大型轴流引风机通流部件及其内流特性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
动叶可调大型轴流引风机广泛应用于300MW以上大容量火电机组。日益苛刻的能源与环境要求,近几年大型轴流风机的高效性和调节特性引起了人们的特别关注。大型轴流式引风机运行工况直接关系到锅炉以至整个机组运行的安全经济性,为提高引风机运行可靠性,须对风机内部流场结构和流动损失进行研究。目前对轴流引风机的研究主要采用实验的方法给出风机的调节性能和机械结构性能,本文采用CFD方法对其内流特性进行数值研究,阐述风机内部的某些流动细节,旨在为风机结构优化提供依据和参考。
     本文CFD分析使用商业软件FLUENT,采用雷诺时均的三维Navier-Stokes方程,选用标准k ?ε两方程湍流模型对大型轴流引风机分别进行了全流道和单流道数值模拟,性能计算值与实验值对比,验证了CFD计算的有效性。
     文中对轴流引风机整机作数值分析,着重研究不同结构配置的进气箱内部流场,探讨其内部流动损失的原因,比较几种不同结构配置的进气箱性能,计算结果为进气箱结构的优化设计提供参考。
     论文同时探讨了来流条件—进口预旋对叶轮内流的影响,分析不同预旋角时风机内流特性,旨在为前导叶的设计及安装提供依据。数值计算了不同叶片安装角时的风机性能,分析不同叶片安装角时风机内部流场分布,讨论了动叶可调轴流引风机的调节性能。初步探讨了动叶与导叶之间的轴向间隙对大型轴流风机性能的影响,旨在综合考虑性能和风机轴向尺寸时,选取合适的轴向间隙范围。
     对风机出口整流体进行数值研究,分析了扩散筒内部流动情况,比较了采用不同方案整流体时扩散筒的扩压效率和损失,进而选取性能较好的整流体。
Nowadays the high efficiency and regulating characteristic of large axial fan are attended especially, because the demands of energy sources and environment are rigorous increasingly, and adjustable rotor blade axial induced draft fan is used widely in large power plant which capacity is more than 300MW. The work condition of large axial fan directly influences the security and economical efficiency of boiler up to whole power plant. The internal flow structure and flow loss in axial fan has been researched in order to get higher work reliability. The research of axial induced draft fan is focused on the regulating characteristic and mechanism structure performance used experiment method. The numerical research is carried out on three dimensional internal flow field of fan used CFD method. Some flow details are showed and the structure optimization design of fan can be suggested from this paper.
     In this thesis, CFD analysis using FLUENT commercial software based on solving Reynolds averaged Navier-Stokes equations coupled with K-εturbulence model has been used to study the internal flow field of large axial induced draft fan with whole and single flow passage. The numerical results are compared with the experimental data, which validate the precision of the numerical simulation.
     Numerical analysis with the whole flow passage has been studied between different configuration on inlet box internal flow of axial induced draft fan. Numerical simulation results reveal the reason of the loss in inlet box. Performance of different configuration inlet box is compared. The structure optimization design of inlet box can be suggested from the paragraph.
     In addition, the influence of impeller’s internal flow field from inlet prerotation flow conditions is researched. Internal flow characteristic of different prerotation angle is compared, which can be used in the design and setting of inlet guide vanes. Performance and internal flow field distribution of various blade stagger angle of axial fan is computed. Regulating characteristic of adjustable rotor blade axial induced draft fan is discussed. The influence of large axial fan’s performance from axial clearance between rotor and stator is analyzed simply, which can be used to select appropriate axial clearance range when performance and axial size are considered synthetically.
     The performance of outlet rectifier object is investigated using numerical simulation. Internal flow field of diffuser is analyzed, diffuser efficiency and flow loss of diffuser between various rectifier object are compared, and than selecting preferable rectifier object.
引文
[1] 李庆宜.通风机.第一版.北京:机械工业出版社,1981.1-4
    [2] 朱自强,吴子牛,李津等.应用计算流体力学.第一版.北京:北京航空航天大学出版社,1998.1-5
    [3] 刘顺隆,郑群.计算流体力学.第一版.哈尔滨:哈尔滨工程大学出版社,1998.1-2
    [4] 苏铭德,黄素逸.计算流体力学基础.第一版.北京:清华大学出版社,1997.1-4
    [5] 赵兴艳,苏莫明,张楚华等.CFD 方法在流体机械设计中的应用.流体机械,2000,28(3):22-25
    [6] Inoue M. Vortex and Turbomachinery. In: The Fifth Asian International Conference of Fluid Machinery. Seoul, Korea. 1997. 117-131.
    [7] D. G. Ainley. The Performance of Axial Flow Turbines. Proc. Institution of Mechanical Engineers. 1948, 159: 230-237
    [8] D. G. Ainley., G. C. R. Mathieson. A Method of Performance Estimation for Axial Flow Turbines. British ARC R&M 2974. 1951
    [9] Squire H B, Winter K G. The Secondary Flow in Cascade of Airfoils in a Non-uniform Stream. Journal of Aero. Sc., 1951, 8(4): 271-287
    [10] Hawthorne W R. Some Formulate for the Calculation of Secondary Flow in Cascade. ARC report 17519. 1955
    [11] Wang H P, Olson S J, Goldstein R J, et al. Flow Visualization in a Linear Turbine Cascade of High Performance Turbine Blades. ASME paper 95-GT-7
    [12] Langston L S. Cross Flows in a Turbine Cascade Passage. Journal of Engineering for Power, 1980, 1980,102(4): 866-874
    [13] Sharma O P, Butler T L. Predictions of Endwall Losses and Secondary Flows in Axial Flow Turbine Cascades. ASME Journal of Turbomachinery, 1987,109: 229-236
    [14] Tallman J A. Simulation of Tip Leakage Flows in Turbine Rotor using Computational Fluid Dynamics: [M. Sc. Thesis in Mechanical Engineering]. Pennsylvania State University, 1999
    [15] 王仲奇,冯国泰,王松涛等.透平叶片中的二次流旋涡结构的研究.中国工程热物理学会第 10 届热机气动热力学学术会议文集.青岛:2001.201-210
    [16] 侯树强,王灿星,林建忠. 叶轮机械内部流场数值模拟研究综述. 流体机械, 2005, 33(5) : 30-34
    [17] Wu C H.. A general theory of three dimensional flow in subsonic and supersonic tu rbo-machines of axial-, radial- and mixed-flow types. NACA, TN2604, 1952
    [18] 张莉,陈汉平,徐忠. 离心压缩机叶轮内部流场的准三元迭代数值分析. 风机技术, 2000(5) : 3-7
    [19] 王灿星,林建忠,宋向群. 多叶离心通风机内部流场的计算. 风机技术, 1997(4) : 6-9
    [20] Epureanu B I, Hall K C, Dowel E H. Reduced-Order Models of Unsteady Viscous Flows in Turbomachinery Using Viscous-Inviscid Coupling. Journal of Fluids and Structures, 2001(15) : 255-273
    [21] 阎超. 流体机械内部流动数值计算方法的新进展(一). 流体机械, 1994, 22(8) : 35-38
    [22] 阎超. 流体机械内部流动数值计算方法的新进展(二). 流体机械, 1994,22(9) : 33-37
    [23] He L, Sato K. Numerical Solution of Incompressible Unsteady Flows in Turbomachinery. Journal of Fluids Engineering, 2001, 123 : 680-685
    [24] 陈海生,梁锡智,谭春青等.动叶可调轴流式通风机出口流场的实验研究.煤炭学报,2000,25(4):412-415
    [25] 马宏伟,蒋浩康,聂超群.轴流风机转子通道内尖区三维流场.工程热物理学报,1998,19(1):45-48
    [26] Zhu Xiaocheng, Lin Wanlai, Du Zhaohui, et al. LDV Measurement in Three Dimensional Flow Field of an Axial Fan. In: The 4th International Conference on Pumps and Fans. Tsinghua University, Beijing. 2002. 173-179
    [27] 李巍,王国强.具有叶顶间隙轴流叶栅流动数值模拟.上海交通大学学报,2000,34(12):1708-1712
    [28] Estevadeordal J, Gogineni S, Copenhaver W, et al. Flow Field in a Low-speed Axial Fan: a DPIV Investigation. Experimental Thermal and Fluid Science, 2000,23(1-2):11-21
    [29] Myung H J, Baek J H. Mean Velocity Characteristics behind a Forward-Swept Axial-Flow Fan. JSME International Journal, Series B, 1999, 42(3): 476-488
    [30] Kim Chang-Soo, Kim Kwang-Ho. Flow Characteristics of Axial Flow Fan. In: Proceeding of the 6th Asian International Conference on Fluid Machinery. Johor. 2000. 139-144
    [31] Kim Kwang-Yong, Kim Sung-Hyub, Kim Tae-Jin, et al. Prediction of the Three Dimensional Viscous Flows Through an Axial Flow Fan. In: Proceeding of the 4th Asian International Conference on Fluid Machinery. Suzhou.1993,1. 101-106
    [32] 陈海生,谭春青,梁锡智.子午加速轴流风机的全三维优化设计.流体机械,2006,34(6):13-16
    [33] 朱正林, 辛洪祥,徐治皋.轴流式通风机出口整流体性能优化.风机技术,2006(3):9-10
    [34] 陈海生,康顺等.轮毂间隙对轴流风机性能和流场影响的数值与实验研究.流体机械,2006,34(2):1-6
    [35] 李晓鹏,李剑波,吴克启.空调用轴流风机内流分析及性能优化.流体机械,2006,34(3):11-14
    [36] Elhadi E E, Wu Keqi. Simulation of Vortex Flows in Axial Flow Fan Using Computational Fluids Dynamics. Pakistan Journal of Information and Technology, 2002, 1(3): 242-249
    [37] Elhadi E E, Wu Keqi. Numerical Simulation and Modification of 3D Flow Phenomena in Axial Flow Fan. TASK Quarterly, Scientific Bulletin of the academic computer center in the Gdansk, Computational Fluid Dynamics, 2002, 7(2): 199-213
    [38] Vad J, Bencze F. Three-dimensional Flow in Axial Flow Fans of Non-free Vortex Design. International Journal of Heat and Fluid Flow, 1998,19(6): 601-607
    [39] 汪学军,游斌.有无外风筒时轴流通风机内部流场 PIV 实验比较. 风机技术,2004(2):20-21
    [40] 谢军龙,吴克启,魏兵海.前缘弯掠轴流转子简化设计及其内流分析.华中科技大学学报,2004,32(1):28-31
    [41] 郑立捷,吴克启.有无外罩时前缘弯掠轴流风扇内流性能的比较. 华中科技大学学报,2003,31(11):79-81
    [42] 彭红文. 火力发电厂 600MW 机组引风机选型经济性分析. 电站辅机,1998,3:27-32
    [43] 罗勇等. 300MW 发电机组中锅炉引风机进气箱的优化设计. 节能,2000,3:12-13
    [44] 吴跃东,李泰勋. 轴流通风机做为引风机时各方面的比较. 风机技术,1998(2):33-34
    [45] 杨朝刚. 300MW600MW 锅炉引风机的优化型式. 风机技术,1999,2:12-17
    [46] 马良玉等. 大型动静叶调节轴流通风机性能在线监测的一种新方法. 风机技术,2000,5:42-46
    [47] 徐向阳等. 可调轴流式锅炉引风机动叶片磨损失效分析. 华北电力大学学报,1997,3:68-73
    [48] 吴克启,胡胜利. 包含复杂形状进气箱的旋转叶轮内部流动的实验研究.工程热物理学报,1995,16(3):295-299
    [49] 魏兵海,谢军龙,吴克启. 叶轮机械设计与影响性能及内流的若干重要问题. 工程热物理学报,2001,22(2):185-187
    [50] 胡胜利,吴克启,程尚模. 流体机械复杂形状进气箱内部流场的 PDA 测量. 工程热物理学报,1995,16(1):60-64
    [51] Wu Keqi, Ou Yingda, Li Qiang. Experimental Research for the Influence of Inflow Conditions and Blade Tip Clearances on Inlet and Outlet Flow Fields of Diagonal Flow Fan Impeller. Proceeding of the Fifth Asian International Conference on Fluid Machinery. II:681-685
    [52] Wu Keqi, Ou Yingda, Xie Haiying. Investigation into Influence of Inlet Prewhirl on Flow Field of Deagonal Impeller with Exit Guide Volute. Proceeding of 1996 International Compressor Engineering Conference at Purdue.1996.II:681-685
    [53] 罗勇, 马材芬. 大型轴流式锅炉引风机进气箱改型实验研究. 流体机械, 1998 , 26 (7) : 8-11
    [54] 罗勇,李世争,李敏霞等. 大型锅炉引风机进气箱改型试验研究(二)——进出口面积比对性能的影响. 流体机械,1999,27(4):10-11
    [55] 杨春,李秋实,袁巍,陆亚钧. 风机结构形式对其性能影响的数值与实验研究. 航空动力学报,2005,20(3):512-517
    [56] 吴克启,赖焕新. 复杂形状进气箱与叶轮一体的斜流风机内部湍流数值分析. 工程热物理学报,1998,19(3):320-324
    [57] 罗勇,常冰,马材芬. 复杂形状轴流引风机进气箱内轴径变化对性能的影响. 流体机械,1998,27(11):14-18
    [58] 黎国强. 基于 Symphony 分散控制的引风机防喘振研究. 华东电力,2004,32(6):30-31
    [59] 杨永钊,王松岭,傅松等. 浅谈电厂常见风机进气箱的改型. 广东电力,2003,16(6):52-55
    [60] 李景银,吕峰,黄靓.带有进气箱的轴流风机性能变化数值分析.中国工程热物理学会第 12 届流体机械学术会议论文集.重庆:2006.200-206
    [61] Wu Zhong Hua.A General Theory of Three-Dimensional Flow with subsonic and Supersonic Turbomachine of Axial Radial and Mixed Flow Types . ASME No.50-A-79, Trans. ASME Nov. 952 or NACA TN 2604, 1952
    [62] 赵兴艳,苏莫明,张楚华等. CFD 方法在流体机械设计中的应用. 流体机械,2000,28(3):23-25
    [63] 陈矛章.粘性流体动力学基础.第一版.高等教育出版社,1993
    [64] FLUENT Inc. FLUENT 6.0 Documentation.FLUENT Inc.2001
    [65] 陶文铨. 数值传热学. 第一版.西安交通大学出版社,1988
    [66] 陶文铨. 计算传热学的近代进展. 第一版.北京:科学出版社,2000
    [67] Patankar S V..Numerical Heat Transfer and Fluid Flow.New York: Hemisphere Publishing Corporation, Taylor &Francis Group, 1980
    [68] S.V.Patankar.Numerical Heat Transfer and Fluid Flow.Hemisphere,Washington,1980
    [69] Kim, Y., Engeda, A., Aungier, R.. The Influence of Inlet Flow Distortion on the Performance of a Centrifugal Compressor and the Development of Improved Inlet Using Numerical Simulations. Proceedings of the Institution of Mechanical Engineers. Part A, Journal of Power and Energy, 2001,215, Iss. A3:323-338
    [70] Dawes W N.The Simulation of Three-Dimensional Viscous Flow inTurbomachinery Geometries Using a Solution Adaptive Unstructured Mesh Methodology.Journal of Turbomachinery, 1992,114(4): 528-537
    [71] Tsung F L, Loellbach J H. Development of an Unsteady Unstructured Navier Stockes Solver for Stator-Rotor Interaction. AIAA-96-2668
    [72] Athavale M M, Tiang Y, Przekwas A J. Application of an Unstructured Grid Solution Methodology to Turbomachinery Flows. AIAA-95-00174
    [73] 刘学强,伍贻兆.三维复杂外形非结构网格的生成及应用.南京航空航天大学学报,2000,32(5):534-538
    [74] 韩振学,方韧,刘志坚.非结构化多重网格流场数值计算. 航空动力学报,1998,13(2):149-152
    [75] 陈浮,宋彦萍,王仲奇等.附面层吸除对压气机叶栅稠度特性影响. 工程热物理学报,2005,26(2):211-215
    [76] Kim, Y., Engeda, A., Aungier, R.. The Influence of Inlet Flow Distortion on the Performance of a Centrifugal Compressor and the Development of Improved Inlet Using Numerical Simulations[J]. Proceedings of the Institution of Mechanical Engineers. Part A, Journal of Power and Energy, 2001. Vol. 215, Iss. A3:323-338
    [77] 罗晟,祁大同,赵复荣等.离心风机叶轮进口预旋的测量和分析.流体机械,2002,30(8):6-7
    [78] 张克危.流体机械原理.第一版.北京:机械工业出版社,2000
    [79] 李占良,袁民健,安卫平等.一种新型带轴向进气预旋调节器的离心式高炉鼓风机.流体机械,2002,30(7):17-20
    [80] 李传鹏,胡骏,张燎原等.轴向间距变化对轴流压气机全流量特性的影响.推进技术,2004, 25(16):508-511
    [81] 电机工程手册编辑委员会.机械工程手册.通用设备卷.第二版.北京:机械工业出版社,1997

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700