supporting T-cell homing, interferon-gamma production, and macrophage accumulation in the aortic wall. Circulation, 2007,116(16): 1801-1811
    44. Taleb S, Herbin O, Ait-Oufella H, et al. Defective Leptin/Leptin Receptor Signaling Improves Regulatory T Cell Immune Response and Protects Mice From Atherosclerosis. Arterioscler Thromb Vasc Biol, 2007,24(5):818-823
    45. Okazaki T, Honjo T. The PD-1-PD-L pathway in immunological tolerance. Trends Immunol. 2006 ;27(4): 195-201
    46. Asahi M, Huang Z, Thomas S, et al. Protective effects of statins involving both eNOS and tPA in focal cerebral ischemia. J Cereb Blood Flow Metab, 2005,25(6):722-729
    47. Eto M, Rathgeb L, Cosentino F,et al. Statins blunt thrombin-induced down-regulation of endothelial nitric oxide synthase expression in human endothelial cells. J Cardiovasc Pharmacol, 2006,47(5):663-667
    48. Li JJ, Fang CH, Wang C,et al. Effects of simvastatin on exercise-induced myocardial ischemia and plasma endothelin-1 concentrations in patients with stable angina. Clin Chim Acta, 2005,354(1-2):205-208
    49. Ding QF, Chen ZQ, Yin ZW,et al. Effects of Zhikeping on aortic oxyradical and the expression of ICAM-1 in a rat model of experimental early atherosclerosis . Zhongguo Zhong Yao Za Zhi. 2006 Mar;31(5):407-410.
    50. Alber HF, Frick M, Sussenbacher A, Dorler J, Dichtl W, Stocker EM,Pachinger O, Weidinger F. Effect of atorvastatin on peripheral endothelial function and systemic inflammatory markers in patients with stable coronary artery disease. Wien Med Wochenschr, 2007;157(3-4):73-78
    51. Marketou ME, Zacharis EA, Nikitovic D,et al. Early effects of simvastatin versus atorvastatin on oxidative stress and proinflammatory cytokines in hyperlipidemic subjects.Angiology, 2006;57(2):211-218
    52. Nachtigal P, Pospisilova N, Pospechova K, et al. MDOC and atorvastatin have pot -ential antiinflammatory effects in vascular endothelium of ApoE~(-/-) mouse model of atherosclerosis. Life Sci, 2006;78(17): 1983-1989
    53. Yasuda S, Miyazaki S, Kinoshita H,et al. Enhanced cardiac production of matrix metalloproteinase-2 and -9 and its attenuation associated with pravastatin treatment in patients with acute myocardial infarction. Clin Sci (Lond), 2007;112(1):43-49
    54. Schafer A, Fraccarollo D, Vogt C,et al.Improved endothelial function and reduced platelet activation by chronic HMG-CoA-reductase inhibition with rosuvastatin in rats with streptozotocin-induced diabetes mellitus. Biochem Pharmacol. 2007 1;73 (9): 1367-75.
    55. Okopien B, Krysiak R, Kowalski J, et al. The effect of statins and fibrates on interferon-γ and interleukin-2 release in patients with primary type II dyslipidemia. Atherosclerosis, 2004,176(7):327-335
    56. Shimada K, Miyauchi K, Daida H. Early intervention with atorvastatin modulates TH1/TH2 imbalance in patients with acute coronary syndrome: from bedside to bench. Circulation, 2004;109(18):e213-214
    57. Peng X, Jin J, Giri S, et al. Immunomodulatory effects of 3-hydroxy-3-methylglutaryl coenzyme-A reductase inhibitors, potential therapy for relapsing remitting multiple sclerosis. J Neuroimmunol, 2006,178(1-2): 130-139
    58. Huo Y, Ley K. Adhesion molecules and atherogenesis. Acta Physiol Scand, 2001;173(1):35-43
    59. Huo Y, Schober A, Forlow SB, et al. Circulating activated platelets exacerbate atherosclerosis in mice deficient in apolipoprotein E. Nat Med, 2003;9(1):61-67
    60. Buono C, Come CE, Stavrakis G, et al. Influence of interferon-gamma on the extent and phenotype of diet-induced atherosclerosis in the LDLR-deficient mouse. Arterioscler Thromb Vasc Biol, 2003;23(3):454-460
    61. Leitinger N. Oxidized phospholipids as triggers of inflammation in atherosclerosis. Mol Nutr Food Res, 2005,49(11): 1063-1071
    62. Hansson GK. Inflammation, atherosclerosis, and coronary artery disease. N Engl J Med, 2005, 352(16): 1685-1695
    63. de Boer OJ, van der Wal AC, Houtkamp MA, et al. Unstable atherosclerotic plaques contain T-cells that respond to Chlamydia pneumoniae. Cardiovasc Res, 2000,48(3):402-408
    64. Persky ME, Murphy KM, Farrar JD. IL-12, but not IFN-alpha, promotes STAT4 activation and Th1 development in murine CD4+ T cells expressing a chimeric murine/human Stat2 gene. J Immunol, 2005,174(1):294-301
    65. Antoniou KM, Tzouvelekis A, Alexandrakis MG, et al. Upregulation of Th1 cytokine profile (IL-12, IL-18) in bronchoalveolar lavage fluid in patients with pulmonary sarcoidosis. J Interferon Cytokine Res, 2006,26(6):400-405
    66. Szabo SJ, Sullivan BM, Peng SL, Glimcher LH. Molecular mechanisms regulating Th1 immune responses. Annu Rev Immunol, 2003,21:713-758
    67. Whitman SC, Ravisankar P, Daugherty A. IFN-gamma deficiency exerts gender specific effects on atherogenesis in apolipoprotein E-/- mice. J Interferon Cytokine Res, 2002,22(6):661-670
    68. D'Souza M, Fontenot AP, Mack DG, et al. Programmed death 1 expression on HIV-specific CD4+ T cells is driven by viral replication and associated with T cell dysfunction. J Immunol, 2007,179(3):1979-1987
    69. Cheng X, Zhao Z, Ventura E, et al. The PD-1/PD-L pathway is up-regulated during IL-12-induced suppression of EAE mediated by IFN-gamma. J Neuroimmunol, 2007,185(1-2):75-86
    70. Trautmann L, Janbazian L, Chomont N, et al. Upregulation of PD-1 expression on HIV-specific CD8+ T cells leads to reversible immune dysfunction. Nat Med, 2006,12(10): 1198-202
    71. Barber DL, Wherry EJ, Masopust D, et al. Restoring function in exhausted CD8 T cells during chronic viral infection. Nature, 2006,439(7077):682-687
    72. Liuzzo G, Kopecky SL, Frye RL, et al. Perturbation of the T-cell repertoire in patients with unstable angina. Circulation, 1999,100(21):2135-2139
    73. Naghavi M, Wyde P, Litovsky S, et al. Influenza infection exerts prominent inflammatory and thrombotic effects on the atherosclerotic plaques of apolipoprotein E-deficient mice. Circulation, 2003,107(5):762-768
    74. Mazzolai L, Duchosal MA, Korber M, et al. Endogenous angiotensin II induces atherosclerotic plaque vulnerability and elicits a Thl response in ApoE-/- mice. Hypertension, 2004,44(3):277-282
    75. Peng X, Jin J, Giri S, et al. Immunomodulatory effects of 3-hydroxy-3-methylglutaryl coenzyme-A reductase inhibitors, potential therapy for relapsing remitting multiple sclerosis. J Neuroimmunol, 2006,178(1-2):130-139
    76. Shimada K, Miyauchi K, Daida H. Early intervention with atorvastatin modulates TH1/TH2 imbalance in patients with acute coronary syndrome: from bedside to bench. Circulation, 2004,109(18):e213-214
    77. Chyu KY, Zhao X, Reyes OS, et al. Immunization using an Apo B-100 related epitope reduces atherosclerosis and plaque inflammation in hypercholesterolemic apo E (-/-) mice. Biochem Biophys Res Commun, 2005,338(4): 1982-1989
    78. Faria-Neto JR, Chyu KY, Li X, et al. Passive immunization with monoclonal IgM antibodies against phosphorylcholine reduces accelerated vein graft atherosclerosis in apolipoprotein E-null mice. Atherosclerosis, 2006,189(1):83-90
    79. Namiki M, Kawashima S, Yamashita T,et al. Intramuscular gene transfer of interleukin-10cDNA reduces atherosclerosis in apoliprotein E-knockout mice. Atherosclerosis, 2004,172(10):21-29
    80. Polanczyk MJ, Hopke C, Vandenbark AA, et al. Estrogen-mediated immunomodulation involves reduced activation of effector T cells, potentiation of Treg cells, and enhanced expression of the PD-1 costimulatory pathway. J Neurosci Res, 2006,84(2):370-378
    1. Libby P. Inflammation in atherosclerosis. Nature, 2002,420(6917):868-874
    2. Daugherty A. Mouse models of atherosclerosis. Am J Med Sci, 2002,323(1):3-10.
    3. Zhou X. CD4+T cells in atherosclerosis. Biomed Pharmacother, 2003 ,57(7):287-291
    4. Hansson GK, Zhou X, Tornquist E, et al. The role of adaptive immunity in atherosclerosis. Ann NY Acad Sci, 2000,902(5): 53-62.
    5. Zhou X, Nicoletti A, Elhage R, et al. Transfer of CD4(+) T cells aggravates atherosclerosis in immunodeficient apolipoprotein E knockout mice. Circulation, 2000,102(24):2919-2922
    6. Laurat E, Poirier B, Tupin E, et al.:. Invivo downregulation of T helper cell 1 immune responses reduces atherogenesis in apolipoprotein E-knockout mice. Circulation, 2001, 104(2): 197-202
    7. Schonbeck U, Mach F, Sukhova GK, et al. Regulation of matrix metalloproteinase expression in human vascular smooth muscle cells by T lymphocytes: a role for CD40 signaling in plaque rupture? Circ Res, 1997,81(3):448-454
    8. Nakajima T,Schulte S,Warrington KJ, et al. T-cell-mediated lysis of endothelial cells in acute coronary syndromes. Circulation, 2002,105(5):570-575
    9. Mallat Z, Gojova A, Brun V, et al. Induction of a regulatory T cell type 1 response reduces the development of atherosclerosis in apolipoprotein E-knockout mice. Circulation, 2003,108(10): 1232-1237
    10. Shaw PX.. Rethinking oxidized low-density lipoprotein, its role in atherogenesis and the immune responses associated with it. Arch Immunol Ther Exp2004, 52(4):225-239
    11. Mandal K, Jahangiri M, Xu Q. Autoimmunity to heat shock proteins in atherosclerosis. Autoimmun Rev, 2004,3(2):31-37
    12. Harats D, George J. Beta2-glycoprotein I and atherosclerosis. Curr Opin Lipidol, 2001,12(5):543-546
    13. Binder CJ,Hartvigsen K,Chang MK, et al. IL-5 links adaptive and natural immunityspecific for epitopes of oxidized LDL and protects from atherosclerosis. The Journal of Clinical Investigation,2004,114(3):427-437
    14. Yasunobu Y,Hayashi K,Shingu T, et al. Coronary atherosclerosis and oxidative stress as reflected by autoantibodies against oxidized low-density lipoprotein and oxysterols. Atherosclerosis, 2001, 155(2):445-453
    15. Fei GZ, HuangYH, Swedenborg J, et al. Oxidised LDL modulates immune-activation by an IL-12 dependent mechanism. Atherosclerosis, 2003,169(1): 77-85
    16. Buono C, Binder CJ, Stavrakis G, et al. T-bet deficiency reduces atherosclerosis and alters plaque antigen-specific immune responses. Proc Natl Acad Sci U S A, 2005,102(5): 1596-1601
    17. Choi JI, Chung SW, Kang HS,et al. Epitope mapping of Porphyromonas gingivalis heat-shock protein and human heat-shock protein in human atherosclerosis. J Dent Res, 2004,83(12):936-940
    18. Matsuura E, L opez LR. Are oxidized LDL/beta2-glycoprotein I complexespathogenic antigens in autoimmune-mediated atherosclerosis? Clin Dev Immunol, 2004, 11(2): 103-111
    19. Bobryshev YV, Lord RS. CD1 expression and the nature of CD1-expressing cells in human atherosclerotic plaques. Am J Pathol, 2000,156(4): 1477-1478
    20. Tupin E, Nicoletti A, Elhage R, et al. CD 1 D-dependent activation of NKT cells aggravates atherosclerosis. J Exp Med, 2004,199(3):417-422
    21. Carreno BM, Collins M. The B7 family of ligands and its receptors: new pathways for costimulation and inhibition of immune responses. Annu Rev Immunol, 2002, 20 (10):29-53
    22. Lee TS, Yen HC, Pan CC, et al. The role of interleukin 12 in the development of atherosclerosis in ApoE-deficient mice. Arterioscler Thromb Vasc Biol, 1999, 19(3):734-742
    23. Buono C, Pang H, Uchida Y, et al. B7-1/B7-2 co-stimulation regulates plaque antigen-specific T cell responses and atherogenesis in LDLR-deficient mice. Circulation, 2004,109(16):2009-2015
    24. Whitman SC, Ravisankar P, Daugherty A, et al. IFN-gamma deficiency exerts gender-specific effects on atherogenesis in apolipoprotein E_/_ mice. J Interferon Cytokine Res, 2002,22(6):661-670
    25. Mach F, Schonbeck U, Sukhova GK, et al. Reduction of atherosclerosis in mice by inhibition of CD40 signalling. Nature, 1998, 394(6689):200-203
    1. Ridker PM, Cannon CP, Morrow D, et al. C-reactive protein levels and outcomes after statin therapy. N Engl J Med, 2005,352(1):20-28.
    2. Eto M, Rathgeb L, Cosentino F,et al. Statins blunt thrombin-induced down-regulation of endothelial nitric oxide synthase expression in human endothelial cells. J Cardiovasc Pharmacol, 2006,47(5):663-667
    3. Alber HF, Frick M, Sussenbacher A, et al. Effect of atorvastatin on peripheral endothelial function and systemic inflammatory markers in patients with stable coronary artery disease. Wien Med Wochenschr, 2007, 157(3-4):73-78
    4. Marketou ME, Zacharis EA, Nikitovic D,et al. Early effects of simvastatin versus atorvastatin on oxidative stress and proinflammatory cytokines in hyperlipidemic subjects.Angiology, 2006,57(2):211-218
    5. Schafer A, Fraccarollo D, Vogt C,et al.Improved endothelial function and reduced platelet activation by chronic HMG-CoA-reductase inhibition with rosuvastatin in rats with streptozotocin-induced diabetes mellitus. Biochem Pharmacol, 2007,73 (9): 1367-1375.
    6. Kobashigawa JA, Katznelson S, Laks H, et al. Effect of pravastatin on outcomes after cardiac transplantation. N Engl J Med, 1995,333(10):621-627.
    7. Kwak B, Mulhaupt F, Myit S, Mach F. Statins as a newly recognized type of immunomodulator. Nat Med, 2000,6(12): 1399-1402.
    8. Lee SJ, Qin H, Benveniste EN. Simvastatin inhibits IFN-gamma-induced CD40 gene expression by suppressing STAT-1alpha. J Leukoc Biol, 2007,82(2):436-447.
    9. Sawada N, Itoh H, Nakao K. Novel actions of HMG-CoA reductase inhibitors(statins)--vascular and cerebral protection through inhibition of small GTPase Rho. Nippon Rinsho, 2001,59(12):2470-2475.
    10. Van Seventer GA, Shimizu Y, Horgan KJ, Shaw S. The LFA-1 ligand ICAM-1 provides an important costimulatory signal for T cell receptor-mediated activation of resting T cells. J Immunol, 1990,144(12):4579-4586.
    11. Weitz-Schmidt G, Welzenbach K, Brinkmann V, et al. Statins selectively inhibit leukocyte function antigen-1 by binding to a novel regulatory integrin site. Nat Med, 2001,7(6):687-692.
    12. Youssef S, Stuve 0, Patarroyo JC, et al. The HMG-CoA reductase inhibitor, atorvastatin, promotes a Th2 bias and reverses paralysis in central nervous system autoimmune disease. Nature, 2002,420(6911):78-84.
    13. Aktas 0, Waiczies S, Smorodchenko A, et al. Treatment of relapsing paralysis in experimental encephalomyelitis by targeting Th1 cells through atorvastatin. J Exp Med,2003,197(6):725-733.
    14. Semb AG, van Wissen S, Ueland T, et al. Raised serum levels of soluble CD40 ligand in patients with familial hypercholesterolemia: downregulatory effect of statin therapy. J Am Coll Cardiol, 2003,41(2):275-279.
    15. Seino Y, Ogawa A, Yamashita T, et al. Multi-biomarker approach to acute coronary syndrome. Nippon Rinsho, 2006,64(4):691-699.
    16. Lawman S, Mauri C, Jury EC, et al. Atorvastatin inhibits autoreactive B cell activation and delays lupus development in New Zealand black/white F1 mice. J Immunol,2004,173(12):7641-7616.
    17. Yin R, Zhu J, Wang Z, et al. Simvastatin attenuates cardiac isograft ischemia-reperfusion injury by down-regulating CC chemokine receptor-2 expression. J Thorac Cardiovasc Surg, 2007,134(3):780-788.
    18. Douglas K, O'Malley PG, Jackson JL. Meta-analysis: the effect of statins on albuminuria. Ann Intern Med, 2006,145(2): 117-124.
    19. Methe H, Brunner S, Wiegand D, et al. Enhanced T-helper-1 lymphocyte activation patterns in acute coronary syndromes. J Am Coll Cardioll, 2005,45:1939-1945
    20. Steppich BA, Moog P, Matissek C, et al. Cytokine profiles and T cell function in acute coronary syndromes. Atherosclerosis, 2007, 190(2):443-451
    21. Shimada K, Miyauchi K, Daida H. Early intervention with atorvastatin modulates TH1/TH2 imbalance in patients with acute coronary syndrome: from bedside to bench. Circulation, 2004,109(18):e213-214
    22. Sarkey JP, Richards MP, Stubbs EB, Jr. Lovastatin attenuates nerve injury in an animal model of Guillain-Barre syndrome. J Neurochem, 2007,100(5): 1265-1277.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700