考虑再生制动的混合动力轿车能量管理策略及多能源集成控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
能源危机和环境污染问题日益严峻,人们对汽车工业节能环保的要求也日益提高。混合动力电动汽车具有低油耗、低排放的优点,被认为是目前最有希望替代传统内燃机汽车的方案。混合动力电动汽车能量管理控制策略和制动控制策略设计是整车控制系统设计的重要环节,这个课题属于混合动力电动汽车的关键技术,当前各国主流汽车厂商都在进行相关研究。
     本文以“十一五”国家863计划电动汽车重大专项以及其他校企合作混合动力电动汽车项目为背景,在全面分析混合动力电动汽车的特点、研究现状和发展趋势的基础上,以混联式混合动力电动汽车为对象,做了如下几方面工作:根据驾驶员的转矩需求,对混合动力驱动系统的三个动力源进行工作转矩分配;制定再生制定控制策略,在满足法规要求和制定安全性的前提下,尽量回收制动能量;对电机和液压混合制动系统进行研究,制定混合制动控制策略;建立该混联式混合动力电动汽车前向式仿真软件平台;对该混合动力电动汽车控制策略进行仿真分析并研究了其在实车上的应用。
     转矩分配策略是混合动力电动汽车控制策略设计的关键环节,是重要的节油点。它涉及到发动机和电机、电池的协同工作。本文研究了混联式混合动力系统的结构,分析了主要工作模式的能量流路径,提出了等效BSFC的方法,来对发动机和电机的工作转矩进行分配。
     制动时的能量回收是提高混合动力电动汽车燃油经济性的重要技术之一。再生制动是目前混合动力电动汽车制造商普遍采用的一项技术。再生制动策略的涉及到制动安全性、驾驶员感觉和能量回馈率,需要对各方面因素进行综合考虑。在满足ECE制动法规要求并尽量提高安全性和驾驶员感觉的前提下,提出了一种最大制动能量回收控制策略,对制动时的电机工作点进行了基于全局效率最优的优化。
     考虑到电机的制动效能以及制动稳定性,需要采用电机、液压制动相结合的混合制动方案。因此,再生制动控制系统与ABS液压制动控制系统协同工作的研究就成了混合动力电动汽车制动系统研究必须面临的问题。本文提出一种再生制动与ABS制动集成控制方案,实现常规制动与防抱死制动情况下摩擦制动与再生制动之间的配合。即确保制动安全性,又回收部分制动能量。
     仿真平台的开发是混合动力电动汽车控制策略研究的重要组成部分,直接影响到控制器开发效率和精度。本文采用理论建模和实验建模结合的方法,在Matlab/Simulink环境中建立了适合混合动力电动汽车仿真分析和控制策略研究的动力学模型。模型主要包括整车、驾驶员、控制器、发动机、电机等动力源元件、变速器、离合器、功率消耗元件等。仿真和试验结果都表明了该模型的正确性和有效性,能够满足精度要求和后续工作需要。
     在建立的混合动力电动汽车模型的基础上,建立了整车控制器模型,对前面设计的转矩分配策略及制动控制策略进行仿真分析。最后,搭建实车测试系统,进行了整车控制器的底盘测功机和道路试验。仿真和试验结果都表明,发动机和电机根据汽车状态和驾驶员需求协同工作,合理的分配驱动转矩,能量消耗满足设计要求。控制器能很好地控制再生制动系统和液压制动系统,在常规制动时回收制动能量约40%。防抱死制动时能保证制动强度和稳定性,并能回收部分制动能量。
     能量管理策略和制动控制策略作为混合动力电动汽车的关键技术,在混合动力电动汽车研发中占有重要地位。希望本文的研究对于提高我国混合动力电动汽车研发水平和实现自主知识产权能够起到一定的作用。
As the energy crisis and environmental pollution problems getting serious, people’srequirements of the energy saving and environmental protection of auto industry are increasing.The hybrid electric vehicle with low fuel consumption and low emissions is considered as themost promising alternatives to the traditional internal combustion engine vehicle. The design ofenergy management control strategies and braking control strategies is a significant part step ofthe control system design of hybrid electric vehicles. This subject is one of the key technologies ofhybrid electric vehicles. Many auto manufacturers around the world are conducting this research.
     This dissertation takes a ‘national863program’ and some university-enterprise cooperationprojects as background, takes a complex hybrid electric car as research object, conducts researcheson the base of allover analysis of the specifics, research status and development trends of hybridelectric vehicles. This dissertation research focus on the following aspects: a working torquedistribution according the driver’s torque demand of tree power sources of the hybrid drive system;developing a regenerative braking control strategy that can recovery braking energy as much aspossible under the premise of meeting the requirements of regulation and security; analyzing theworking principles of regenerative braking and hydraulic braking system and developing aintegrated braking control strategy; developing the simulation software platform of the complexhybrid electric vehicle; carrying out the simulation analysis and real car test.
     The torque distribution strategy is a key part of the hybrid electric vehicle control strategydesign, as well as a significant method to reduce fuel consumption. It relates to the cooperation ofthe internal combustion engine, electric machine and battery. This paper studies the structure ofhybrid electric system and analyses the working modes and energy flows to distribute the outputtorques of engine and electric machines with an equivalent BSFC method.
     The braking energy recover technology is one of the important methods to improve the fueleconomy of hybrid vehicles. The regenerative braking is a technique that is commonly used inhybrid electric vehicle manufacture. Regenerative braking strategy involves the braking safety, thedriver’s feeling and energy recovery rate. The design needs comprehensive consideration ofvarious factors. This paper put forward an optimal braking energy recovery control strategy on thepremise of meeting the ECE regulation’s requirements, maximizing safety and satisfying thedriver’s feelings. The electric machine’s operating points during braking are optimized with apurpose of getting the highest overall efficiency.
     Since the braking strength and braking stability of electric machines may not be enough insome situations, an integrated braking system with electric machines and hydraulic brake system should be used. Therefore, the cooperation of the regenerative braking control system and ABShydraulic brake control system has become a unavoidable problem that the hybrid electric vehicleresearch team must face. In this paper, an integrated braking precept of regenerative braking andABS hydraulic braking is put forward. This precept can carry out the cooperation of electricmachines and friction braking disks both in the normal braking and anti-lock braking situations.This integrated braking control system is designed to ensure the braking safety and recover part ofthe braking energy.
     The development of simulation platform is an important part of the hybrid electric vehiclecontrol strategy design. The simulation platform has a direct impact on the efficiency and accuracyof the controller development. In this paper, a combined methods of theoretical modeling andexperimental modeling is used to build the dynamic model in Matlab/Simulink environment. Thissimulation model is suitable for both simulation analysis and control strategy study of hybridelectric vehicles. The model includes the full vehicle, driver, controller, engine, electric machinesand other components as power source, transmission, clutch, power consumption components, andso on. Both simulation and experiment results show the correctness and validity of the model willthe accuracy requirements and following tasks’ needs.
     On the base of the established simulation model, the controller model is built. Then,simulation and analysis of the torque distribution strategy and braking control strategy is carriedout. Finally, a real car test system is built and tests for controller are carried into execution both onroad and chassis dynamometer. Both simulation and tests results show that the engine and electricmachines cooperate quite well under different vehicle status and driver demands. The controllercan distribute the required torque reasonably and reduce energy consumption to design target. Thecontroller can control the regenerative braking system and hydraulic braking system and recoveryabout40%of braking energy in normal braking. The anti-lock braking control strategy can ensurebrake strength and stability and recover part of the braking energy.
     As the key technologies of hybrid electric vehicles, energy management strategies andbraking control strategy play an important role in the development of hybrid electric vehicles. Thisstudy provides a bit contribution to improve the level of research and development of hybridelectric vehicles and achieve the independent intellectual property rights in China.
引文
[1]欧阳明高.我国节能与新能源汽车发展战略与对策.汽车工程,2006,28(4):317-321
    [2] Stephen Foley. US car giants launch green drive[N/OL]. The Independent,2007-01-08.http://www.independent.co.uk/news/business/news/us-car-giants-launch-green-drive-431278.html
    [3]杨宏亮,陈全世.混联式混合动力电动汽车控制策略综述.公路交通科技.2002,19(1):103-107
    [4]麻友良,陈全世.混合动力电动汽车的结构与特性分析.汽车研究与开发,2000,4:20-22
    [5]丰田汽车混合动力车在美累计销量突破百万[N/OL].新浪汽车,2009.http://auto.sina.com.cn/news/2009-03-13/0731470251.shtml
    [6]丰田普锐斯累计全球销量突破200万辆[N/OL].新浪汽车,2010.http://auto.sina.com.cn/news/2010-10-09/1030660722.shtml
    [7] Hybrid Vehicle Timeline[R/OL]. Hybridcenter,2007.http://www.hybridcenter.org/hybrid-timeline.html
    [8]陈清泉,孙逢春,祝嘉光.现代电动汽车技术[M].北京:北京理工大学出版社,2004:70,73.
    [9]龚依民.混合动力客车集成一体化启动-发电机技术(ISG)与监控系统研究.[博士学位论文].长春:吉林大学,2008
    [10]工信部.节能与新能源汽车产业规划(2011-2020)(征求意见稿),2010-09-21
    [11] BP Statistical Review of World Energy June2011[EB/OL].http://www.bp.com/sectionbodycopy.do?categoryId=7500&contentId=7068481
    [12]朱剑明,彭代勇.世界能源现状与内燃机节能减排的战略意义.现代车用动力.2009,11(4):1-6.
    [13]合同能源管理:节能减排国家新战略[N/OL].中国改革网,2011.http://www.chinareform.net/show.php?id=4891
    [14]万刚.中国“十五”电动汽车重大科技专项进展综述.中国科技产业,2006:110-117
    [15]张银龙.北京新能源汽车设计制造产业工程基地在福田挂牌.城市车辆,2009(1):6-7
    [16]胡古月.武汉启动“十城千辆”计划百辆混合动力公交车投放仪式隆重举行.城市车辆,2009(1):8-9
    [17]国内主流车企“十二五”规划大盘点[EB/OL].盖世汽车网,2011.http://auto.gasgoo.com/news/c/2011-08-25/866fec81-b724-4c28-b2c7-a503a765bf29.html
    [18] Wang A, Chen Y, Zhang R. A novel design of energy management system for hybrid electricvehicles using evolutionary computation[C]. Proc of the18th International Electric VehicleSymposium, Berlin, Germany,2001
    [19] Harpreetsingh Banvait, Sohel Anwar and Yaobin Chen. A Rule-based Energy ManagementStrategy for Plug-in Hybrid Electric Vehicle[C]. Proceedings of the American ControlConference. St. Louis, MO, USA June10-12,2009
    [20]张冰战.插电式混合动力电动汽车能量管理策略研究.[博士学位论文].合肥:合肥工业大学,2011
    [21] Rahman Z, Butler K L, Ehsani M. A comparison study between two parallel hybrid control116concepts[C]. SAE Paper2000-01-0994,2000
    [22] Chan-Chiao Lin, Jun-Mo Kang, Grizzle J W, et al. Energy Management Strategy for aParallel Hybrid Electric Truck[C]. Proceedings of the American Control Conference.Arlington: VA,2001
    [23] Chan-Chiao Lin, Huei Peng, Soonil Jeon. Control of a Hybrid Electric Truck Based onDriving Pattern Recognition [C]. Proceeding of the AVEC.2002
    [24]阎平凡著.人工神经网络与模拟进化计算[M].北京:清华大学出版社.2000
    [25]罗四维著.大规模人工神经网络理论基础[M].北京:清华大学出版社.2004.2
    [26] Delprat S. Optimal Control of a Parallel Powertrain: From Global Optimization to Real TimeControl Strategy [C]. Technical Paper of EVS18. Berlin,2001
    [27] Brahma A, Glenn B, Guezennec B. Modeling, performance analysis and control design of ahybrid sport-utility vehicle[C]. Proc of IEEE International Conference on ControlApplications, Hawaii, USA,1999.448-453
    [28] Schouten N J, Salman M A, Kheir N A. Energy management strategies for parallel hybridvehicles using fuzzy logic[J]. Control Engineering Practice,2003,11(2):171-177
    [29] Salman M A, Schouten N J, Kheir N A. Control strategies for parallel hybrid vehicles[C].Proc American Control Conference, Chicago, USA,2000.524-528
    [30] Schouten N J, Salman M A, Kheir N A. Fuzzy logic control for parallel hybrid vehicles[J].IEEE Transactions on Control Systems Technology,2002,10(3):460-468
    [31]王保华,王伟明,张建武等.并联混合动力汽车控制策略比较研究[J].系统仿真学报,2006(Vol18)No2
    [32]陈健,李彦,吴亚祥.混合动力电动汽车模糊逻辑控制策略的研究与仿真[J].汽车工程,2006(Vol28)No4
    [33]张邦基,于德介,邓元望.基于模糊逻辑的并联式混合动力电动汽车能量控制系统[J].汽车工程,2009(Vol31)No6
    [34]余群明,喻伟雄,严钦山等.基于模糊逻辑的混联式电动汽车控制策略研究[J].系统仿真学报,2008(Vol20)No3
    [35]资新运,杜常清,张增建等.混合动力汽车模糊逻辑转矩管理策略仿真[J].武汉理工大学学报,2008(Vol30)No4
    [36]姚明亮,秦大同,胡明辉等.基于模糊逻辑控制策略的混合动力汽车仿真研究[J].汽车工程,2007(Vol29)No11
    [37]朱诗顺,任永乐,张月滨.基于电量平衡的串联混合动力汽车瞬时优化控制[J].中国机械工程,2008.03
    [38]杨宏亮,陈全世.混联式混合动力汽车控制策略研究综述[J].公路交通科技,2002,(1).
    [39]欧键,张勇,陈宝等.混合动力汽车控制策略研究发展[J].重庆工学院学报,2008.(2)
    [40] Delprat Sebastien. Control Strategy Optimization for an Hybrid Parallel Powertrain[C]Proceedings of the American Control Conference. Arlington:VA June,2001:25-27
    [41]詹迅.轻度混合动力汽车再生制动系统建模与仿真:[硕士学位论文].重庆:重庆大学,2005
    [42] Michelle Krebs. Two modes are better than one[N/OL]. Emunds Insideline,2007-10-05.http://www.edmunds.com/insideline/do/Drives/FirstDrives/articleId=120687
    [43] Hybrid check list: What kind of Hybrid is it?[R/OL]. Hybridcenter,2007.http://www.hybridcenter.org/hybrid-center-how-hybrid-cars-work-under-the-hood.html
    [44] Hybrid Vehicle History More than a Century of Evolution and Refinement [R/OL].Hybrid Vehicle,2005. http://www.hybrid-vehicle.org/hybrid-vehicle-history.html
    [45] Charles W. Marshall. Electric Vehicles. Hoboken, NJ: J. Wiley, c2003.
    [46]曹雪莲,许明桓.带有制动能量回收系统的城市公共汽车.中国测试技术,2003(1):16~18
    [47] R. P. Kepner. Hydraulic Power Assist–A Demonstration of Hydraulic Hybrid VehicleRegenerative Braking in a Road Vehicle Application. SAE International,2002-01-3128
    [48] S R Cikanek, K E Bailey. Regeneration Braking System For A Hybrid ElectricVehicle. IEEE Proceedings of the American Control Conference,2002:3129-3134
    [49] Michael Panagiotidis, George J Delagrammatikas, Dennis N Assanis. Developmentand Use of a Regenerative Braking Model for a Parallel Hybrid Electric Vehicle. SAEInternational,2000-01-0995
    [50] Eiji Nakamura, Masayuki Soga, Akira Sakai, etc. Development of ElectricallyControlled Brake System for Hybrid Vehicle. SAE International,2002-01-0300
    [51] J. Pickenhahn, L. Gilles, Th. H nig, P. Thomas: Concepts for Regenerative Brakingin Vehicles with Hybrid Propulsion Drive, XXVIth International μ Symposium,
    [52]罗玉涛,俞明,陈炳坤,等.电动车制动能量再生反馈控制研究.机床与液压,2002(5):162-164
    [53]耿聪,刘溧,张欣,等. EQ6100混合动力电动汽车再生制动控制策略研究.汽车工程,2004,26(3):253-256
    [54]耿聪,张欣,张良,等.混合动力电动公交汽车(HEB)再生制动的控制策略与性能仿真.高技术通讯,2004(8):80-82
    [55]张欣,刘溧,于海生.混合动力电动汽车制动系统回馈特性仿真.中国公路学报,2006,19(3):111-116
    [56]殷承良,彭栋.混合动力电动汽车制动能量回馈系统分析.2002中国电动汽车研究与开发,2002:147-154
    [57]彭栋,殷承良,张建武.混合动力汽车制动力矩动态分配控制策略研究,系统仿真学报,2007,19(22):5254-5259
    [58] Wade D. Bartlett. Calculation of Deceleration Rates for S-Cam Air-Braked HeavyTrucks Equipped withAnti-Lock Brake Systems. SAE International SP-2063.2007-01-0714.2007.
    [59]王兆.国内外ABS标准法规简介.商用汽车,2002,6:57-59
    [60] Michihito Shimada, Satoru Niwa, and Junich Sakamoto,“Brake System of HybridType Vehicle having Front and Rear Regeneration Brakes of different efficiencies”,U.S. Patent,2000
    [61] Kevin Kidston, Brendan Conlon,“Electric Vehicle with Regenerative and Anti-lockBraking”, U.S. Patent,1995
    [62] Jochen Fuehrer, Gregor Schmitt,“Co-ordination Method for a Regenerative andAnti-skid Braking System”, U.S. Patent,2003
    [63] H Eren and A G G ktan,External torque application on antilock brake systems,Proceedings of the Institution of Mechanical Engineers, Part D: Journal ofAutomobile Engineering, Vol.215Part D
    [64]朱雅君.混合动力商用车再生制动及防抱死集成控制系统的研究.[硕士学位论文].长春:吉林大学,2007
    [65] Motomu Hakiai, Toshio Taichi. Brake System of “Eco-Vehicle”.14th InternationalElectric Vehicle Symposium(EVS14)
    [66] Evan S. Boberg,“Brake Blending Strategy for a Hybrid Vehicle”, U.S. Patent,1998
    [67]张华,周容,张嘉君.本田第四代混合动力系统(IMA)研究.轻型汽车技术,2006(8):26-33
    [68] Hiroyuki Ashizawa.“Coordinated Brake Control System”, U.S. Patent,2006
    [69]初亮等.混合动力轿车再生制动与防抱死集成控制系统.中国,发明专利,200710055687.9,2007
    [70] Akihito Kusano,“Brake Pressure Control Device for Automotive Vehicles”, U.S.Patent,2000
    [71] Wolfgang Fey, Georg Fachinger, Mario Engelmann, etc.,“Electrohydraulic BrakeSystem”, U.S. Patent,2001
    [72] Kazuhiro Tagata, Koji Sakai, Yasushi Aoki, etc.,“Vehicle Brake Device”, U.S. Patent,2007
    [73]初亮等.混合动力商用汽车的气压制动防抱死控制系统.中国,发明专利,200610017245.0,2007
    [74]彭栋.混合动力汽车制动能量回收与ABS集成控制研究.[博士学位论文].上海:上海交通大学,2007
    [75]李卫民.混合动力汽车控制系统与能量管理策略研究.[博士学位论文].上海:上海交通大学,2008
    [76]傅直全.气压ABS混合仿真系统的研制与应用.[硕士学位论文].北京:清华大学,2003
    [77]李君.车辆ABS控制系统快速开发研究.[博士学位论文],上海:上海交通大学,2002
    [78]赵和平.硬件在环仿真技术在防抱死制动系统试验台架开发中的应用.[博士学位论文],上海:上海交通大学,2002
    [79] Brach.R.M.Vehicle dynamics model for simulation on a microcomputer.Int.J.VehicleDesign,1991,V01.12(4):404-419.
    [80] B.W Anthony, H.Z.Stanislaw.Modeling and control of an automated vehicle.VehicleSystem Dynamics,1997,V01.27:131-155.
    [81] Palkovics,L.,El-Gindy, M.Modeling of the cornering characteristics of tyre on uneven roadsurface:a dynamic version of the Nero-Tyre.Int.J.Vehicle Design,1994,V01.15(1/2):189-215.
    [82] Karen M.Connair, Mark O.Bodie.Development of a common vehicle model for chassiscontrol design.SAE Technical Paper, No.1999-01-0732.
    [83] Gim.G and Nikravesh.P.E.(1990).‘An analytical model of pneumatic tyres for vehicledynamic simulations. Part1: Pure slips’. Int. J. of Vehicle Design, vol.11. No.6, pp.589-618
    [84] Gim.G and Nikravesh.P.E.(1991).‘An analytical model of pneumatic tyres for vehicledynamic simulations. Part3: Validation against experimental data’. Int. J. of Vehicle Design,vol.12. No.2, pp.217-228
    [85] Bohm F.Mechanik des.Gurtelreifens.Ingenicar-Archiv.1966(35):82-101.
    [86]刘青.用于车辆动力学分析的轮胎模型.吉林工业大学博士后工作报告,1998年5月.
    [87]任雷,复杂工况下的轮胎非稳态侧偏特性研究.[博士学位论文],长春:吉林工业大学,2000
    [88] S.Sasaki,T.Takaoka, H.Matsui,T.Kotani.Toyota newly developed electric-gasolineengine hybrid powertrain system.The14th International Electric Vehicle Symposium andExposition.Orlando,USA,1997.
    [89] Gunter Gutmann.Hybrid electric vehicles and electrochemical storage system-a technologypush-pull couple.Journal of Power Sources,1999,V01.84:275-279.
    [90]王庆年,何洪文,李幼德,初亮.并联混合动力汽车传动系参数匹配.吉林工业大学自然科学学报,2000,V01.30(1):72-75.
    [91]舒红,秦大同,胡建军.混合动力汽车控制策略研究现状及发展趋势.重庆大学学报,2001,V01.24(6):28-31.
    [92]张俊智,卢青春,王丽芳.汽车混合动力传动的能量流动与比较.机械科学与技术,2001,V01.20(9):47-51.
    [93]浦金欢.混合动力汽车能量优化管理与控制策略研究.[博士学位论文],上海:上海交通大学,2004
    [94] Bailey, K. E., Powell, B. K., A hybrid electric vehicle powertrain dynamicmodel.Proceedings of the American Control Conference,Seattle,Washington,USA,1995.
    [95] Cikanek,S.R.,Bailey,K.E.,Powell,B.K.Parallel hybrid electric vehicle dynamicmodel and powertrain contr01.Proceedings of the American Control Conference,NewMexico,USA,1997.
    [96] Hauer K-H.Analysis tool for fuel cell vehicle hardware and software (controls) with anapplication to fuel economy comparisons of alternative system designs.PhD.Dissertation,University of California Davis,USA,2001.
    [97]殷承良.车辆防抱死制动系统(ABS)实用化技术控制逻辑与实车试验研究.博士后工作报告.上海:上海交通大学,2002年5月.
    [98] Qingyuan Li.Keith W.Beyer,Quan Zheng.A model-based brake pressure estimationstrategy for traction control system.SAE Technical Paper, No.2001-01-0595.
    [99] Martin Maler’ Klaus Muller.ABS5.3:The New and compact ABS5unit for passenger Calls.SAE Technical Paper, No.950757.
    [100] BOSCH.Vehicle safety systems for passenger cars.Electronics stability program technicalinstruction.Edn,Berlin,Germany,1999.
    [101] PENG Dong,YIN Cheng-liang,ZHANG Jian-wu.An investigation into regenerativebraking system control strategy for hybrid electric vehicle.Journal of Shanghai JiaotongUniversity (Science),2005,V01.10(4):407-412.
    [102]龚纯,王正林.精通MATLAB最优化计算[M].北京:电子工业出版社,2009年
    [103]谢涛,陈火旺.多目标优化与决策问题的演化算法[J].中国工程科学,2002,2(4):59-68.
    [104]雷德明,严新平.多目标智能优化算法及其应用[M].北京:科技出版社,2009年.
    [105]梁艳春,吴春国,时小虎,葛宏伟.群智能优化算法理论与应用[M].北京:科学出版社,2009年9月.
    [106]吴光强,陈慧勇.基于遗传算法的混合动力汽车参数多目标优化[J].汽车工程,2009,31(1):60-64.
    [107]李莉.基于遗传算的多目标寻优策略的应用研究[D].江南大学硕士学位论文.2008,6.
    [108]王洪建.基于NSGA-II的变速器齿轮系多目标可靠性优化设计[D].武汉理工大学硕士学位论文,2010.
    [109] GB/T19753-2005轻型混合动力电动汽车能量消耗量试验方法
    [110] Mehrdad Ehsani, Yimin Gao, Ali Emadi. Modern Electric, Hybrid Electric, and Fuel CellVehicles [M]. CRC Press
    [111]王军,熊冉,杨振迁.纯电动大客车制动能量回收系统控制策略研究[J].汽车工程,2009,31(10):932-937.
    [112]陈庆樟,何仁,商高高.基于ABS的汽车能量再生制动集成控制研究[J].汽车工程,2008,30(4):301-304.
    [113]秦大同,邓涛,杨阳,林志煌.基于前向建模的ISG型CVT混合动力系统再生制动仿真研究[J].中国机械工程,2008,19(5):618-624.
    [114]舒红,秦大同,胡明辉,杨亚联,叶明.轻度混合动力汽车再生制动能量管理策略[J].机械工程学报,2009,45(1):167-173.
    [115]邓涛,孙东野,秦大同,林志煌. CVT混合动力汽车再生制动系统仿真[J].机械工程学报,2009,45(9):214-220.
    [116] M.Ozaki,T.Shinpo,N.Furukawa.A combined brake system for energy regeneration.The15st International Electric Vehicle Symposium and Exposition, Brussels,Belgium,1998.
    [117] Cikanek, S.R.,Electric vehicle regeneration antiskid braking and traction controlsystem.United States Patent,#5,450,324,USA,1995.
    [118] Cikanek, S.R.Fuzzy logic electric vehicle regenerative antiskid braking and tractioncontrol system.United States Patent,#5,358,317,USA,1994.
    [119] PENG Dong,Zhang Yong,YIN Chengliang.ZHANG Jianwu.Design of hybrid electricvehicle braking control system with optimal target wheel slip ratio contr01.SAE2007WorldCongress,SAE Technical Paper, Paper No.2007·01-1515.SP-2107.
    [120] D.PENG,C.YIN,J.ZHANG Study on combined control of regenerative braking andanti lock braking system for hybrid electric vehicle.International Journal of AutomotiveTechnology,Vol.9, No.6, pp.749-757
    [121]邵贝贝.单片机嵌入式应用的在线开发方法.北京:清华大学出版社,2004.18-19
    [122] MC9S12XDP512Data Sheet, Rev.2.17, Freescale Semiconductor, July2007
    [123] Innovative ECU Development Processes and Tools, Hans Goller,2008.8

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700