运动汽车声场可视化方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前的声学摄像机系统,能够直观、快速地进行噪声源的识别和定位,但由于运动汽车噪声的多普勒效应等问题,使得上述系统在运动汽车声场可视化中的应用具有一定的难度,并且现有系统在应用于运动汽车时常包括一些不方便或不够准确的操作,影响了测量的效率。因此,研究能够直观、快速、准确地实现运动汽车声场可视化的方法,就具有非常现实的意义。
     本文首先建立起运动汽车声场可视化中各工程对象的数学描述。建立描述图像和空间中的位置的各类坐标系和不同坐标间的变换关系,定义了声源场、测量场、重建场等主要声场,并描述了声场间的时空关系。
     提出了带大地坐标位置的汽车图像的双目视觉获取方法。通过两台摄像机分别拍摄运动汽车的图像,识别汽车表面粘贴的定位标志在图像中的位置,通过编号识别匹配相同的位置点,进而利用双目视觉原理计算其空间位置,得到汽车在运动过程中的位置和速度。
     提出了运动声场分析的虚假声源抑制方法。通过对短时多普勒效应的分析,建立运动声场的短时波叠加关系;利用波束形成方法对声源场内的声源点的强度进行预估,根据预估结果得到可能的主要声源点;针对各声源点建立短时波叠加方程,并求解声源强度;利用求解的声源强度计算重建场声压分布。
     通过摄像机触发信号与声压信号的同步采集和对触发信号的分析,实现声场与汽车图像的时间同步;通过对重建点的大地坐标位置和其对应的屏幕位置的变换实现声场与汽车图像的空间匹配;通过声场色标映射实现声场与汽车图像的融合显示,并最终合成动态声场视频。
     最后,搭建了应用上述方法进行运动汽车声场可视化的软、硬件试验平台,并提出试验的操作流程,通过对已知声源和实车噪声声源的可视化测量试验对系统性能进行验证。试验结果表明,运动汽车声场可视化系统可以准确、方便地进行运动汽车的声场可视化重现,从而能够直观地从结果视频中看到的主要噪声源,并且能够看到声场在汽车运动过程中的变化情况。
With current acoustic camera systems, noise sources can be identified and located quickly and intuitively. But because of the Doppler Effect of the noise of moving vehicles, it’s difficult to apply these systems directly in the sound visualization of moving vehicles. Besides, there are some inconvenient or inaccurate procedures when these systems used on moving vehicles, which make the measurement inefficient. Therefore, the researches on the method that makes sound visualization of moving vehicles more intuitively, quickly, and accurately have very practical significance.
     First, the mathematical descriptions are created for all kinds of the engineering objects in the sound visualization of moving vehicles, including the coordinate systems for the graphic and spatial postions, and their transformations. The sound fields are defined, such as the source field, the measurement field, and the reconstruction field, and their temporal and spatial relationships are desribed.
     The binocular vision method for acquiring the vehicle pictures with the ground positions is proposed. The pictures of the moving vehicle are shot by two cameras separately, and the screen positions of the location marks stuck on the side surface of the vehicle are identified. The same marks are matched with identifying the serial numbers of the marks, and the spatial positions of the marks can be computed with binocular vision theory, then the position and the velocity of the moving vehicle are acquired.
     The method of restraining the ghost sources for the moving source sound field is proposed. The short-time wave superposition relation for moving sound sources is deduced by analyzing the Doppler Effect in very short time. The source strengths of the point sources in the source field are pre-estimated with the beamforming algorithm, and the possible main sources are identified with the pre-estimation result. Then the wave superposition equation for the main sources is founded, and the source strengths are figured out by solving the equation. At last, the sound pressure distribution of the reconstruction field is computed with the source strengths.
     The sound field and the pictures are temporally synchronized by collecting the sound pressure and the camera trigger signal at same time and analyzing the saved trigger signal. The sound field and the pictures are spatially matched with the coordinate transformation between the ground coordinates and the screen coordinates of the reconstruction points. Then the sound field and the pictures are merged with the mapping from sound pressure to color, and the dynamic sound field video is finally generated.
     The hardware and software system of the sound visualization of moving vehicles with the above method is developed, and the procedure of the test is established. The visualization tests with known sound sources and real vehicle noises are carried out to verify the performance of the system. The results of the tests indicate that the sound visualization of moving vehicles can be realized correctly and conveniently with this system. Then, the main noise sources can be identified with the analysis to the reconstruction video intuitively, and the changes of the sound field in the moving process can be represented.
引文
[1]陈国新.环境科学基础.上海:复旦大学出版社, 1992:206-210.
    [2]钱人一.汽车发动机噪声控制.上海:同济大学出版社, 1997:1-10.
    [3]秦文新,程熙,叶霭云.汽车排气净化与噪声控制.北京:人民交通出版社, 1999:20-25.
    [4]李太宝.计算声学.北京:科学出版社, 2005:104-140.
    [5]科利尔.光全息学.北京:机械工业出版社, 1983.
    [6] Umezawa K, Houjoh H. On the study of the sound of gear and gear box using acoustical holography. ASME, 1981, 80-c2: 1020-1025.
    [7] Takeda H. Detection of noise sources by highly accurate acoustical holography. JSME International Journal, 1987, 263:822-828.
    [8] Williams E G, Maynard J D. Holographic imaging without the wavelength resolution limit. Phys Rev Lett, 1980, 45:554-557.
    [9] Maynard J D, Williams E G. Nearfield holography a new technique for noise radiation measurement. Proc Noise Con 81, 1981, 19-24:213-221.
    [10] Maynard J D, Williams E G, Lee Y. Nearfield acoustic holography: I. Theory of generalized holography and the development of NAH. J Acoust Soc Am, 1985, 78:1395-1413.
    [11] Veronesi W A, Maynard J D. Nearfield acoustic holography II: Holograhpic reconstruction algorithms and computer implementation. J Acoust Soc Am, 1987, 81:1307-1322.
    [12] Williams E G. Supersonic acoustic intensity. J Acoust Soc Am, 1995, 97:121-127.
    [13] Williams E G. Supersonic acoustic intensity on planar sources. J Acoust Soc Am, 1998, 104:2845 -2850.
    [14] Hald J. Basic theory and properties of statistically optimized near-field acoustical holography. J Acoust Soc Am, 2009, 125:2105-2120.
    [15] Williams E G, Houston B H, Herdic P C. Fast Fourier transform and singular value decomposition formulations for patch nearfield acoustical holography. J Acoust Soc Am, 2003, 114:1322-1333.
    [16] Williams E G. Continuation of acoustic near-fields. J Acoust Soc Am, 2003, 113:1273-1281.
    [17] Moynet F, Guilhot J P, Azais C. Air conditioning noise sources identification using acoustic holography. Inter-Noise, 1996:131-134.
    [18] Ruhala R J, Burroughs C B. Application of nearfield acoustical holography to tire/pavement interation noise emissions. SAE 972047, 1997:3208-3217.
    [19] Patro T N. Vehicle power train noise diagnosis using acoustic holography techniques. SAE 972052, 1997:3242-3258.
    [20] Saemann E U, Hald J. Transient tyre noise measurements using time domain acoustical holography. SAE 972050, 1997:3234-3240.
    [21]杨殿阁,郑四发,李愈康,等.利用声全息方法识别汽车噪声源.汽车工程, 2000, 22:90-92.
    [22]杨殿阁,郑四发,李愈康,等.用于声源识别的声全息重建方法的研究.声学学报, 2001, 26:56-60.
    [23]杨殿阁,郑四发,郑凯,等.利用声全息方法研究汽车噪声空间传播.中国机械工程, 2001, 12:1148-1150.
    [24] Saijyou K, Yoshikawa S. Reduction methods of the reconstruction error for large-scale implementation of near-field acoustical holography. J Acoust Soc Am, 2001, 110:2007-2023.
    [25] Sakamoto I, Tanaka T. Application of acoustic holography to measurement of noise on an operating vehicle. SAE 930199, 1993:1-16.
    [26] Nakagawa H, Tsuru H, Tanaka T, et al. Detection and Visualization of Moving Sound Source through Acoustic Holography. Proceeding of ASVA 97, Tokyo, 1997:591-594.
    [27]杨殿阁,郑四发,罗禹贡,等.运动声源的声全息识别方法.声学学报, 2002, 27:357-362.
    [28]杨殿阁,刘峰,郑四发,等.声全息方法识别汽车运动噪声.汽车工程, 2001, 23:329-332.
    [29]高印寒,周晓华,杨开宇,等.基于小波分析的声全息识别运动声源的方法.吉林大学学报(工学版), 2007, 37:1197-1202.
    [30] Kim Y H, Park S H. Moving frame acoustic holography for the visualization of pass-by noise. Proceedings of National Conference on Noise Control Engineering, 1998:655-660.
    [31] Park S H, Kim Y H. An improved moving frame acoustic holography for coherent band limited noise. J Acoust Soc Am, 1998, 103:3179-3189.
    [32] Park S H, Kim Y H. Visualization of pass-by noise by means of moving frame acoustic holography. J Acoust Soc Am, 2001, 110:2326-2339.
    [33] Steiner R, Kaelin A. Localization of moving noise sources by means of acoustical holography. IEEE International Symposium on Circuits and Systems. 1997 , 4:2545-2548.
    [34] Johnson D H, Dudgeon D E. Array Signal Processing: Concepts and Techniques. New Jersey: Prentice Hall, 1993.
    [35] King W F III. On the role of aerodynamically generated sound in determining wayside noise levels from high-speed trains. Journal of Sound and Vibration, 1977, 54:361-378.
    [36] King W F III, Bechert D. On the sources of wayside noise generated by high-speed trains. Journal of Sound and Vibration, 1979, 66:311-332.
    [37] Barsikow B, King W F III, Peizenmaier E. Wheel/rail noise generated by a high-speed train investigated with a line array of microphones, Journal of Sound and Vibration, 1987, 118:99-122.
    [38] Barsikow B, King W F III. On removing the Doppler frequency shift from array measurements of railway noise. Journal of Sound and Vibration, 1988, 120:190-196.
    [39] Hamet J F, Marie-Agnes Pallas M A, Schmitz K P, et al. Microphone array techniques used to locate acoustic sources on ICE, TGV-A and Transpapid 07. Inter-Noise, 1994:187-190.
    [40] Torii A, Takano Y. Shinkansen’s sound source measurements using microphone arrays. Inter-Noise, 1992:1171-1174.
    [41] Takano Y, Terada K, Aizawa E, et al. Development of a 2-Dimensional microphone array measurement system for noise sources of fast moving vehicles. Inter-Noise, 1992:1175-178.
    [42] Kook H, Moebs G B, Davies P, et al. An efficient procedure for visualizing the sound field radiated by vehicles during standardized pass-by tests. Journal of Sound and Vibration, 2000, 233:137-156.
    [43] Kook H, Davies P, Bolton J S. The design and evaluation of microphone arrays for the visualization of noise sources on moving vehicles. Proceedings of the 1999 Noise and Vibration Conference, SAE Paper 99NV-227.
    [44]乔渭阳, Ulf Michel.二维传声器阵列测量技术及其对飞机进场着陆过程噪声的实验研究.声学学报, 2001, 26:161-168.
    [45]毛晓群,罗禹贡,郑四发,等.使用阵列技术识别高速行驶轿车的辐射声源.汽车技术, 2003, (9):6-9.
    [46]许峰,连小珉,杨殿阁,等.用于汽车运动噪声源识别的随机阵列生成法.汽车工程, 2006, 28:281-286.
    [47] Bai M R. Application of BEM (boundary element method)-based acoustic holography to radiation analysis of sound sources with arbitrarily shaped geometries. J Acoust Soc Am, 1992, 922:533-549.
    [48] Koopmann G H, Song L, Fahnline J. A method for computing acoustic fields based on the principle of wave superposition. J Acoust Soc Am, 1989, 86(5): 2433-2438.
    [49] Song L, Koopmann G H, Fahnline J. Numerical errors associated with the method of superposition for computing acoustic fields. J Acoust Soc Am, 1991, 89(6): 2625-2633.
    [50] Jeans R A, Mathews I C. The wave superposition method as a robust technique for computing acoustic fields. J Acoust Soc Am, 1992, 92(2):1156-1166.
    [51] Wilton D T, Jeans R A, Mathews I C. A clarification of non-existence problems with superposition methods. J Acoust Soc Am. 1993, 94(3):1676-1680.
    [52]李加庆,陈进,张桂才,等.自由场波叠加噪声源识别的仿真研究.振动与冲击, 2006, 25(4): 58-61.
    [53]薛玮飞,陈进,张桂才,等.基于混合波叠加的声源识别理论与实验研究.振动与冲击, 2006, 25(6): 79-84.
    [54]刘先锋,陈进,张桂才,等.基于波叠加的噪声源识别实验研究.振动与冲击, 2007, 26:72-74.
    [55]李加庆,陈进,张桂才,等.自由场波叠加噪声源识别的仿真研究.振动与冲击, 2006, 25:94:96.
    [56]潘汉军,李加庆,陈进,等.半自由场波叠加噪声源识别方法研究.中国机械工程, 2006, 17(7):733-737.
    [57] Regue J R, Ribo M, Garrell J M, et al. A genetic algorithm based method for source identification and far-field radiated emissions prediction from near-field measurements for PCB characterization. IEEE Trans Electromagn Compat, 2001, 43:520-530.
    [58] Gounot Y J, Musafir R E. Genetic algorithms: A global search tool to find optimal equivalent source sets. J Sound Vib, 2009, 322:282-298.
    [59]李兵,杨殿阁,郑四发,等.基于遗传算法的动态优化波叠加噪声源识别方法.机械工程学报, 2010, 46:99-105.
    [60] Hald J. An Integrated NAH/Beamforming Solution for Efficient Broad-Band Noise Source Location[C]. SAE 2005 Noise and Vibration Conference and Exhibition, Grand Traverse, MI, USA, 2005.
    [61]周晓华.运动噪声源识别技术的研究[博士学位论文].长春:吉林大学, 2008.
    [62]李加庆,陈进,杨超,等.基于波束形成和波叠加法的复合声全息技术.声学学报, 2008, 33(02):152-158.
    [63]贾文强,陈进,李加庆,等.波叠加联合波束形成的局部声场重建技术研究.振动与冲击, 2010, 29 (1):125-127.
    [64] Ih J G, Kang S C. Improvement of the reconstruction accuracy in bem-based near-field acoustic holography by using partially measured surface data. Inter-Noise, 1999:837-842.
    [65] Schuhmacher A, Hald J, Saemann E U. A comparison of inverse boundary element method and near-field acoustical holography applied to Sound radiation from a tyre. Inter-Noise, 1999:869-873.
    [66] Kim Y K, Kim Y H. Bem-based acoustic holography for the measurement of surface admittance. Inter-Noise, 1999:891-898.
    [67]徐亮,毕传兴,陈剑,等.基于波叠加法的patch近场声全息及其实验研究.物理学报, 2007, 56(05):2776-2783.
    [68]毕传兴,陈心昭,徐亮,等.基于等效源法的Patch近场声全息.中国科学E辑:技术科学, 2007, 37:1205-1213.
    [69]李卫东.基于统计最优和波叠加方法的近场声全息技术研究[博士学位论文].合肥:合肥工业大学, 2006.
    [70]罗禹贡.复杂声源条件下的汽车行驶噪声场声全息分析[博士学位论文].北京:清华大学, 2003.
    [71] Gesellschaft zur F?rderung angewandter Informatik. Acoustic camera - Listening with your eyes[EB/OL]. [2010-10-15]. http://www.acoustic-camera.com/images /stories/_docs/ac_broc hure2009.pdf.
    [72] HEAD Acoustics, Inc. HEAD VISOR Online localization of sound sources[EB/OL]. [2010-10-15]. http://www.head-acoustics.de/downloads/eng/head_visor/HEAD_VI SOR_07_09e.pdf.
    [73]隋婧,金伟其.双目立体视觉技术的实现及其进展.电子技术应用, 2004, 30:4-12.
    [74] Bradley D, Boubekeur T, Heidrich W. Accurate multi-view reconstruction using robust binocular stereo and surface meshing. Computer Vision and Pattern Recognition. IEEE Conference on Computer Vision and Pattern Recognition, 2008:1-8.
    [75] Ukida U, Takamatsu S. 3D shape measurements using stereo image scanner with three color light sources. Instrumentation and Measurement Technology Conference, 2004:639-644.
    [76] Li R, Sclaroff S. Multi-scale 3D scene flow from binocular stereo sequences. Computer Vision and Image Understanding, 2008, 110(1): 75-90.
    [77]陶声祥,张江辉.空中侦察图像立体重建方法研究.检测与控制学报, 2007, 29:49-56.
    [78]熊超,田小芳,陆起涌.基于竞争机制的双目视觉匹配与实时测距.计算机工程与应用, 2006, 42:83-85.
    [79]张春森.双目序列影像3维运动物体定位跟踪.测绘学报, 2006, 35:347-352.
    [80] Bjorkman M, Eklundh J O. Real-time epipolar geometry estimation of binocular stereo heads. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(3): 425-432.
    [81] Takemura H, Yamazawa K, Yokoya N. Real-time generation and presentation of view-dependent binocular stereo images using a sequence of omnidirectional images. 15th International Conference on Pattern Recognition Proceedings, 2000, 4:589-593.
    [82]张小苗,曹勇,于起峰.基于双目视觉的返回舱着陆横向速度测量.航天返回与遥感, 2007, 28:1-5.
    [83] Microflown Technologies, Inc. NEAR FIELD ACOUSTIC CAMERA[EB/OL]. [2010-10-15]. http://www. microflown.com/markets/nvh/near-field-acoustic-camera. html.
    [84] D?bler D, Heilmann G. Time-domain beamforming with aero-padding[C]. 2nd Berlin Beamforming Conference, Berlin, Germany, 2008.
    [85] Brüel & Kj?r, Inc. Beamforming - Planar and Spherical. [EB/OL]. [2010-10-15]. http://www.bksv.com/products/pulseanalyzerplatform/pulsesolutionsoverview/acousticapplications/nsiarraybased/acousticimagingbeamforming.aspx.
    [86] LMS, Inc. LMS Test.Lab第10版新功能介绍. [EB/OL]. [2010-10-15]. http://www. lms china.com/testlab/rev-10a.
    [87] Bouguet J Y. Camera Calibration Toolbox for Matlab. [EB/OL]. [2010-10-15]. http://www. vision.caltech.edu/bouguetj/calib_doc/.
    [88]肖廷凯,于慎根,王彦飞.反问题的数值解法.北京:科学出版社, 2003:89-90.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700